- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013 United Kingdom, DenmarkPublisher:Wiley Hans Henrik Bruun; H. John B. Birks; H. John B. Birks; H. John B. Birks; Claes Bergendorff; Jonathan Lenoir; Fride Høistad Schei; Fride Høistad Schei; Ann Milbau; Jens-Christian Svenning; Martin Zobel; Mari Moora; Risto Virtanen; Martin Diekmann; John-Arvid Grytnes; Stefanie Reinhardt; Carl Johan Dahlberg; Liv Guri Velle; Bettina Nygaard; Sylvi M. Sandvik; Bente J. Graae; Jörg Brunet; Gunnar Austrheim; Miska Luoto; Kari Anne Bråthen; Vigdis Vandvik; Kari Klanderud; Kari Klanderud; James D. M. Speed; Arvid Odland; Virve Ravolainen; Rasmus Ejrnæs; Mats Dynesius; W. Scott Armbruster; Guillaume Decocq; Kristoffer Hylander; Inger Greve Alsos; Per Arild Aarrestad; Liv Unn Tveraabak;doi: 10.1111/gcb.12129
pmid: 23504984
AbstractRecent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km−1) than spatial turnover in growing‐season GiT (0.18 °C km−1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.
PURE Aarhus Universi... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu205 citations 205 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Finland, Sweden, Germany, China (People's Republic of), Norway, Finland, China (People's Republic of), Denmark, Finland, Netherlands, France, Netherlands, Denmark, Germany, China (People's Republic of), FinlandPublisher:Wiley Funded by:NSERC, EC | INTAROS, AKA | Atmosphere and Climate Co... +19 projectsNSERC ,EC| INTAROS ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,NSF| IPY: Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories and in a Pan-Arctic Network ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,NSF| AON: Development of Sustainable Observations of Thermal State of Permafrost in North America and Russia: The U.S. Contribution to the Global Terrestrial Network for Permafrost ,AKA| Geomorphic sensitivity of the Arctic region: geohazards and infrastructure (INFRAHAZARD) / Consortium: INFRAHAZARD ,EC| FluxWIN ,NSF| Collaborative Research: Multi-Regional Scale Aircraft Observations of Methane and Carbon Dioxide Isotopic Fluxes in the Arctic ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Collaborative Research: Using the ITEX-AON network to document and understand terrestrial ecosystem change in the Arctic ,AKA| When ancient meets modern effect of plant-derived carbon on anaerobic decomposition in arctic permafrost soils (PANDA) ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPA ,NSF| METHANE AT THE ZERO CURTAIN ,NSF| Collaborative Research: Permafrost Carbon Network: Synthesizing flux observations for benchmarking model projections of permafrost carbon exchange ,AKA| Towards constraining the circumarctic nitrous oxide budget (NOCA) ,EC| PAGE21 ,NSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,AKA| Biogeochemical and biophysical feedbacks from forest harvesting to climate change / Consortium: NNNN ,RCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,NSF| Collaborative Research: Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change (SEARCH)Edward A. G. Schuur; Järvi Järveoja; S. Potter; Stef Bokhorst; Marguerite Mauritz; Mats Nilsson; Steven F. Oberbauer; Elyn Humphreys; M. Goeckede; Pertti J. Martikainen; John Kochendorfer; Jinshu Chi; Juha Aalto; Juha Aalto; Jennifer D. Watts; Torben R. Christensen; Matthias Peichl; Oliver Sonnentag; Vincent L. St. Louis; Craig A. Emmerton; Miska Luoto; David Holl; Eugénie S. Euskirchen; Torbern Tagesson; Torbern Tagesson; Sang Jong Park; Gerardo Celis; Margaret S. Torn; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Maija E. Marushchak; Maija E. Marushchak; Namyi Chae; Walter C. Oechel; Walter C. Oechel; Masahito Ueyama; Peter M. Lafleur; Christina Biasi; Bo Elberling; Brendan M. Rogers; Han Dolman; Ivan Mammarella; Aleksi Lehtonen; Claire C. Treat; Min Jung Kwon; Carolina Voigt; Carolina Voigt; Hideki Kobayashi; Rafael Poyatos; Susan M. Natali; Hiroki Iwata; Donatella Zona; Donatella Zona; Anna-Maria Virkkala; Efrén López-Blanco; Torsten Sachs;doi: 10.1111/gcb.15659
pmid: 33913236
AbstractThe regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink‐source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high‐latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high‐latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE‐focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high‐latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
SLU publication data... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/91720Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/91720Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2021 France, FinlandPublisher:Wiley Blackwell Funded by:ANR | IMPRINT, UKRI | Forecasting the impacts o..., EC | FORMICAANR| IMPRINT ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,EC| FORMICAde Frenne, Pieter; Lenoir, Jonathan; Luoto, Miska; Scheffers, Brett; Zellweger, Florian; Aalto, Juha; Ashcroft, Michael; Christiansen, Ditte; Decocq, Guillaume; de Pauw, Karen; Govaert, Sanne; Greiser, Caroline; Gril, Eva; Hampe, Arndt; Jucker, Tommaso; Klinges, David; Koelemeijer, Irena; Lembrechts, Jonas; Marrec, Ronan; Meeussen, Camille; Ogée, Jérôme; Tyystjärvi, Vilna; Vangansbeke, Pieter; Hylander, Kristoffer;handle: 10138/341672
Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored. Peer reviewed
HAL INRAE arrow_drop_down HELDA - Digital Repository of the University of HelsinkiReview . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10138/341672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert HAL INRAE arrow_drop_down HELDA - Digital Repository of the University of HelsinkiReview . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10138/341672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 FinlandPublisher:Copernicus GmbH Funded by:AKA | Atmosphere and Climate Co..., AKA | Resilience of Arctic terr..., AKA | Spatial ensemble predicti...AKA| Atmosphere and Climate Competence Center (ACCC) ,AKA| Resilience of Arctic terrestrial ecosystems under bioclimatic change ,AKA| Spatial ensemble prediction of permafrost thaw, soil carbon and ground-ice in the Arctic (ArcticSHOC)O. Leppiniemi; O. Leppiniemi; O. Karjalainen; J. Aalto; J. Aalto; M. Luoto; J. Hjort;handle: 10138/564362
Abstract. The anthropogenic climate change threatens northern permafrost environments. This compromises the existence of permafrost landforms, such as palsas and peat plateaus, which have been assessed to be critically endangered habitats. In this study, for the first time we integrated geospatial datasets and statistical methods, to model the distribution of palsas and peat plateaus across the Northern Hemisphere permafrost region. The models were calibrated using data from years 1950–2000. The effects of climate change on the future distribution of palsas were assessed by using moderate and high emission scenarios (Representative Concentration Pathways; RCP4.5 and RCP8.5, respectively) for two periods (2041–2060 and 2061–2080). Hotspots for palsas and peat plateaus occurred in Northern Europe, Western Siberia, and subarctic Canada. Climate change was predicted to cause an almost complete loss (˗98.2 %) of suitable environmental spaces under a high emissions scenario by 2061–2080, while under a moderate emissions scenario 89.3 % were predicted to disappear. The comparison with previously published thermokarst data supported our findings regarding the recent degradation of palsa and peat plateau environments. Our results fill the knowledge gaps in the distribution of the permafrost landforms in less studied areas such as Central and Eastern Siberia. In addition, the projections provide insights into the changing geoecological conditions of the circumpolar region with important implications for greenhouse gas emissions.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/tc-202...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-2022-135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/tc-202...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-2022-135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FinlandPublisher:Wiley Pekka Niittynen; Miska Luoto; Juha Aalto; Juha Aalto; Henry Väre; Annina Kaisa Johanna Niskanen;doi: 10.1111/ddi.12889
handle: 10138/301796
AbstractAimSpecies’ biogeographical patterns are already being altered by climate change. Here, we provide predictions of the impacts of a changing climate on species’ geographical ranges within high‐latitude mountain flora on a sub‐continental scale. We then examined the forecasted changes in relation to species’ biogeographic histories.LocationFennoscandia, Northern Europe (55–72°N).MethodsWe examined the sensitivity of 164 high‐latitude mountain species to changing climate by modelling their distributions in regard to climate, local topography and geology at a 1 km2 resolution. Using an ensemble of six statistical modelling techniques and data on current (1981–2010) and future (2070–2099) climate based on three Representative Concentration Pathways (RCPs 2.6, 4.5, 8.5), we developed projections of current and future ranges.ResultsThe average species richness of the mountain flora is predicted to decrease by 15%–47% per 1 km2 cell, depending on the climate scenario considered. Arctic flora is projected to undergo severe range loss along with non‐poleward range contractions, while alpine flora is forecasted to find suitable habitat in a warmer North. A substantial majority (71%–92%) of the studied species are projected to lose more than half of their present range by the year 2100. Species predicted to lose all suitable habitat had ranges centred in the northernmost (>68°N) part of continental Europe.Main conclusionsClimate change is predicted to substantially diminish the extent and richness of Europe's high‐latitude mountain flora. Interestingly, species' biogeographic histories affect their vulnerability to climate change. The vulnerability of true Arctic and endemic species marks them as highly important for conservation decisions.
Diversity and Distri... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.12889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Diversity and Distri... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.12889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Norway, Germany, Finland, FinlandPublisher:IOP Publishing Funded by:NSF | NNA Track 1: Collaborativ..., NSF | Collaborative Research: C..., EC | PETA-CARB +2 projectsNSF| NNA Track 1: Collaborative Research: The Permafrost Discovery Gateway: Navigating the new Arctic tundra through Big Data, artificial intelligence, and cyberinfrastructure ,NSF| Collaborative Research: Causes and Consequences of Catastrophic Thermokarst Lake Drainage in an Evolving Arctic System ,EC| PETA-CARB ,AKA| Spatial ensemble prediction of permafrost thaw, soil carbon and ground-ice in the Arctic (ArcticSHOC) ,AKA| Topoclimate, land surface conditions and atmospheric feedbacksKarianne Staalesen Lilleøren; Guido Grosse; Guido Grosse; Bernd Etzelmüller; Miska Luoto; Olli Karjalainen; Jan Hjort; Juha Aalto; Juha Aalto; Benjamin M. Jones;handle: 10852/85810 , 10138/320838
Abstract The presence of ground ice in Arctic soils exerts a major effect on permafrost hydrology and ecology, and factors prominently into geomorphic landform development. As most ground ice has accumulated in near-surface permafrost, it is sensitive to variations in atmospheric conditions. Typical and regionally widespread permafrost landforms such as pingos, ice-wedge polygons, and rock glaciers are closely tied to ground ice. However, under ongoing climate change, suitable environmental spaces for preserving landforms associated with ice-rich permafrost may be rapidly disappearing. We deploy a statistical ensemble approach to model, for the first time, the current and potential future environmental conditions of three typical permafrost landforms, pingos, ice-wedge polygons and rock glaciers across the Northern Hemisphere. We show that by midcentury, the landforms are projected to lose more than one-fifth of their suitable environments under a moderate climate scenario (RCP4.5) and on average around one-third under a very high baseline emission scenario (RCP8.5), even when projected new suitable areas for occurrence are considered. By 2061–2080, on average more than 50% of the recent suitable conditions can be lost (RCP8.5). In the case of pingos and ice-wedge polygons, geographical changes are mainly attributed to alterations in thawing-season precipitation and air temperatures. Rock glaciers show air temperature-induced regional changes in suitable conditions strongly constrained by topography and soil properties. The predicted losses could have important implications for Arctic hydrology, geo- and biodiversity, and to the global climate system through changes in biogeochemical cycles governed by the geomorphology of permafrost landscapes. Moreover, our projections provide insights into the circumpolar distribution of various ground ice types and help inventory permafrost landforms in unmapped regions.
Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/85810Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abafd5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/85810Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abafd5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 France, Finland, France, FrancePublisher:Elsevier BV Eric Meineri; Eric Meineri; Kristoffer Hylander; Johan Ehrlén; Miska Luoto; Caroline Greiser;handle: 10138/233778
Abstract The majority of microclimate studies have been done in topographically complex landscapes to quantify and predict how near-ground temperatures vary as a function of terrain properties. However, in forests understory temperatures can be strongly influenced also by vegetation. We quantified the relative influence of vegetation features and physiography (topography and moisture-related variables) on understory temperatures in managed boreal forests in central Sweden. We used a multivariate regression approach to relate near-ground temperature of 203 loggers over the snow-free seasons in an area of ∼16,000 km 2 to remotely sensed and on-site measured variables of forest structure and physiography. We produced climate grids of monthly minimum and maximum temperatures at 25 m resolution by using only remotely sensed and mapped predictors. The quality and predictions of the models containing only remotely sensed predictors (MAP models) were compared with the models containing also on-site measured predictors (OS models). Our data suggest that during the warm season, where landscape microclimate variability is largest, canopy cover and basal area were the most important microclimatic drivers for both minimum and maximum temperatures, while physiographic drivers (mainly elevation) dominated maximum temperatures during autumn and early winter. The MAP models were able to reproduce findings from the OS models but tended to underestimate high and overestimate low temperatures. Including important microclimatic drivers, particularly soil moisture, that are yet lacking in a mapped form should improve the microclimate maps. Because of the dynamic nature of managed forests, continuous updates of mapped forest structure parameters are needed to accurately predict temperatures. Our results suggest that forest management (e.g. stand size, structure and composition) and conservation may play a key role in amplifying or impeding the effects of climate-forcing factors on near-ground temperature and may locally modify the impact of global warming.
Hyper Article en Lig... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2018 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2017.12.252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2018 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2017.12.252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 France, Spain, BelgiumPublisher:Elsevier BV Funded by:NSF | Graduate Research Fellows..., SNSF | Climate change impacts on..., ANR | IMPRINT +2 projectsNSF| Graduate Research Fellowship Program (GRFP) ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,ANR| IMPRINT ,EC| FORMICA ,AKA| Atmosphere and Climate Competence Center (ACCC)Authors: de Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; +22 Authorsde Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; Lembrechts, Jonas; Rodríguez-Sánchez, Francisco; Luoto, Miska; Scheffers, Brett; Haesen, Stef; Aalto, Juha; Christiansen, Ditte Marie; de Pauw, Karen; Depauw, Leen; Govaert, Sanne; Greiser, Caroline; Hampe, Arndt; Hylander, Kristoffer; Klinges, David; Koelemeijer, Irena; Meeussen, Camille; Ogée, Jérôme; Sanczuk, Pieter; Vanneste, Thomas; Zellweger, Florian; Baeten, Lander; de Frenne, Pieter;pmid: 34748832
handle: 10067/1833220151162165141 , 1854/LU-8726229
Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Netherlands, Belgium, Germany, United Kingdom, Argentina, France, France, France, ArgentinaPublisher:Wiley Funded by:NSF | Graduate Research Fellows..., AKA | Atmosphere and Climate Co..., ANR | MaCCMic +4 projectsNSF| Graduate Research Fellowship Program (GRFP) ,AKA| Atmosphere and Climate Competence Center (ACCC) ,ANR| MaCCMic ,AKA| Resilience of Arctic terrestrial ecosystems under bioclimatic change ,EC| FORMICA ,ANR| IMPRINT ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataKlinges, David; Baecher, J. Alex; Lembrechts, Jonas; Maclean, Ilya; Lenoir, Jonathan; Greiser, Caroline; Ashcroft, Michael; Evans, Luke; Kearney, Michael; Aalto, Juha; Barrio, Isabel; de Frenne, Pieter; Guillemot, Joannès; Hylander, Kristoffer; Jucker, Tommaso; Kopecký, Martin; Luoto, Miska; Macek, Martin; Nijs, Ivan; Urban, Josef; van den Brink, Liesbeth; Vangansbeke, Pieter; von Oppen, Jonathan; Wild, Jan; Boike, Julia; Canessa, Rafaella; Nosetto, Marcelo; Rubtsov, Alexey; Sallo-Bravo, Jhonatan; Scheffers, Brett;AbstractAimThe scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.LocationTemperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).Time Period1960–2018.Major Taxa StudiedCase studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.MethodsWe compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.ResultsFor predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively.Main ConclusionsWe propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2024License: taverneData sources: Pure Utrecht UniversityInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterGlobal Ecology and BiogeographyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2024License: taverneData sources: Pure Utrecht UniversityInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterGlobal Ecology and BiogeographyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Australia, United Kingdom, France, Spain, United States, Czech Republic, Russian Federation, Italy, France, Germany, Russian Federation, France, Italy, Australia, Germany, Belgium, United Kingdom, Switzerland, Czech Republic, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | FORMICA, RSF | The anatomical and physio..., DFG +13 projectsEC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,DFG ,EC| ICOS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEE ,NSF| Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| AfricanBioServices ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,SNSF| Lif3web: The present and future spatial structure of tri-trophic networks ,ANR| IMPRINT ,RCN| Disentangling the impacts of herbivory and climate on ecological dynamics ,NSF| MSB-ECA: Phylogenetically-informed modeling of the regional context of community assembly ,UKRI| Climate as a driver of shrub expansion and tundra greening ,EC| SUPER-GHarald Pauli; Josef Urban; Josef Urban; Sonia Merinero; Pieter De Frenne; Josefine Walz; Bente J. Graae; Michael B. Ashcroft; Michael B. Ashcroft; Tim Seipel; Ian Klupar; Ilya M. D. Maclean; Juan J. Jiménez; Jonas Schmeddes; Lucia Hederová; James D. M. Speed; Amanda Ratier Backes; Christian Rossi; Christian Rossi; Christian Rossi; Alessandro Petraglia; Isla H. Myers-Smith; Adrian V. Rocha; Pallieter De Smedt; Ellen Dorrepaal; Martin Macek; Pieter Vangansbeke; Miska Luoto; Nicoletta Cannone; Luca Vitale; José Luis Benito Alonso; Josef Brůna; Jan Wild; Marko Smiljanic; Edmund W. Basham; Eduardo Fuentes-Lillo; Eduardo Fuentes-Lillo; C. Johan Dahlberg; Sergiy Medinets; Keith W. Larson; Ann Milbau; Pekka Niittynen; Koenraad Van Meerbeek; Juha Aalto; Juha Aalto; Loïc Pellissier; Meelis Pärtel; Tudor-Mihai Ursu; Rafael A. García; Rafael A. García; Lore T. Verryckt; Laurenz M. Teuber; Kristoffer Hylander; Shengwei Zong; Shyam S. Phartyal; Shyam S. Phartyal; Agustina Barros; Valeria Aschero; Valeria Aschero; Rebecca A. Senior; Michael Stemkovski; Jonas J. Lembrechts; Joseph Okello; Joseph Okello; Jan Altman; Romina D. Dimarco; Julia Kemppinen; Pavel Dan Turtureanu; Dany Ghosn; Lukas Siebicke; Andrew D. Thomas; Zuzana Sitková; Sonja Wipf; Olivier Roupsard; Sanne Govaert; Robert G. Björk; Christian D. Larson; Fatih Fazlioglu; M. Rosa Fernández Calzado; Jörg G. Stephan; Jiri Dolezal; Jiri Dolezal; Michele Carbognani; Aud H. Halbritter; Mihai Pușcaș; David H. Klinges; Juergen Kreyling; Mats P. Björkman; Florian Zellweger; Esther R. Frei; Marijn Bauters; Camille Pitteloud; Jozef Kollár; Gergana N. Daskalova; Miguel Portillo-Estrada; Robert Kanka; Ana Clara Mazzolari; William D. Pearse; William D. Pearse; Elizabeth G. Simpson; Martin Svátek; Stuart W. Smith; Stuart W. Smith; Martin A. Nuñez; Jhonatan Sallo Bravo; Onur Candan; Mana Gharun; Austin Koontz; Simone Cesarz; T'Ai Gladys Whittingham Forte; George Kazakis; Joseph J. Bailey; Zhaochen Zhang; Nico Eisenhauer; Volodymyr I. Medinets; Jonathan Lenoir; Juan Lorite; Radim Matula; Lena Muffler; Lena Muffler; Aníbal Pauchard; Aníbal Pauchard; Pascal Boeckx; Maaike Y. Bader; Robert Weigel; Marek Čiliak; Kamil Láska; Brett R. Scheffers; Camille Meeussen; Benjamin Blonder; Benjamin Blonder; Felix Gottschall; Ronja E. M. Wedegärtner; Francesco Malfasi; Jonas Ardö; Roman Plichta; Pascal Vittoz; Mario Trouillier; Julia Boike; Peter Barančok; Christian Rixen; Lisa J. Rew; Andrej Varlagin; Valter Di Cecco; Ivan Nijs; Jan Dick; Charly Geron; Charly Geron; Bernard Heinesch; Patrice Descombes; Mauro Guglielmin; Angela Stanisci; Filip Hrbáček; Martin Wilmking; Jian Zhang; Krystal Randall; Katja Tielbörger; Peter Haase; Peter Haase; Alistair S. Jump; Rafaella Canessa; Masahito Ueyama; Matěj Man; František Máliš; Marcello Tomaselli; Stef Haesen; Salvatore R. Curasi; Sylvia Haider; Andrea Lamprecht; Miguel Ángel de Pablo; Haydn J.D. Thomas; Nina Buchmann; Manuela Winkler; Klaus Steinbauer; Toke T. Høye; Fernando Moyano; Miroslav Svoboda; Christopher Andrews; Martin Kopecký; Martin Kopecký; Rebecca Finger Higgens; Hans J. De Boeck; Jürgen Homeier; Juha M. Alatalo; Ben Somers; Khatuna Gigauri; Andrej Palaj; Thomas Scholten; Mia Vedel Sørensen; Edoardo Cremonese; Liesbeth van den Brink;pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
AbstractCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 United Kingdom, DenmarkPublisher:Wiley Hans Henrik Bruun; H. John B. Birks; H. John B. Birks; H. John B. Birks; Claes Bergendorff; Jonathan Lenoir; Fride Høistad Schei; Fride Høistad Schei; Ann Milbau; Jens-Christian Svenning; Martin Zobel; Mari Moora; Risto Virtanen; Martin Diekmann; John-Arvid Grytnes; Stefanie Reinhardt; Carl Johan Dahlberg; Liv Guri Velle; Bettina Nygaard; Sylvi M. Sandvik; Bente J. Graae; Jörg Brunet; Gunnar Austrheim; Miska Luoto; Kari Anne Bråthen; Vigdis Vandvik; Kari Klanderud; Kari Klanderud; James D. M. Speed; Arvid Odland; Virve Ravolainen; Rasmus Ejrnæs; Mats Dynesius; W. Scott Armbruster; Guillaume Decocq; Kristoffer Hylander; Inger Greve Alsos; Per Arild Aarrestad; Liv Unn Tveraabak;doi: 10.1111/gcb.12129
pmid: 23504984
AbstractRecent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km−1) than spatial turnover in growing‐season GiT (0.18 °C km−1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.
PURE Aarhus Universi... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu205 citations 205 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12129&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Finland, Sweden, Germany, China (People's Republic of), Norway, Finland, China (People's Republic of), Denmark, Finland, Netherlands, France, Netherlands, Denmark, Germany, China (People's Republic of), FinlandPublisher:Wiley Funded by:NSERC, EC | INTAROS, AKA | Atmosphere and Climate Co... +19 projectsNSERC ,EC| INTAROS ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,NSF| IPY: Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories and in a Pan-Arctic Network ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,NSF| AON: Development of Sustainable Observations of Thermal State of Permafrost in North America and Russia: The U.S. Contribution to the Global Terrestrial Network for Permafrost ,AKA| Geomorphic sensitivity of the Arctic region: geohazards and infrastructure (INFRAHAZARD) / Consortium: INFRAHAZARD ,EC| FluxWIN ,NSF| Collaborative Research: Multi-Regional Scale Aircraft Observations of Methane and Carbon Dioxide Isotopic Fluxes in the Arctic ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Collaborative Research: Using the ITEX-AON network to document and understand terrestrial ecosystem change in the Arctic ,AKA| When ancient meets modern effect of plant-derived carbon on anaerobic decomposition in arctic permafrost soils (PANDA) ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPA ,NSF| METHANE AT THE ZERO CURTAIN ,NSF| Collaborative Research: Permafrost Carbon Network: Synthesizing flux observations for benchmarking model projections of permafrost carbon exchange ,AKA| Towards constraining the circumarctic nitrous oxide budget (NOCA) ,EC| PAGE21 ,NSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,AKA| Biogeochemical and biophysical feedbacks from forest harvesting to climate change / Consortium: NNNN ,RCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,NSF| Collaborative Research: Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change (SEARCH)Edward A. G. Schuur; Järvi Järveoja; S. Potter; Stef Bokhorst; Marguerite Mauritz; Mats Nilsson; Steven F. Oberbauer; Elyn Humphreys; M. Goeckede; Pertti J. Martikainen; John Kochendorfer; Jinshu Chi; Juha Aalto; Juha Aalto; Jennifer D. Watts; Torben R. Christensen; Matthias Peichl; Oliver Sonnentag; Vincent L. St. Louis; Craig A. Emmerton; Miska Luoto; David Holl; Eugénie S. Euskirchen; Torbern Tagesson; Torbern Tagesson; Sang Jong Park; Gerardo Celis; Margaret S. Torn; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Maija E. Marushchak; Maija E. Marushchak; Namyi Chae; Walter C. Oechel; Walter C. Oechel; Masahito Ueyama; Peter M. Lafleur; Christina Biasi; Bo Elberling; Brendan M. Rogers; Han Dolman; Ivan Mammarella; Aleksi Lehtonen; Claire C. Treat; Min Jung Kwon; Carolina Voigt; Carolina Voigt; Hideki Kobayashi; Rafael Poyatos; Susan M. Natali; Hiroki Iwata; Donatella Zona; Donatella Zona; Anna-Maria Virkkala; Efrén López-Blanco; Torsten Sachs;doi: 10.1111/gcb.15659
pmid: 33913236
AbstractThe regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink‐source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high‐latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high‐latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE‐focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high‐latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
SLU publication data... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/91720Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/91720Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2021 . Peer-reviewedData sources: Jyväskylä University Digital ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2021 France, FinlandPublisher:Wiley Blackwell Funded by:ANR | IMPRINT, UKRI | Forecasting the impacts o..., EC | FORMICAANR| IMPRINT ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,EC| FORMICAde Frenne, Pieter; Lenoir, Jonathan; Luoto, Miska; Scheffers, Brett; Zellweger, Florian; Aalto, Juha; Ashcroft, Michael; Christiansen, Ditte; Decocq, Guillaume; de Pauw, Karen; Govaert, Sanne; Greiser, Caroline; Gril, Eva; Hampe, Arndt; Jucker, Tommaso; Klinges, David; Koelemeijer, Irena; Lembrechts, Jonas; Marrec, Ronan; Meeussen, Camille; Ogée, Jérôme; Tyystjärvi, Vilna; Vangansbeke, Pieter; Hylander, Kristoffer;handle: 10138/341672
Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored. Peer reviewed
HAL INRAE arrow_drop_down HELDA - Digital Repository of the University of HelsinkiReview . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10138/341672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert HAL INRAE arrow_drop_down HELDA - Digital Repository of the University of HelsinkiReview . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10138/341672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 FinlandPublisher:Copernicus GmbH Funded by:AKA | Atmosphere and Climate Co..., AKA | Resilience of Arctic terr..., AKA | Spatial ensemble predicti...AKA| Atmosphere and Climate Competence Center (ACCC) ,AKA| Resilience of Arctic terrestrial ecosystems under bioclimatic change ,AKA| Spatial ensemble prediction of permafrost thaw, soil carbon and ground-ice in the Arctic (ArcticSHOC)O. Leppiniemi; O. Leppiniemi; O. Karjalainen; J. Aalto; J. Aalto; M. Luoto; J. Hjort;handle: 10138/564362
Abstract. The anthropogenic climate change threatens northern permafrost environments. This compromises the existence of permafrost landforms, such as palsas and peat plateaus, which have been assessed to be critically endangered habitats. In this study, for the first time we integrated geospatial datasets and statistical methods, to model the distribution of palsas and peat plateaus across the Northern Hemisphere permafrost region. The models were calibrated using data from years 1950–2000. The effects of climate change on the future distribution of palsas were assessed by using moderate and high emission scenarios (Representative Concentration Pathways; RCP4.5 and RCP8.5, respectively) for two periods (2041–2060 and 2061–2080). Hotspots for palsas and peat plateaus occurred in Northern Europe, Western Siberia, and subarctic Canada. Climate change was predicted to cause an almost complete loss (˗98.2 %) of suitable environmental spaces under a high emissions scenario by 2061–2080, while under a moderate emissions scenario 89.3 % were predicted to disappear. The comparison with previously published thermokarst data supported our findings regarding the recent degradation of palsa and peat plateau environments. Our results fill the knowledge gaps in the distribution of the permafrost landforms in less studied areas such as Central and Eastern Siberia. In addition, the projections provide insights into the changing geoecological conditions of the circumpolar region with important implications for greenhouse gas emissions.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/tc-202...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-2022-135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/tc-202...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-2022-135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FinlandPublisher:Wiley Pekka Niittynen; Miska Luoto; Juha Aalto; Juha Aalto; Henry Väre; Annina Kaisa Johanna Niskanen;doi: 10.1111/ddi.12889
handle: 10138/301796
AbstractAimSpecies’ biogeographical patterns are already being altered by climate change. Here, we provide predictions of the impacts of a changing climate on species’ geographical ranges within high‐latitude mountain flora on a sub‐continental scale. We then examined the forecasted changes in relation to species’ biogeographic histories.LocationFennoscandia, Northern Europe (55–72°N).MethodsWe examined the sensitivity of 164 high‐latitude mountain species to changing climate by modelling their distributions in regard to climate, local topography and geology at a 1 km2 resolution. Using an ensemble of six statistical modelling techniques and data on current (1981–2010) and future (2070–2099) climate based on three Representative Concentration Pathways (RCPs 2.6, 4.5, 8.5), we developed projections of current and future ranges.ResultsThe average species richness of the mountain flora is predicted to decrease by 15%–47% per 1 km2 cell, depending on the climate scenario considered. Arctic flora is projected to undergo severe range loss along with non‐poleward range contractions, while alpine flora is forecasted to find suitable habitat in a warmer North. A substantial majority (71%–92%) of the studied species are projected to lose more than half of their present range by the year 2100. Species predicted to lose all suitable habitat had ranges centred in the northernmost (>68°N) part of continental Europe.Main conclusionsClimate change is predicted to substantially diminish the extent and richness of Europe's high‐latitude mountain flora. Interestingly, species' biogeographic histories affect their vulnerability to climate change. The vulnerability of true Arctic and endemic species marks them as highly important for conservation decisions.
Diversity and Distri... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.12889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Diversity and Distri... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.12889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Norway, Germany, Finland, FinlandPublisher:IOP Publishing Funded by:NSF | NNA Track 1: Collaborativ..., NSF | Collaborative Research: C..., EC | PETA-CARB +2 projectsNSF| NNA Track 1: Collaborative Research: The Permafrost Discovery Gateway: Navigating the new Arctic tundra through Big Data, artificial intelligence, and cyberinfrastructure ,NSF| Collaborative Research: Causes and Consequences of Catastrophic Thermokarst Lake Drainage in an Evolving Arctic System ,EC| PETA-CARB ,AKA| Spatial ensemble prediction of permafrost thaw, soil carbon and ground-ice in the Arctic (ArcticSHOC) ,AKA| Topoclimate, land surface conditions and atmospheric feedbacksKarianne Staalesen Lilleøren; Guido Grosse; Guido Grosse; Bernd Etzelmüller; Miska Luoto; Olli Karjalainen; Jan Hjort; Juha Aalto; Juha Aalto; Benjamin M. Jones;handle: 10852/85810 , 10138/320838
Abstract The presence of ground ice in Arctic soils exerts a major effect on permafrost hydrology and ecology, and factors prominently into geomorphic landform development. As most ground ice has accumulated in near-surface permafrost, it is sensitive to variations in atmospheric conditions. Typical and regionally widespread permafrost landforms such as pingos, ice-wedge polygons, and rock glaciers are closely tied to ground ice. However, under ongoing climate change, suitable environmental spaces for preserving landforms associated with ice-rich permafrost may be rapidly disappearing. We deploy a statistical ensemble approach to model, for the first time, the current and potential future environmental conditions of three typical permafrost landforms, pingos, ice-wedge polygons and rock glaciers across the Northern Hemisphere. We show that by midcentury, the landforms are projected to lose more than one-fifth of their suitable environments under a moderate climate scenario (RCP4.5) and on average around one-third under a very high baseline emission scenario (RCP8.5), even when projected new suitable areas for occurrence are considered. By 2061–2080, on average more than 50% of the recent suitable conditions can be lost (RCP8.5). In the case of pingos and ice-wedge polygons, geographical changes are mainly attributed to alterations in thawing-season precipitation and air temperatures. Rock glaciers show air temperature-induced regional changes in suitable conditions strongly constrained by topography and soil properties. The predicted losses could have important implications for Arctic hydrology, geo- and biodiversity, and to the global climate system through changes in biogeochemical cycles governed by the geomorphology of permafrost landscapes. Moreover, our projections provide insights into the circumpolar distribution of various ground ice types and help inventory permafrost landforms in unmapped regions.
Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/85810Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abafd5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BYFull-Text: http://hdl.handle.net/10852/85810Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abafd5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 France, Finland, France, FrancePublisher:Elsevier BV Eric Meineri; Eric Meineri; Kristoffer Hylander; Johan Ehrlén; Miska Luoto; Caroline Greiser;handle: 10138/233778
Abstract The majority of microclimate studies have been done in topographically complex landscapes to quantify and predict how near-ground temperatures vary as a function of terrain properties. However, in forests understory temperatures can be strongly influenced also by vegetation. We quantified the relative influence of vegetation features and physiography (topography and moisture-related variables) on understory temperatures in managed boreal forests in central Sweden. We used a multivariate regression approach to relate near-ground temperature of 203 loggers over the snow-free seasons in an area of ∼16,000 km 2 to remotely sensed and on-site measured variables of forest structure and physiography. We produced climate grids of monthly minimum and maximum temperatures at 25 m resolution by using only remotely sensed and mapped predictors. The quality and predictions of the models containing only remotely sensed predictors (MAP models) were compared with the models containing also on-site measured predictors (OS models). Our data suggest that during the warm season, where landscape microclimate variability is largest, canopy cover and basal area were the most important microclimatic drivers for both minimum and maximum temperatures, while physiographic drivers (mainly elevation) dominated maximum temperatures during autumn and early winter. The MAP models were able to reproduce findings from the OS models but tended to underestimate high and overestimate low temperatures. Including important microclimatic drivers, particularly soil moisture, that are yet lacking in a mapped form should improve the microclimate maps. Because of the dynamic nature of managed forests, continuous updates of mapped forest structure parameters are needed to accurately predict temperatures. Our results suggest that forest management (e.g. stand size, structure and composition) and conservation may play a key role in amplifying or impeding the effects of climate-forcing factors on near-ground temperature and may locally modify the impact of global warming.
Hyper Article en Lig... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2018 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2017.12.252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2018 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2017.12.252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 France, Spain, BelgiumPublisher:Elsevier BV Funded by:NSF | Graduate Research Fellows..., SNSF | Climate change impacts on..., ANR | IMPRINT +2 projectsNSF| Graduate Research Fellowship Program (GRFP) ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,ANR| IMPRINT ,EC| FORMICA ,AKA| Atmosphere and Climate Competence Center (ACCC)Authors: de Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; +22 Authorsde Lombaerde, Emiel; Vangansbeke, Pieter; Lenoir, Jonathan; van Meerbeek, Koenraad; Lembrechts, Jonas; Rodríguez-Sánchez, Francisco; Luoto, Miska; Scheffers, Brett; Haesen, Stef; Aalto, Juha; Christiansen, Ditte Marie; de Pauw, Karen; Depauw, Leen; Govaert, Sanne; Greiser, Caroline; Hampe, Arndt; Hylander, Kristoffer; Klinges, David; Koelemeijer, Irena; Meeussen, Camille; Ogée, Jérôme; Sanczuk, Pieter; Vanneste, Thomas; Zellweger, Florian; Baeten, Lander; de Frenne, Pieter;pmid: 34748832
handle: 10067/1833220151162165141 , 1854/LU-8726229
Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.
Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institutional Reposi... arrow_drop_down Institutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Netherlands, Belgium, Germany, United Kingdom, Argentina, France, France, France, ArgentinaPublisher:Wiley Funded by:NSF | Graduate Research Fellows..., AKA | Atmosphere and Climate Co..., ANR | MaCCMic +4 projectsNSF| Graduate Research Fellowship Program (GRFP) ,AKA| Atmosphere and Climate Competence Center (ACCC) ,ANR| MaCCMic ,AKA| Resilience of Arctic terrestrial ecosystems under bioclimatic change ,EC| FORMICA ,ANR| IMPRINT ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataKlinges, David; Baecher, J. Alex; Lembrechts, Jonas; Maclean, Ilya; Lenoir, Jonathan; Greiser, Caroline; Ashcroft, Michael; Evans, Luke; Kearney, Michael; Aalto, Juha; Barrio, Isabel; de Frenne, Pieter; Guillemot, Joannès; Hylander, Kristoffer; Jucker, Tommaso; Kopecký, Martin; Luoto, Miska; Macek, Martin; Nijs, Ivan; Urban, Josef; van den Brink, Liesbeth; Vangansbeke, Pieter; von Oppen, Jonathan; Wild, Jan; Boike, Julia; Canessa, Rafaella; Nosetto, Marcelo; Rubtsov, Alexey; Sallo-Bravo, Jhonatan; Scheffers, Brett;AbstractAimThe scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.LocationTemperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).Time Period1960–2018.Major Taxa StudiedCase studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.MethodsWe compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.ResultsFor predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively.Main ConclusionsWe propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2024License: taverneData sources: Pure Utrecht UniversityInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterGlobal Ecology and BiogeographyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2024License: taverneData sources: Pure Utrecht UniversityInstitutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information CenterGlobal Ecology and BiogeographyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Australia, United Kingdom, France, Spain, United States, Czech Republic, Russian Federation, Italy, France, Germany, Russian Federation, France, Italy, Australia, Germany, Belgium, United Kingdom, Switzerland, Czech Republic, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | FORMICA, RSF | The anatomical and physio..., DFG +13 projectsEC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,DFG ,EC| ICOS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEE ,NSF| Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| AfricanBioServices ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,SNSF| Lif3web: The present and future spatial structure of tri-trophic networks ,ANR| IMPRINT ,RCN| Disentangling the impacts of herbivory and climate on ecological dynamics ,NSF| MSB-ECA: Phylogenetically-informed modeling of the regional context of community assembly ,UKRI| Climate as a driver of shrub expansion and tundra greening ,EC| SUPER-GHarald Pauli; Josef Urban; Josef Urban; Sonia Merinero; Pieter De Frenne; Josefine Walz; Bente J. Graae; Michael B. Ashcroft; Michael B. Ashcroft; Tim Seipel; Ian Klupar; Ilya M. D. Maclean; Juan J. Jiménez; Jonas Schmeddes; Lucia Hederová; James D. M. Speed; Amanda Ratier Backes; Christian Rossi; Christian Rossi; Christian Rossi; Alessandro Petraglia; Isla H. Myers-Smith; Adrian V. Rocha; Pallieter De Smedt; Ellen Dorrepaal; Martin Macek; Pieter Vangansbeke; Miska Luoto; Nicoletta Cannone; Luca Vitale; José Luis Benito Alonso; Josef Brůna; Jan Wild; Marko Smiljanic; Edmund W. Basham; Eduardo Fuentes-Lillo; Eduardo Fuentes-Lillo; C. Johan Dahlberg; Sergiy Medinets; Keith W. Larson; Ann Milbau; Pekka Niittynen; Koenraad Van Meerbeek; Juha Aalto; Juha Aalto; Loïc Pellissier; Meelis Pärtel; Tudor-Mihai Ursu; Rafael A. García; Rafael A. García; Lore T. Verryckt; Laurenz M. Teuber; Kristoffer Hylander; Shengwei Zong; Shyam S. Phartyal; Shyam S. Phartyal; Agustina Barros; Valeria Aschero; Valeria Aschero; Rebecca A. Senior; Michael Stemkovski; Jonas J. Lembrechts; Joseph Okello; Joseph Okello; Jan Altman; Romina D. Dimarco; Julia Kemppinen; Pavel Dan Turtureanu; Dany Ghosn; Lukas Siebicke; Andrew D. Thomas; Zuzana Sitková; Sonja Wipf; Olivier Roupsard; Sanne Govaert; Robert G. Björk; Christian D. Larson; Fatih Fazlioglu; M. Rosa Fernández Calzado; Jörg G. Stephan; Jiri Dolezal; Jiri Dolezal; Michele Carbognani; Aud H. Halbritter; Mihai Pușcaș; David H. Klinges; Juergen Kreyling; Mats P. Björkman; Florian Zellweger; Esther R. Frei; Marijn Bauters; Camille Pitteloud; Jozef Kollár; Gergana N. Daskalova; Miguel Portillo-Estrada; Robert Kanka; Ana Clara Mazzolari; William D. Pearse; William D. Pearse; Elizabeth G. Simpson; Martin Svátek; Stuart W. Smith; Stuart W. Smith; Martin A. Nuñez; Jhonatan Sallo Bravo; Onur Candan; Mana Gharun; Austin Koontz; Simone Cesarz; T'Ai Gladys Whittingham Forte; George Kazakis; Joseph J. Bailey; Zhaochen Zhang; Nico Eisenhauer; Volodymyr I. Medinets; Jonathan Lenoir; Juan Lorite; Radim Matula; Lena Muffler; Lena Muffler; Aníbal Pauchard; Aníbal Pauchard; Pascal Boeckx; Maaike Y. Bader; Robert Weigel; Marek Čiliak; Kamil Láska; Brett R. Scheffers; Camille Meeussen; Benjamin Blonder; Benjamin Blonder; Felix Gottschall; Ronja E. M. Wedegärtner; Francesco Malfasi; Jonas Ardö; Roman Plichta; Pascal Vittoz; Mario Trouillier; Julia Boike; Peter Barančok; Christian Rixen; Lisa J. Rew; Andrej Varlagin; Valter Di Cecco; Ivan Nijs; Jan Dick; Charly Geron; Charly Geron; Bernard Heinesch; Patrice Descombes; Mauro Guglielmin; Angela Stanisci; Filip Hrbáček; Martin Wilmking; Jian Zhang; Krystal Randall; Katja Tielbörger; Peter Haase; Peter Haase; Alistair S. Jump; Rafaella Canessa; Masahito Ueyama; Matěj Man; František Máliš; Marcello Tomaselli; Stef Haesen; Salvatore R. Curasi; Sylvia Haider; Andrea Lamprecht; Miguel Ángel de Pablo; Haydn J.D. Thomas; Nina Buchmann; Manuela Winkler; Klaus Steinbauer; Toke T. Høye; Fernando Moyano; Miroslav Svoboda; Christopher Andrews; Martin Kopecký; Martin Kopecký; Rebecca Finger Higgens; Hans J. De Boeck; Jürgen Homeier; Juha M. Alatalo; Ben Somers; Khatuna Gigauri; Andrej Palaj; Thomas Scholten; Mia Vedel Sørensen; Edoardo Cremonese; Liesbeth van den Brink;pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
AbstractCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu