- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Ronny Pini; Ronny Pini; Sally M. Benson; Samuel Krevor;AbstractThe multiphase flow properties of CO2 water systems in permeable rocks control the engineering design and management of industrial CO2 sequestration projects. The relative permeability, capillary pressure, and residual trapping determine the rate of CO2 injection, the spread of injected CO2 in subsurface storage formations, and the long-term immobilization of injected fluid after injection has completed. Due to difficulties in working with CO2 brine systems, however, few observations have been made of these properties at pressure, temperature, and fluid salinities that exist in target reservoirs. In this paper we report on measurements of relative permeability and residual trapping made in a Berea sandstone rock core at reservoir conditions. The drainage relative permeability and residual trapping are characteristic of multiphase flow in a strongly water-wet system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018Publisher:Elsevier BV Nigel P. Brandon; Sara Budinis; Samuel Krevor; Niall Mac Dowell; Adam Hawkes;Abstract Global decarbonisation scenarios include Carbon Capture and Storage (CCS) as a key technology to reduce carbon dioxide (CO2) emissions from the power and industrial sectors. However, few large scale CCS plants are operating worldwide. This mismatch between expectations and reality is caused by a series of barriers which are preventing this technology from being adopted more widely. The goal of this paper is to identify and review the barriers to CCS development, with a focus on recent cost estimates, and to assess the potential of CCS to enable access to fossil fuels without causing dangerous levels of climate change. The result of the review shows that no CCS barriers are exclusively technical, with CCS cost being the most significant hurdle in the short to medium term. In the long term, CCS is found to be very cost effective when compared with other mitigation options. Cost estimates exhibit a high range, which depends on process type, separation technology, CO2 transport technique and storage site. CCS potential has been quantified by comparing the amount of fossil fuels that could be used globally with and without CCS. In modelled energy system transition pathways that limit global warming to less than 2 °C, scenarios without CCS result in 26% of fossil fuel reserves being consumed by 2050, against 37% being consumed when CCS is available. However, by 2100, the scenarios without CCS have only consumed slightly more fossil fuel reserves (33%), whereas scenarios with CCS available end up consuming 65% of reserves. It was also shown that the residual emissions from CCS facilities is the key factor limiting long term uptake, rather than cost. Overall, the results show that worldwide CCS adoption will be critical if fossil fuel reserves are to continue to be substantively accessed whilst still meeting climate targets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2018.08.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 393 citations 393 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2018.08.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Journal 2016Publisher:SPE Authors: Ann Muggeridge; Samuel Krevor; A.D.W. Jones; Sultan Djabbarov;doi: 10.2118/180125-ms
Abstract We quantify the impact of mobility, simple heterogeneities and grid orientation error on the performance of first contact miscible gas flooding in a quarter five spot configuration by comparing the outputs from experimental and numerical models. The aim is to quantify the errors that may arise during simulation and to identify a workflow for minimizing these when conducting field scale fingering studies. A commercial reservoir simulator was validated by comparing its predictions with the results obtained from physical experiments. An uncorrelated, random permeability distribution was used to trigger fingering in the simulations. The physical experiments were carried out using a Hele-Shaw cell (40×40cm) designed and constructed for this study. The impact of a square low permeability inclusion (20×20cm) on flow was investigated by varying its permeability, location and orientation. For lower mobility ratios (M=2 to M=10) the commercial numerical simulator was able to reproduce the experimental observations within the uncertainty range of the permeability distribution used to trigger the fingers, provided a nine-point scheme was used for the pressure solution. At higher mobility ratios (M=20 to M=100) the grid orientation effect meant that the simulator overestimated the areal sweep even when a nine-point scheme was used. The introduction of a square, low permeability inclusion near the injection well reduced the discrepancy between experimental and numerical results, bringing it back within uncertainty limits in some of the cases. This was mainly because the real flow was then forced to move parallel to the edges of the Hele-Shaw cell and thus parallel to the simulation grid. Breakthrough times were well predicted by the numerical simulator at all mobility ratios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/180125-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/180125-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Catriona Reynolds; Samuel Krevor; Martin J. Blunt;AbstractWe demonstrate experimentally, that the spatial distribution of fluids in the pore space is the primary control on CO2 relative permeability, and that the importance of spatial heterogeneity in rock properties such as capillarity, porosity and permeability on fluid distributions is controlled by viscous forces. The importance of viscous forces during drainage core floods is evaluated using fluid viscosity as the varying parameter in CO2-brine core floods, and flow rate in N2-water core floods. A transition from a heterogeneous to a homogeneous displacement is observed with increasing viscous force applied to the core. During capillary dominated core flooding the relative permeability is sensitive to flow rate and viscosity. Homogeneous displacements have an invariant relative permeability and as such are a measure of the true relative permeability of the rock.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Samuel Krevor; Ariel Esposito; Jean-Christophe Perrin; Chris Rella; Sally M. Benson;Abstract A portable stable carbon isotope ratio analyzer for carbon dioxide, based on wavelength scanned cavity ringdown spectroscopy, has been used to detect, locate, and characterize an intentional leakage of CO2 from an underground pipeline at the ZERT experimental facility in Bozeman, Montana. Rapid (1 h) walking surveys of the 100 m × 100 m site surrounding the pipeline were collected using this mobile, real-time instrument. The resulting concentration and 13C isotopic abundance maps were analyzed using Keeling plots, permitting not only the identification of specific leakage locations, but providing the ability to distinguish petrogenic sources of CO2 from biogenic sources. The ability to rapidly and reliably detect 12CO2 and 13CO2 concentration anomalies and identify the isotopic composition of the source flux provides a powerful and practical tool for detecting leakage from CO2 sequestration projects.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2010.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2010.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2013 France, Sweden, United KingdomPublisher:Elsevier BV Funded by:EC | CO2QUESTEC| CO2QUESTSamuel Krevor; Philippe Gombert; Alexander Collard; Loukas D. Peristeras; Sergey Martynov; Nilay Shah; Robert M. Woolley; Michael Fairweather; Haroun Mahgerefteh; Jianliang Yu; Ioannis G. Economou; Yongchun Zhang; Dimitrios M. Tsangaris; Carlos Salvador; Dorothee Rebscher; Richard T.J. Porter; Richard T.J. Porter; Clea Kolster; Shaoyun Chen; John N. Najafali; Kourosh Zanganeh; Régis Farret; Reza Hojjati Talemi; Christophe Proust; Anthony Ceroni; Georgios C. Boulougouris; Niall Mac Dowell; Christopher J. Wareing; Yann Flauw; Jacob Bensabat; Jan Lennard Wolf; Ashkan Beigzadeh; Byeongju Jung; Jérôme Hebrard; Samuel A.E.G. Falle; Ilias K. Nikolaidis; Ahmed Shafeen; Evgenia Mechleri; Andrew Wigston; Auli Niemi; Solomon Brown;handle: 10044/1/49747
The ultimate composition of the CO2 stream captured from fossil fuel power plants or other CO2 intensive industries and transported to a storage site using high pressure pipelines will be governed by safety, environmental and economic considerations. So far, most of the studies performed on this topic have been limited in scope, primarily focusing on investigating the impact of the CO2 stream impurities on each part of the Carbon Capture and Sequestration (CCS) chain in isolation. This is a significant drawback given the markedly different sensitivities of the pipeline, well bore materials and storage sites to the various impurities. For example, given the risk of water table contamination, trace elements such as Lead, Mercury and Arsenic in the CO2 stream are of far greater concern in an aquifer storage site than compared to the pipeline. On the other hand, even small concentrations of water in the CO2 stream are detrimental to the pipeline due to corrosion, but of benefit even at high concentrations during storage given the immobilisation effect of water on CO2. 'What is good for the pipeline is not necessarily good for storage'. It is clear that the optimum composition and concentration of the impurities in the captured CO2 stream involves a delicate balance between the different requirements within the CCS chain, spanning capture, transportation and storage, with cost and safety implications being the over-arching factor. Pivotal to these considerations is an understanding of the impact of the impurities on the physico-chemical properties of CO2 and its hazard profile. This paper presents and overview of the current FP7 European Commission CO2QUEST project involving the collaboration of 12 industry and academic partners in Europe, China and Canada aimed at addressing fundamentally important and urgent issues regarding the impact of the typical CO2 streams impurities captured from fossil fuel power plants on its safe and economic transportation and storage. The work programme, spanning 36 months, focuses on the development of state-of-the-art mathematical models, backed, by laboratory and industrial-scale experimentation using unique EC-funded test facilities to perform a comprehensive techno-economic, risk-based assessment of the impact of the CO2 stream impurities on the phase behaviour and the physico-chemical reactions governing the pipeline and storage site integrities. The above involves the determination of the important CO2 mixtures that have the most profound impact upon the pipeline pressure drop, compressor power requirements, pipeline propensity to ductile and brittle facture propagation, corrosion of the pipeline and well bore materials, geochemical interactions within the well bore and storage site, and the ensuing health and environmental hazards. Based on a cost/benefit analysis and whole system approach, the results will in turn be used to provide recommendations for tolerance levels, mixing protocols and control measures for pipeline networks and storage infrastructure thus contributing to the development of relevant standards for the safe design and operation of CCS. Acknowledgement: The CO2QUEST project has received funding from the European Union 7th Framework Programme FP7-ENERGY-2012-1-2STAGE under grant agreement number 309102.
CORE arrow_drop_down White Rose Research OnlineArticle . 2016License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/49747Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryPublikationer från Uppsala UniversitetArticle . 2016Data sources: Publikationer från Uppsala UniversitetInternational Journal of Greenhouse Gas ControlArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefINERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2016.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert CORE arrow_drop_down White Rose Research OnlineArticle . 2016License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/49747Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryPublikationer från Uppsala UniversitetArticle . 2016Data sources: Publikationer från Uppsala UniversitetInternational Journal of Greenhouse Gas ControlArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefINERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2016.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | DTP 2018-19 Imperial Coll...UKRI| DTP 2018-19 Imperial College LondonHarris, C; Jackson, SJ; Benham, GP; Krevor, S; Muggeridge, AH;handle: 10044/1/93101
Abstract A significant uncertainty which remains for CO 2 sequestration, is the effect of natural geological heterogeneities and hysteresis on capillary trapping over different length scales. This paper uses laboratory data measured in cores from the Goldeneye formation of the Captain D Sandstone, North Sea in 1D numerical simulations to evaluate the potential capillary trapping from natural rock heterogeneities across a range of scales, from cm to 65m. The impact of different geological realisations, as well as uncertainty in petrophysical properties, on the amount of capillary heterogeneity trapping is estimated. In addition, the validity of upscaling trapping characteristics in terms of the Land trapping parameter is assessed. The numerical models show that the capillary heterogeneity trapped CO 2 saturation may vary between 0 and 14% of the total trapped saturation, depending upon the geological realisation and petrophysical uncertainty. When upscaling the Land model from core-scale experimental data, using the maximum experimental Land trapping parameter could increase the expected heterogeneity trapping by a factor of 3. Conversely, depending on the form of the imbibition capillary pressure curve used in the numerical model, including capillary pressure hysteresis may reduce the heterogeneity trapping by up to 70%.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/93101Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/93101Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Samuel Krevor; Ali Al-Menhali;AbstractThe wetting properties of CO2-brine-rock systems will have a major impact on the management of CO2 injection processes. The wettability of a system controls the flow and trapping efficiency during the storage of CO2 in geological formations as well as the efficiency of enhanced oil recovery operations. While recent studies have shown CO2 to generally act as a non-wetting phase in siliciclastic rocks, some observations report that the contact angle varies with pressure, temperature and water salinity. Additionally, there is a wide range of reported contact angles for this system, from strongly to weakly water-wet. In the case of some minerals, intermediate wet contact angles have been observed. Uncertainty with regard to the wetting properties of CO2-brine systems is currently one of the remaining major unresolved issues with regards to reservoir management of CO2 storage. In this study, we make semi-dynamic capillary pressure measurements of supercritical CO2 and brine at reservoir conditions to observe shifts in the wetting properties. We utilize core analysis techniques to evaluate core-scale effective wetting properties mainly by comparing the capillarity at different conditions on the same rock. We evaluate wettability variation within a single rock with temperature, pressure, and salinity across a range of conditions relevant to subsurface CO2 storage. This paper will include the initial results of measurements in a Berea sandstone sample across a wide range of conditions representative of subsurface reservoirs suitable for CO2 storage (5-20MPa, 25-50 oC, 0-5mol kg-1). The measurement uses X-ray CT imaging in a state of the art core flooding laboratory designed to operate at high temperature, pressure, and concentrated brines.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Klaus S. Lackner; Samuel Krevor;AbstractThe current low-cost process for mineral carbonation involves the direct carbonation of a slurry of magnesium or calcium silicate mineral with supercritical CO2. The process is currently limited by the slow reaction kinetics of the carbonation reactions, and in particular the slow dissolution rates of the silicates in weakly acidic conditions. Enhancing the dissolution rate in weakly acidic conditions has been identified as one of the main opportunities for lowering the costs of a direct mineral carbonation process. Serpentine has been identified by its reactivity and abundance as a potential mineral for use in a mineral carbonation process. In this paper we discuss the results of dissolution experiments in which ground serpentine was reacted in weakly acidic aqueous systems containing NH4Cl, NaCl,, sodium citrate, sodium EDTA, sodium oxalate, and sodium acetate. All experiments are carried out at 120 ∘C and under 20 bars of CO2 in a batch autoclave. It was found that the sodium salts of citrate, oxalate, and EDTA significantly enhance the dissolution of serpentine under weakly acidic conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.02.315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.02.315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018Embargo end date: 01 May 2018 United Kingdom, Germany, United Kingdom, United Kingdom, United States, United Kingdom, Switzerland, Switzerland, United Kingdom, United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:EC | LEILAC, UKRI | Migration of CO2 through ..., UKRI | CCS from Industrial clust... +4 projectsEC| LEILAC ,UKRI| Migration of CO2 through North Sea Geological Carbon Storage Sites: Impact of Faults, Geological Heterogeneities and Dissolution ,UKRI| CCS from Industrial clusters and their Supply chains (CCSInSupply) ,EC| MaGic ,UKRI| Multi-scale Energy Systems Modelling Encompassing Renewable, Intermittent, Stored Energy and Carbon Capture and Storage (MESMERISE-CCS) ,UKRI| Comparative assessment and region-specific optimisation of GGR ,UKRI| Opening New Fuels for UK GenerationJason P. Hallett; Graeme Puxty; Jennifer Wilcox; Jeffrey A. Reimer; Amparo Galindo; Howard J. Herzog; Claire S. Adjiman; J. P. Martin Trusler; Edward J. Anthony; Andy Boston; Solomon Brown; André Bardow; Samuel Krevor; Edward S. Rubin; David Reiner; Stuart A. Scott; Mai Bui; Jasmin Kemper; Geoffrey C. Maitland; Nilay Shah; Michael Matuszewski; Ian S. Metcalfe; Leigh A. Hackett; Paul A. Webley; Sabine Fuss; Berend Smit; Berend Smit; Camille Petit; Paul S. Fennell; George Jackson; Niall Mac Dowell;handle: 10044/1/55714
Carbon capture and storage (CCS) is vital to climate change mitigation, and has application across the economy, in addition to facilitating atmospheric carbon dioxide removal resulting in emissions offsets and net negative emissions. This contribution reviews the state-of-the-art and identifies key challenges which must be overcome in order to pave the way for its large-scale deployment.
CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYFull-Text: http://dx.doi.org/10.1039/C7EE02342AData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/55714Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/246789Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/4212s92jData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaPublikationsserver der RWTH Aachen UniversityArticle . 2018Data sources: Publikationsserver der RWTH Aachen UniversityeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaEnergy & Environmental ScienceArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee02342a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3K citations 2,721 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYFull-Text: http://dx.doi.org/10.1039/C7EE02342AData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/55714Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/246789Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/4212s92jData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaPublikationsserver der RWTH Aachen UniversityArticle . 2018Data sources: Publikationsserver der RWTH Aachen UniversityeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaEnergy & Environmental ScienceArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee02342a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Ronny Pini; Ronny Pini; Sally M. Benson; Samuel Krevor;AbstractThe multiphase flow properties of CO2 water systems in permeable rocks control the engineering design and management of industrial CO2 sequestration projects. The relative permeability, capillary pressure, and residual trapping determine the rate of CO2 injection, the spread of injected CO2 in subsurface storage formations, and the long-term immobilization of injected fluid after injection has completed. Due to difficulties in working with CO2 brine systems, however, few observations have been made of these properties at pressure, temperature, and fluid salinities that exist in target reservoirs. In this paper we report on measurements of relative permeability and residual trapping made in a Berea sandstone rock core at reservoir conditions. The drainage relative permeability and residual trapping are characteristic of multiphase flow in a strongly water-wet system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018Publisher:Elsevier BV Nigel P. Brandon; Sara Budinis; Samuel Krevor; Niall Mac Dowell; Adam Hawkes;Abstract Global decarbonisation scenarios include Carbon Capture and Storage (CCS) as a key technology to reduce carbon dioxide (CO2) emissions from the power and industrial sectors. However, few large scale CCS plants are operating worldwide. This mismatch between expectations and reality is caused by a series of barriers which are preventing this technology from being adopted more widely. The goal of this paper is to identify and review the barriers to CCS development, with a focus on recent cost estimates, and to assess the potential of CCS to enable access to fossil fuels without causing dangerous levels of climate change. The result of the review shows that no CCS barriers are exclusively technical, with CCS cost being the most significant hurdle in the short to medium term. In the long term, CCS is found to be very cost effective when compared with other mitigation options. Cost estimates exhibit a high range, which depends on process type, separation technology, CO2 transport technique and storage site. CCS potential has been quantified by comparing the amount of fossil fuels that could be used globally with and without CCS. In modelled energy system transition pathways that limit global warming to less than 2 °C, scenarios without CCS result in 26% of fossil fuel reserves being consumed by 2050, against 37% being consumed when CCS is available. However, by 2100, the scenarios without CCS have only consumed slightly more fossil fuel reserves (33%), whereas scenarios with CCS available end up consuming 65% of reserves. It was also shown that the residual emissions from CCS facilities is the key factor limiting long term uptake, rather than cost. Overall, the results show that worldwide CCS adoption will be critical if fossil fuel reserves are to continue to be substantively accessed whilst still meeting climate targets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2018.08.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 393 citations 393 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2018.08.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Journal 2016Publisher:SPE Authors: Ann Muggeridge; Samuel Krevor; A.D.W. Jones; Sultan Djabbarov;doi: 10.2118/180125-ms
Abstract We quantify the impact of mobility, simple heterogeneities and grid orientation error on the performance of first contact miscible gas flooding in a quarter five spot configuration by comparing the outputs from experimental and numerical models. The aim is to quantify the errors that may arise during simulation and to identify a workflow for minimizing these when conducting field scale fingering studies. A commercial reservoir simulator was validated by comparing its predictions with the results obtained from physical experiments. An uncorrelated, random permeability distribution was used to trigger fingering in the simulations. The physical experiments were carried out using a Hele-Shaw cell (40×40cm) designed and constructed for this study. The impact of a square low permeability inclusion (20×20cm) on flow was investigated by varying its permeability, location and orientation. For lower mobility ratios (M=2 to M=10) the commercial numerical simulator was able to reproduce the experimental observations within the uncertainty range of the permeability distribution used to trigger the fingers, provided a nine-point scheme was used for the pressure solution. At higher mobility ratios (M=20 to M=100) the grid orientation effect meant that the simulator overestimated the areal sweep even when a nine-point scheme was used. The introduction of a square, low permeability inclusion near the injection well reduced the discrepancy between experimental and numerical results, bringing it back within uncertainty limits in some of the cases. This was mainly because the real flow was then forced to move parallel to the edges of the Hele-Shaw cell and thus parallel to the simulation grid. Breakthrough times were well predicted by the numerical simulator at all mobility ratios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/180125-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/180125-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Catriona Reynolds; Samuel Krevor; Martin J. Blunt;AbstractWe demonstrate experimentally, that the spatial distribution of fluids in the pore space is the primary control on CO2 relative permeability, and that the importance of spatial heterogeneity in rock properties such as capillarity, porosity and permeability on fluid distributions is controlled by viscous forces. The importance of viscous forces during drainage core floods is evaluated using fluid viscosity as the varying parameter in CO2-brine core floods, and flow rate in N2-water core floods. A transition from a heterogeneous to a homogeneous displacement is observed with increasing viscous force applied to the core. During capillary dominated core flooding the relative permeability is sensitive to flow rate and viscosity. Homogeneous displacements have an invariant relative permeability and as such are a measure of the true relative permeability of the rock.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Samuel Krevor; Ariel Esposito; Jean-Christophe Perrin; Chris Rella; Sally M. Benson;Abstract A portable stable carbon isotope ratio analyzer for carbon dioxide, based on wavelength scanned cavity ringdown spectroscopy, has been used to detect, locate, and characterize an intentional leakage of CO2 from an underground pipeline at the ZERT experimental facility in Bozeman, Montana. Rapid (1 h) walking surveys of the 100 m × 100 m site surrounding the pipeline were collected using this mobile, real-time instrument. The resulting concentration and 13C isotopic abundance maps were analyzed using Keeling plots, permitting not only the identification of specific leakage locations, but providing the ability to distinguish petrogenic sources of CO2 from biogenic sources. The ability to rapidly and reliably detect 12CO2 and 13CO2 concentration anomalies and identify the isotopic composition of the source flux provides a powerful and practical tool for detecting leakage from CO2 sequestration projects.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2010.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2010.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2013 France, Sweden, United KingdomPublisher:Elsevier BV Funded by:EC | CO2QUESTEC| CO2QUESTSamuel Krevor; Philippe Gombert; Alexander Collard; Loukas D. Peristeras; Sergey Martynov; Nilay Shah; Robert M. Woolley; Michael Fairweather; Haroun Mahgerefteh; Jianliang Yu; Ioannis G. Economou; Yongchun Zhang; Dimitrios M. Tsangaris; Carlos Salvador; Dorothee Rebscher; Richard T.J. Porter; Richard T.J. Porter; Clea Kolster; Shaoyun Chen; John N. Najafali; Kourosh Zanganeh; Régis Farret; Reza Hojjati Talemi; Christophe Proust; Anthony Ceroni; Georgios C. Boulougouris; Niall Mac Dowell; Christopher J. Wareing; Yann Flauw; Jacob Bensabat; Jan Lennard Wolf; Ashkan Beigzadeh; Byeongju Jung; Jérôme Hebrard; Samuel A.E.G. Falle; Ilias K. Nikolaidis; Ahmed Shafeen; Evgenia Mechleri; Andrew Wigston; Auli Niemi; Solomon Brown;handle: 10044/1/49747
The ultimate composition of the CO2 stream captured from fossil fuel power plants or other CO2 intensive industries and transported to a storage site using high pressure pipelines will be governed by safety, environmental and economic considerations. So far, most of the studies performed on this topic have been limited in scope, primarily focusing on investigating the impact of the CO2 stream impurities on each part of the Carbon Capture and Sequestration (CCS) chain in isolation. This is a significant drawback given the markedly different sensitivities of the pipeline, well bore materials and storage sites to the various impurities. For example, given the risk of water table contamination, trace elements such as Lead, Mercury and Arsenic in the CO2 stream are of far greater concern in an aquifer storage site than compared to the pipeline. On the other hand, even small concentrations of water in the CO2 stream are detrimental to the pipeline due to corrosion, but of benefit even at high concentrations during storage given the immobilisation effect of water on CO2. 'What is good for the pipeline is not necessarily good for storage'. It is clear that the optimum composition and concentration of the impurities in the captured CO2 stream involves a delicate balance between the different requirements within the CCS chain, spanning capture, transportation and storage, with cost and safety implications being the over-arching factor. Pivotal to these considerations is an understanding of the impact of the impurities on the physico-chemical properties of CO2 and its hazard profile. This paper presents and overview of the current FP7 European Commission CO2QUEST project involving the collaboration of 12 industry and academic partners in Europe, China and Canada aimed at addressing fundamentally important and urgent issues regarding the impact of the typical CO2 streams impurities captured from fossil fuel power plants on its safe and economic transportation and storage. The work programme, spanning 36 months, focuses on the development of state-of-the-art mathematical models, backed, by laboratory and industrial-scale experimentation using unique EC-funded test facilities to perform a comprehensive techno-economic, risk-based assessment of the impact of the CO2 stream impurities on the phase behaviour and the physico-chemical reactions governing the pipeline and storage site integrities. The above involves the determination of the important CO2 mixtures that have the most profound impact upon the pipeline pressure drop, compressor power requirements, pipeline propensity to ductile and brittle facture propagation, corrosion of the pipeline and well bore materials, geochemical interactions within the well bore and storage site, and the ensuing health and environmental hazards. Based on a cost/benefit analysis and whole system approach, the results will in turn be used to provide recommendations for tolerance levels, mixing protocols and control measures for pipeline networks and storage infrastructure thus contributing to the development of relevant standards for the safe design and operation of CCS. Acknowledgement: The CO2QUEST project has received funding from the European Union 7th Framework Programme FP7-ENERGY-2012-1-2STAGE under grant agreement number 309102.
CORE arrow_drop_down White Rose Research OnlineArticle . 2016License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/49747Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryPublikationer från Uppsala UniversitetArticle . 2016Data sources: Publikationer från Uppsala UniversitetInternational Journal of Greenhouse Gas ControlArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefINERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2016.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert CORE arrow_drop_down White Rose Research OnlineArticle . 2016License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/49747Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryPublikationer från Uppsala UniversitetArticle . 2016Data sources: Publikationer från Uppsala UniversitetInternational Journal of Greenhouse Gas ControlArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefINERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2016.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | DTP 2018-19 Imperial Coll...UKRI| DTP 2018-19 Imperial College LondonHarris, C; Jackson, SJ; Benham, GP; Krevor, S; Muggeridge, AH;handle: 10044/1/93101
Abstract A significant uncertainty which remains for CO 2 sequestration, is the effect of natural geological heterogeneities and hysteresis on capillary trapping over different length scales. This paper uses laboratory data measured in cores from the Goldeneye formation of the Captain D Sandstone, North Sea in 1D numerical simulations to evaluate the potential capillary trapping from natural rock heterogeneities across a range of scales, from cm to 65m. The impact of different geological realisations, as well as uncertainty in petrophysical properties, on the amount of capillary heterogeneity trapping is estimated. In addition, the validity of upscaling trapping characteristics in terms of the Land trapping parameter is assessed. The numerical models show that the capillary heterogeneity trapped CO 2 saturation may vary between 0 and 14% of the total trapped saturation, depending upon the geological realisation and petrophysical uncertainty. When upscaling the Land model from core-scale experimental data, using the maximum experimental Land trapping parameter could increase the expected heterogeneity trapping by a factor of 3. Conversely, depending on the form of the imbibition capillary pressure curve used in the numerical model, including capillary pressure hysteresis may reduce the heterogeneity trapping by up to 70%.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/93101Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/93101Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Samuel Krevor; Ali Al-Menhali;AbstractThe wetting properties of CO2-brine-rock systems will have a major impact on the management of CO2 injection processes. The wettability of a system controls the flow and trapping efficiency during the storage of CO2 in geological formations as well as the efficiency of enhanced oil recovery operations. While recent studies have shown CO2 to generally act as a non-wetting phase in siliciclastic rocks, some observations report that the contact angle varies with pressure, temperature and water salinity. Additionally, there is a wide range of reported contact angles for this system, from strongly to weakly water-wet. In the case of some minerals, intermediate wet contact angles have been observed. Uncertainty with regard to the wetting properties of CO2-brine systems is currently one of the remaining major unresolved issues with regards to reservoir management of CO2 storage. In this study, we make semi-dynamic capillary pressure measurements of supercritical CO2 and brine at reservoir conditions to observe shifts in the wetting properties. We utilize core analysis techniques to evaluate core-scale effective wetting properties mainly by comparing the capillarity at different conditions on the same rock. We evaluate wettability variation within a single rock with temperature, pressure, and salinity across a range of conditions relevant to subsurface CO2 storage. This paper will include the initial results of measurements in a Berea sandstone sample across a wide range of conditions representative of subsurface reservoirs suitable for CO2 storage (5-20MPa, 25-50 oC, 0-5mol kg-1). The measurement uses X-ray CT imaging in a state of the art core flooding laboratory designed to operate at high temperature, pressure, and concentrated brines.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Klaus S. Lackner; Samuel Krevor;AbstractThe current low-cost process for mineral carbonation involves the direct carbonation of a slurry of magnesium or calcium silicate mineral with supercritical CO2. The process is currently limited by the slow reaction kinetics of the carbonation reactions, and in particular the slow dissolution rates of the silicates in weakly acidic conditions. Enhancing the dissolution rate in weakly acidic conditions has been identified as one of the main opportunities for lowering the costs of a direct mineral carbonation process. Serpentine has been identified by its reactivity and abundance as a potential mineral for use in a mineral carbonation process. In this paper we discuss the results of dissolution experiments in which ground serpentine was reacted in weakly acidic aqueous systems containing NH4Cl, NaCl,, sodium citrate, sodium EDTA, sodium oxalate, and sodium acetate. All experiments are carried out at 120 ∘C and under 20 bars of CO2 in a batch autoclave. It was found that the sodium salts of citrate, oxalate, and EDTA significantly enhance the dissolution of serpentine under weakly acidic conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.02.315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.02.315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018Embargo end date: 01 May 2018 United Kingdom, Germany, United Kingdom, United Kingdom, United States, United Kingdom, Switzerland, Switzerland, United Kingdom, United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:EC | LEILAC, UKRI | Migration of CO2 through ..., UKRI | CCS from Industrial clust... +4 projectsEC| LEILAC ,UKRI| Migration of CO2 through North Sea Geological Carbon Storage Sites: Impact of Faults, Geological Heterogeneities and Dissolution ,UKRI| CCS from Industrial clusters and their Supply chains (CCSInSupply) ,EC| MaGic ,UKRI| Multi-scale Energy Systems Modelling Encompassing Renewable, Intermittent, Stored Energy and Carbon Capture and Storage (MESMERISE-CCS) ,UKRI| Comparative assessment and region-specific optimisation of GGR ,UKRI| Opening New Fuels for UK GenerationJason P. Hallett; Graeme Puxty; Jennifer Wilcox; Jeffrey A. Reimer; Amparo Galindo; Howard J. Herzog; Claire S. Adjiman; J. P. Martin Trusler; Edward J. Anthony; Andy Boston; Solomon Brown; André Bardow; Samuel Krevor; Edward S. Rubin; David Reiner; Stuart A. Scott; Mai Bui; Jasmin Kemper; Geoffrey C. Maitland; Nilay Shah; Michael Matuszewski; Ian S. Metcalfe; Leigh A. Hackett; Paul A. Webley; Sabine Fuss; Berend Smit; Berend Smit; Camille Petit; Paul S. Fennell; George Jackson; Niall Mac Dowell;handle: 10044/1/55714
Carbon capture and storage (CCS) is vital to climate change mitigation, and has application across the economy, in addition to facilitating atmospheric carbon dioxide removal resulting in emissions offsets and net negative emissions. This contribution reviews the state-of-the-art and identifies key challenges which must be overcome in order to pave the way for its large-scale deployment.
CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYFull-Text: http://dx.doi.org/10.1039/C7EE02342AData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/55714Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/246789Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/4212s92jData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaPublikationsserver der RWTH Aachen UniversityArticle . 2018Data sources: Publikationsserver der RWTH Aachen UniversityeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaEnergy & Environmental ScienceArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee02342a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3K citations 2,721 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYFull-Text: http://dx.doi.org/10.1039/C7EE02342AData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/55714Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/246789Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/4212s92jData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaPublikationsserver der RWTH Aachen UniversityArticle . 2018Data sources: Publikationsserver der RWTH Aachen UniversityeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaEnergy & Environmental ScienceArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ee02342a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu