Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Imperial College Lon...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Greenhouse Gas Control
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Greenhouse Gas Control
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The impact of heterogeneity on the capillary trapping of CO2 in the Captain Sandstone.

Authors: Harris, C; Jackson, SJ; Benham, GP; Krevor, S; Muggeridge, AH;

The impact of heterogeneity on the capillary trapping of CO2 in the Captain Sandstone.

Abstract

Abstract A significant uncertainty which remains for CO 2 sequestration, is the effect of natural geological heterogeneities and hysteresis on capillary trapping over different length scales. This paper uses laboratory data measured in cores from the Goldeneye formation of the Captain D Sandstone, North Sea in 1D numerical simulations to evaluate the potential capillary trapping from natural rock heterogeneities across a range of scales, from cm to 65m. The impact of different geological realisations, as well as uncertainty in petrophysical properties, on the amount of capillary heterogeneity trapping is estimated. In addition, the validity of upscaling trapping characteristics in terms of the Land trapping parameter is assessed. The numerical models show that the capillary heterogeneity trapped CO 2 saturation may vary between 0 and 14% of the total trapped saturation, depending upon the geological realisation and petrophysical uncertainty. When upscaling the Land model from core-scale experimental data, using the maximum experimental Land trapping parameter could increase the expected heterogeneity trapping by a factor of 3. Conversely, depending on the form of the imbibition capillary pressure curve used in the numerical model, including capillary pressure hysteresis may reduce the heterogeneity trapping by up to 70%.

Country
United Kingdom
Keywords

Technology, Engineering, Chemical, 550, Energy & Fuels, DRAINAGE, Imbibition, 04 Earth Sciences, 05 Environmental Sciences, RELATIVE PERMEABILITY, Chemical, SMALL-SCALE HETEROGENEITY, 2-PHASE FLOW, PRESSURE, 551, 09 Engineering, Environmental, CO2 Sequestration, Engineering, Capillary trapping, Green & Sustainable Science & Technology, HYSTERESIS, Science & Technology, Energy, MULTIPHASE FLOW, Engineering, Environmental, Science & Technology - Other Topics, Heterogeneity, RESERVOIRS, BEHAVIOR, STORAGE

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Green
hybrid