- home
- Advanced Search
Filters
Year range
-chevron_right GO
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Marco Puliti; Renato Galluzzi; Federico Tessari; Nicola Amati; Andrea Tonoli;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4579138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4579138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Andrea Tonoli; Renato Galluzzi; Yijun Xu; Nicola Amati;Abstract The constant need to reduce emissions in the automotive sector has driven the electrification of powertrain and chassis. To comply with this trend and decrease the bound even further, the present paper proposes the use of hydraulic regenerative shock absorbers for automotive suspension systems. The conversion of linear into angular motion and the suitable control of an integrated electric machine allow to transform part of the vibrational energy into electricity. In these damping devices, the key element is the motor-pump unit that is interfaced onto a conventional hydraulic cylinder architecture. Hence, the proposed research focuses on this component by investigating different design aspects in all the domains of interest. The objective is to optimize the energy conversion efficiency of the unit without affecting its damping control property. To give means of validation, a motor-pump prototype is built and experimentally characterized through a dedicated test rig.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:SAGE Publications Angelo Bonfitto; Hadi Rahmeh; Nicola Amati; Andrea Tonoli; Renato Galluzzi; Sanjarbek Ruzimov;Hybrid electric vehicles have proven to be an effective solution for the auto industry to satisfy the increasingly stringent CO2 regulations for the short-medium term. Proper sizing of the different components is required to benefit from the hybrid architecture full potential. This paper proposes a unified method that can be applied in both cases. The method uses the energy flow, storage, and consumption during a cycle to perform the sizing. A 350 V P2 plug-in hybrid and a 48 V P2 mild hybrid are taken as a case study. The sizing is performed by adopting the WLTP cycle and subsequently analyzing the energy profile.
Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile EngineeringArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09544070221106660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile EngineeringArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09544070221106660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: David Sebastian Puma-Benavides; Javier Izquierdo-Reyes; Renato Galluzzi; Juan de Dios Calderon-Najera;doi: 10.3390/app112311474
Electric vehicles must improve their electric drive system efficiency and effectively use their limited energy to become a viable means of transportation. As such, these technologies have undergone substantial improvements from their initial conception. More efficient powertrains, together with improved storage technologies, have enabled more extended autonomy. However, from an engineering perspective, these systems are still a key area of research and optimization. This work presents a powertrain optimization methodology, developing energy savings and improving the performance of the electric vehicle by focusing on the differential. The proposed methodology includes a study of the dynamics of the electric vehicle and the generation of a mathematical model that represents it. By simulating the vehicle and varying the final ratio of the differential, a significant optimization for energy savings is obtained by developing a standardized driving cycle. In this case, NEDC, WLTC-2, and WLTC-3 test cycles are used. The results show that a short ratio improves performance, even if this implies a larger torque from the prime mover. Depending on the operating cycle used, an energy-saving between 3% and 8% was registered. An extended energy autonomy and an increment in the life-cycle of the batteries are expected in real driving scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app112311474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app112311474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Luis M. Castellanos Molina; Renato Galluzzi; Shailesh Hegde; Angelo Bonfitto; Nicola Amati; Andrea Tonoli; Walter Ventura;doi: 10.3390/app14114770
This work presents a novel electromagnetic clutch installed on the crankshaft pulley to decouple the internal combustion engine from the front-end accessory drive of a P0 hybrid electric vehicle. The objective is to supply the air conditioning compressor directly with the belt starter–generator electric machine without dragging the inertia of the engine during engine fuel cut-off phases. This operation yields an improved vehicle energetic efficiency and allows for uninterrupted air conditioning also when the start–stop function is activated. This paper focuses on the mechanical assembly and electromagnetic behavior of the device. Furthermore, two position-sensorless techniques are proposed to estimate the clutch state. The effectiveness of the proposed solution is experimentally validated on a dedicated test bench. Experimental tests demonstrated that the opening and closing phases required 50 and 25ms, respectively, thereby satisfying the time constraints for switching different operating modes in a vehicle (∼100ms).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app14114770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app14114770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Shailesh Hegde; Angelo Bonfitto; Renato Galluzzi; Luis M. Castellanos Molina; Nicola Amati; Andrea Tonoli;doi: 10.3390/en16010487
A P0 system is used in hybrid automobiles to improve engine economy and performance. An essential element of the P0 system for effectively transmitting power to the drive train is the belt drive system (BDS). The features of electric machine (EM) and internal combustion engines (ICE) are taken into account by standard energy management systems, such as the equivalent consumption minimization strategy (ECMS). In order to maximize the effectiveness of the P0 system, this work provides a novel formulation of the ECMS, which considers the power loss map of the BDS in addition to the characteristic maps of EM and ICE. A test bench is built up to characterize the BDS, and it is verified using an open-loop Hardware in the Loop (HIL) in the WLTP driving cycle. To find the most appropriate equivalence factors for the ECMS, which would ordinarily be tuned through trial and error, a genetic algorithm (GA) is used. With regard to the standard ECMS, the proposed methodology intends to reduce fuel usage and CO2 emissions. Two belts in BDS were tested in the WLTP to achieve CO2 savings of 1.1 and 0.9 [g/km], indicating the enhancement of system performance by using the BDS power loss maps in ECMS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010487&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010487&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Marco Puliti; Renato Galluzzi; Federico Tessari; Nicola Amati; Andrea Tonoli;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4579138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4579138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Andrea Tonoli; Renato Galluzzi; Yijun Xu; Nicola Amati;Abstract The constant need to reduce emissions in the automotive sector has driven the electrification of powertrain and chassis. To comply with this trend and decrease the bound even further, the present paper proposes the use of hydraulic regenerative shock absorbers for automotive suspension systems. The conversion of linear into angular motion and the suitable control of an integrated electric machine allow to transform part of the vibrational energy into electricity. In these damping devices, the key element is the motor-pump unit that is interfaced onto a conventional hydraulic cylinder architecture. Hence, the proposed research focuses on this component by investigating different design aspects in all the domains of interest. The objective is to optimize the energy conversion efficiency of the unit without affecting its damping control property. To give means of validation, a motor-pump prototype is built and experimentally characterized through a dedicated test rig.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:SAGE Publications Angelo Bonfitto; Hadi Rahmeh; Nicola Amati; Andrea Tonoli; Renato Galluzzi; Sanjarbek Ruzimov;Hybrid electric vehicles have proven to be an effective solution for the auto industry to satisfy the increasingly stringent CO2 regulations for the short-medium term. Proper sizing of the different components is required to benefit from the hybrid architecture full potential. This paper proposes a unified method that can be applied in both cases. The method uses the energy flow, storage, and consumption during a cycle to perform the sizing. A 350 V P2 plug-in hybrid and a 48 V P2 mild hybrid are taken as a case study. The sizing is performed by adopting the WLTP cycle and subsequently analyzing the energy profile.
Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile EngineeringArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09544070221106660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile EngineeringArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/09544070221106660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: David Sebastian Puma-Benavides; Javier Izquierdo-Reyes; Renato Galluzzi; Juan de Dios Calderon-Najera;doi: 10.3390/app112311474
Electric vehicles must improve their electric drive system efficiency and effectively use their limited energy to become a viable means of transportation. As such, these technologies have undergone substantial improvements from their initial conception. More efficient powertrains, together with improved storage technologies, have enabled more extended autonomy. However, from an engineering perspective, these systems are still a key area of research and optimization. This work presents a powertrain optimization methodology, developing energy savings and improving the performance of the electric vehicle by focusing on the differential. The proposed methodology includes a study of the dynamics of the electric vehicle and the generation of a mathematical model that represents it. By simulating the vehicle and varying the final ratio of the differential, a significant optimization for energy savings is obtained by developing a standardized driving cycle. In this case, NEDC, WLTC-2, and WLTC-3 test cycles are used. The results show that a short ratio improves performance, even if this implies a larger torque from the prime mover. Depending on the operating cycle used, an energy-saving between 3% and 8% was registered. An extended energy autonomy and an increment in the life-cycle of the batteries are expected in real driving scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app112311474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app112311474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Luis M. Castellanos Molina; Renato Galluzzi; Shailesh Hegde; Angelo Bonfitto; Nicola Amati; Andrea Tonoli; Walter Ventura;doi: 10.3390/app14114770
This work presents a novel electromagnetic clutch installed on the crankshaft pulley to decouple the internal combustion engine from the front-end accessory drive of a P0 hybrid electric vehicle. The objective is to supply the air conditioning compressor directly with the belt starter–generator electric machine without dragging the inertia of the engine during engine fuel cut-off phases. This operation yields an improved vehicle energetic efficiency and allows for uninterrupted air conditioning also when the start–stop function is activated. This paper focuses on the mechanical assembly and electromagnetic behavior of the device. Furthermore, two position-sensorless techniques are proposed to estimate the clutch state. The effectiveness of the proposed solution is experimentally validated on a dedicated test bench. Experimental tests demonstrated that the opening and closing phases required 50 and 25ms, respectively, thereby satisfying the time constraints for switching different operating modes in a vehicle (∼100ms).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app14114770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app14114770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Shailesh Hegde; Angelo Bonfitto; Renato Galluzzi; Luis M. Castellanos Molina; Nicola Amati; Andrea Tonoli;doi: 10.3390/en16010487
A P0 system is used in hybrid automobiles to improve engine economy and performance. An essential element of the P0 system for effectively transmitting power to the drive train is the belt drive system (BDS). The features of electric machine (EM) and internal combustion engines (ICE) are taken into account by standard energy management systems, such as the equivalent consumption minimization strategy (ECMS). In order to maximize the effectiveness of the P0 system, this work provides a novel formulation of the ECMS, which considers the power loss map of the BDS in addition to the characteristic maps of EM and ICE. A test bench is built up to characterize the BDS, and it is verified using an open-loop Hardware in the Loop (HIL) in the WLTP driving cycle. To find the most appropriate equivalence factors for the ECMS, which would ordinarily be tuned through trial and error, a genetic algorithm (GA) is used. With regard to the standard ECMS, the proposed methodology intends to reduce fuel usage and CO2 emissions. Two belts in BDS were tested in the WLTP to achieve CO2 savings of 1.1 and 0.9 [g/km], indicating the enhancement of system performance by using the BDS power loss maps in ECMS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010487&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010487&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu