- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Krzysztof Chmielowski; Wiktor Halecki; Adam Masłoń; Łukasz Bąk; Marek Kalenik; Marcin Spychała; Dawid Bedla; Tomasz Pytlowany; Iwona B. Paśmionka; Jakub Sikora; Tomasz Sionkowski;doi: 10.3390/su16031149
The primary objective of this research was to assess the efficacy of a novel solution under conditions closely resembling those of real-world scenarios. Biological beds, or filters, hold significant potential for widespread implementation in individual households, particularly in areas with dispersed housing. The system’s aim was to improve the quality of wastewater treated in on-site domestic biological treatment plants. A pivotal aspect of the project involved developing a prototype research installation for conducting comprehensive testing. Our installation system consisted of several components designed to create a laboratory-scale model for domestic wastewater treatment. The model comprised four biological reactors filled with ABS material and secured by a PUR frame. Additionally, the tested model included a controller for wastewater dosing control, a septic tank as a reservoir, and four tanks for collecting purified wastewater. Through regression analysis using the Generalized Linear Model (GLM), a correlation between CODCr and TSS was revealed. This study presents the research findings concerning the development of a prototype installation that incorporates an advanced reactor or filter. The data derived from this research have the potential to contribute to the creation of products that enhance the performance and efficiency of household wastewater treatment systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Yuliia Trach; Roman Trach; Marek Kalenik; Eugeniusz Koda; Anna Podlasek;doi: 10.3390/en14248377
Liming surface water is a fairly popular method of increasing the pH values and decreasing the concentration of phosphates and heavy metals. According to the Environmental Protection Agency (EPA) recommendations, the increase of water pH should not exceed 1.5. If surface water is the source of water supply, liming is a process that reduces water contamination. This should prevent the creation of an additional load for the water treatment plants in urban settlements. This article is an interdisciplinary research study aiming to (1) determine and compare the doses of new dispersed, thermally activated limestone and natural limestone, (2) find the relation between dose value and initial water parameters (pH, Eh and total mineralization), and (3) create an artificial neural network (ANN) model to predict changes in water pH values according to EPA recommendations. Recommended doses were obtained from experimental studies, and those of dispersed, thermally activated limestone were lower than the doses of natural limestone. Neural networks were used to predict the changes in water pH values when adding different doses of limestone with different initial water parameters using the ANN model. Four ANN models with different activation functions and loss function optimizers were tested. The best results were obtained for the network with the ReLU activation function for hidden layers of neurons and Adam’s loss function optimizer (MAPE = 14.1%; R2 = 0.847). Further comparison of the results of the loss function and the results of calculating the quality metric for the training and validation dataset has shown that the created ANN can be used to solve the set research issue.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8377/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8377/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Krzysztof Chmielowski; Wiktor Halecki; Adam Masłoń; Łukasz Bąk; Marek Kalenik; Marcin Spychała; Arkadiusz Niedziółka; Mariusz Łaciak; Michał Roman; Jakub Mazurkiewicz;doi: 10.3390/su15031883
Household wastewater is a problem, especially in areas with a dispersed settlement where there is no wastewater collection system or wastewater treatment plant. In this case, it is necessary to build a local or onsite wastewater treatment plant. This paper is an attempt to analyse the possibility of using recycled shredded ABS plastic (acrylonitrile butadiene styrene) as packing media in an experimental vertical flow filter for use in on-site wastewater treatment plants. Studies have shown that shredded recycled ABS is a promising filtration material that has several features important in the treatment process, like a large surface area, high mechanical strength and chemical inertness. The system was operated with a hydraulic load of 50 dm3/m2 (3 months). BOD5 (biochemical oxygen demand), COD (chemical oxygen demand), and total suspended solids (TSS) reduction efficiency in the primary effluent was high; 94.4%, 77.8%, and 92.8%, respectively.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/1883/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/1883/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Kamil Świętochowski; Martyna Świętochowska; Marek Kalenik; Joanna Gwoździej-Mazur;doi: 10.3390/en16217435
The increase in electricity generation prices represents a reason why water utility companies are looking for ways to reduce costs. One of the first ideas of users was to build photovoltaic installations. Water treatment plants or sewage treatment plants usually have large unused areas. They look different in facilities that consume a lot of energy but occupy little land, and include water intakes (wells) and water pumping stations. Facilities equipped with pumps are characterized by high electricity consumption. This article assesses the possibility of using PV installations at the water intake. An analysis of energy production from the 3.0 kW PV installation in Polanica-Zdrój was carried out, and then, simulations of the possibility of providing energy via installations with capacities of 3.0 kW, 4.2 kW, and 6.0 kW were performed. Analyses of energy production and demand, as well as analyses of water production based on annual, monthly, daily, and hourly data, were performed. An analysis of the hourly coverage of the WPS’s demand for electricity was carried out with regard to the current production of energy from the PV installation, as was an analysis of the overproduction of energy from the PV installation regarding the energy demand of the WPS. The simulation results are presented for cloudy and sunny days.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16217435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16217435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Krzysztof Chmielowski; Wiktor Halecki; Adam Masłoń; Łukasz Bąk; Marek Kalenik; Marcin Spychała; Dawid Bedla; Tomasz Pytlowany; Iwona B. Paśmionka; Jakub Sikora; Tomasz Sionkowski;doi: 10.3390/su16031149
The primary objective of this research was to assess the efficacy of a novel solution under conditions closely resembling those of real-world scenarios. Biological beds, or filters, hold significant potential for widespread implementation in individual households, particularly in areas with dispersed housing. The system’s aim was to improve the quality of wastewater treated in on-site domestic biological treatment plants. A pivotal aspect of the project involved developing a prototype research installation for conducting comprehensive testing. Our installation system consisted of several components designed to create a laboratory-scale model for domestic wastewater treatment. The model comprised four biological reactors filled with ABS material and secured by a PUR frame. Additionally, the tested model included a controller for wastewater dosing control, a septic tank as a reservoir, and four tanks for collecting purified wastewater. Through regression analysis using the Generalized Linear Model (GLM), a correlation between CODCr and TSS was revealed. This study presents the research findings concerning the development of a prototype installation that incorporates an advanced reactor or filter. The data derived from this research have the potential to contribute to the creation of products that enhance the performance and efficiency of household wastewater treatment systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031149&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Yuliia Trach; Roman Trach; Marek Kalenik; Eugeniusz Koda; Anna Podlasek;doi: 10.3390/en14248377
Liming surface water is a fairly popular method of increasing the pH values and decreasing the concentration of phosphates and heavy metals. According to the Environmental Protection Agency (EPA) recommendations, the increase of water pH should not exceed 1.5. If surface water is the source of water supply, liming is a process that reduces water contamination. This should prevent the creation of an additional load for the water treatment plants in urban settlements. This article is an interdisciplinary research study aiming to (1) determine and compare the doses of new dispersed, thermally activated limestone and natural limestone, (2) find the relation between dose value and initial water parameters (pH, Eh and total mineralization), and (3) create an artificial neural network (ANN) model to predict changes in water pH values according to EPA recommendations. Recommended doses were obtained from experimental studies, and those of dispersed, thermally activated limestone were lower than the doses of natural limestone. Neural networks were used to predict the changes in water pH values when adding different doses of limestone with different initial water parameters using the ANN model. Four ANN models with different activation functions and loss function optimizers were tested. The best results were obtained for the network with the ReLU activation function for hidden layers of neurons and Adam’s loss function optimizer (MAPE = 14.1%; R2 = 0.847). Further comparison of the results of the loss function and the results of calculating the quality metric for the training and validation dataset has shown that the created ANN can be used to solve the set research issue.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8377/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8377/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Krzysztof Chmielowski; Wiktor Halecki; Adam Masłoń; Łukasz Bąk; Marek Kalenik; Marcin Spychała; Arkadiusz Niedziółka; Mariusz Łaciak; Michał Roman; Jakub Mazurkiewicz;doi: 10.3390/su15031883
Household wastewater is a problem, especially in areas with a dispersed settlement where there is no wastewater collection system or wastewater treatment plant. In this case, it is necessary to build a local or onsite wastewater treatment plant. This paper is an attempt to analyse the possibility of using recycled shredded ABS plastic (acrylonitrile butadiene styrene) as packing media in an experimental vertical flow filter for use in on-site wastewater treatment plants. Studies have shown that shredded recycled ABS is a promising filtration material that has several features important in the treatment process, like a large surface area, high mechanical strength and chemical inertness. The system was operated with a hydraulic load of 50 dm3/m2 (3 months). BOD5 (biochemical oxygen demand), COD (chemical oxygen demand), and total suspended solids (TSS) reduction efficiency in the primary effluent was high; 94.4%, 77.8%, and 92.8%, respectively.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/1883/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/1883/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Kamil Świętochowski; Martyna Świętochowska; Marek Kalenik; Joanna Gwoździej-Mazur;doi: 10.3390/en16217435
The increase in electricity generation prices represents a reason why water utility companies are looking for ways to reduce costs. One of the first ideas of users was to build photovoltaic installations. Water treatment plants or sewage treatment plants usually have large unused areas. They look different in facilities that consume a lot of energy but occupy little land, and include water intakes (wells) and water pumping stations. Facilities equipped with pumps are characterized by high electricity consumption. This article assesses the possibility of using PV installations at the water intake. An analysis of energy production from the 3.0 kW PV installation in Polanica-Zdrój was carried out, and then, simulations of the possibility of providing energy via installations with capacities of 3.0 kW, 4.2 kW, and 6.0 kW were performed. Analyses of energy production and demand, as well as analyses of water production based on annual, monthly, daily, and hourly data, were performed. An analysis of the hourly coverage of the WPS’s demand for electricity was carried out with regard to the current production of energy from the PV installation, as was an analysis of the overproduction of energy from the PV installation regarding the energy demand of the WPS. The simulation results are presented for cloudy and sunny days.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16217435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16217435&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu