- home
- Advanced Search
- Energy Research
- Open Access
- Energy Research
- Open Access
description Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Authors: Fatigati, Fabio; Di Bartolomeo, Marco; Cipollone, Roberto;handle: 11697/132168
Abstract Rotary Vane Expander is an interesting solution for small-scale ORC power unit due to its reliability, flexibility and competitive cost. As demonstrated by the authors in previous works, the introduction of a secondary intake port leads to an increase of the aspirated mass flow rate and consequently of the mechanical power produced by the machine. In this paper, theoretical and experimental studies were conducted in order to assess the potential benefits in terms of efficiency introduced by the dual intake expander and the trade-off with the produced power for a given pressure-drop. The theoretical results showed that if the relative gain of mechanical power produced by the dual intake technology is higher than that of working fluid mass flow rate, the efficiency grows when the same machines operate at the same upstream and downstream pressures. Two expanders have been designated, built and tested giving the possibility to experimentally verify the performances of a single and a double intake machine. From measured data a mathematical model of the expander was validated, allowing to use it as a virtual platform for further machine optimization and improvement. It was observed that the efficiency gain introduced by the dual intake device depends on the OEM volumetric efficiency and on the pressure ratio. The global efficiency of the dual intake expander grows up to 30% if the volumetric efficiency is 50% and the pressure ratio is 2.3 while the efficiency benefit decreases to 5% if the volumetric efficiency is 70% and the pressure ratio is 3. Nevertheless, even if the global efficiency would be equal for the two machines, the dual intake technology always allows to increase the delivered mechanical power.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2019License: CC BY NC NDEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2019License: CC BY NC NDEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Authors: Fatigati F.; Di Bartolomeo M.; Cipollone R.;handle: 11697/148292
Abstract Rotary Vane Expanders (RVE) are very suitable prime movers for ORC-based power units in on-the-road transportation sector. RVEs suffer volumetric efficiency deficits due to leakages which limit the overall expander efficiency and can vanish their intrinsic benefits with respect to the other prime movers. Making reference to a 2 kW Sliding RVE type (SRVE), the paper presents a theoretical and experimental contribution which goes deep into the effect of leakages inside the machine and aims to quantify their amount and effects on the expander performances. The results showed that the volumetric losses increase the mass flow rate aspirated by the machine if the intake pressure is kept constant. This increase favors a greater recovery from the hot source (up to 50%) but part of it bypasses the vanes, producing a volumetric loss. An interesting feature is that part of this additional mass is exchanged among vanes and this produces a beneficial effect on the indicated power (16.6% increase with respect the ideal case). The resulting knowledge further supported the effectiveness of dual intake expander technology which allows to theoretically reduce the leakages between adjacent vane up to 60–70% ensuring an improvement of expander efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2024 ItalyPublisher:IOP Publishing Di Bartolomeo M.; Coletta A.; Deriszadeh A.; Di Battista D.; Carapellucci R.; Cipollone R.;handle: 11697/253762
Abstract Adopting efficient power plants based on renewable energy sources is extremely important to face the challenges of global warming. Concentrated Solar Power Plant (CSP) is a technology option that can achieve the decarbonization target of the electricity sector in large power plants and simultaneously meet the growing demand for electricity. In this study, a CSP plant using air as heat transfer fluid, whose transformations realize a Discrete Ericsson Cycle (DEC), was referenced. Solar fields are based on parabolic trough collectors. The DEC consists of a series of inter-cooled compressions and inter-heated expansions (four and two, respectively, in this paper), whose net result is a useful work. In this paper, a mixture of air and Cr2O3 nanoparticles at different particle concentration has been considered as working fluid to enhance the performances of the compression and expansion transformations in a DEC-based plant. The presence of particles cools the air during compression and heat the air during expansion, approaching isothermal processes. A sensitivity analysis referred to the particle concentration has been discussed and the power and the efficiency of the plant have been discussed outlining benefits and drawbacks. Nanoparticle concentration less that 0,05% in volume (10 % in mass) produce a power and efficiency output increase close to 3 % without any sensible constraint. At higher concentrations, more significant variations are achieved with a 15 % power output increase for a mass concentration of nanoparticles of 50%. Such mass concentration corresponds to just 0.05 % in volume, allowing a potential operativity of the turbomachines. In this condition, the overall CSP efficiency improve by 1.5 percentage points.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2024License: CC BYJournal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2893/1/012018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2024License: CC BYJournal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2893/1/012018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2018 ItalyPublisher:Elsevier BV Authors: Fatigati, Fabio; Bartolomeo, Marco Di; Cipollone, Roberto;handle: 11697/128401
Abstract In the present work a novel technology based on a dual injection vane expander has been introduced. The component works on a power unit fed by the exhaust gases of 3L turbocharged diesel engine. The new device was tested in a wide range of operating conditions and its numerical model was validated on the experimental data. The performances of the new machine were compared to those of the original one. The results showed that the dual injection expander provided an increase of the indicated and mechanical power up to 50% and 30%. Mass flow rate can be increased by 30% and this widens the performances of the power unit; this aspect is particularly suitable for a recovery unit fed by the widely changing exhaust gases flow rates in ICEs.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2018License: CC 0add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2018License: CC 0add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2020 ItalyPublisher:EDP Sciences Fatigati F.; Di Bartolomeo M.; Lo Biundo G.; Pallante F.; Cipollone R.;handle: 11697/167657
To date, Sliding Vane Pump (SVP) technology is one of the most attractive solution in different technical applications thanks to its reliability and compactness and capability to keep a high efficiency even when it is working far from rated condition. In particular, this feature makes the SVP suitable to be employed for the oil circulation (SVOP) in Internal Combustion Engine (ICE) which is characterized by a wide oil flow rates variation, delivered pressure and temperature variation which causes operating conditions of the pump far from the design point. Flow delivered changes in these machines are produced by varying the eccentricity for a mechanical connection with the engine - or by varying the speed of revolution. The mild hybridization of the powertrains calls for a strong development of electrically assisted engine auxiliaries which undoubtedly makes the flow variations easier to be done, but the presence of an electric motor requires some technological choices not fully assessed, a cost increase and a reliability decrease. The paper presents a mathematical model of a SVOP for oil circulation in ICE, suitably validated by a wide experimental activity. The model integrates a mono and zero-dimensional fluid-dynamic analysis and allows to represent the intimate behaviour of the machine. Moreover, it was employed as virtual platform to discuss pros and cons of different flow rate variation strategies and their effect on the efficiency of the SVOP.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2020License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019706022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2020License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019706022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2021 ItalyPublisher:EDP Sciences Funded by:EC | LONGRUNEC| LONGRUNFatigati F.; Di Battista D.; Di Bartolomeo M.; Mariani L.; Cipollone R.;handle: 11697/201326
Presently the on-the-road transportation sector is responsible of the 21% of the whole CO2 amount emitted into atmosphere. This pushes the International Governments and Organizations to provide strict limitations in terms of ICEs emissions, also introducing fees payment for the car manufacturers. The vehicle electrification allows certainly to meet these requirements, but the higher cost and the need of a green electricity still limit a widespread diffusion among all social classes. Thus, the technological improvement of internal combustion engine plays a key role in the transition period. Among these technologies, the engine thermal management allows to achieve a good compromise between the CO2 emission reduction and related costs. It was demonstrated that replacing the conventional centrifugal pump of engine cooling system with a sliding vane rotary pump (SVRP), important benefits in terms of CO2 emission reduction can be achieved as centrifugal pump efficiency decreases significantly when the engine works far from the maximum load (i.e. design point of the pump). Nevertheless, the complex thermo-fluid-dynamic phenomena taking place inside a SVRP make its design not immediate, particularly if heavy duty ICE cooling systems are considered. These applications indeed are challenging due to the wide operating range and the huge flow rates which pump must deliver. These operating requirements make difficult the choice of the main design parameters: among the different ones, the pump revolution speed and displaced volume. In the present paper a design strategy is developed for this type of pumps based on a comprehensive mathematical model of the processes occurring, predicting volumetric, indicated and mechanical efficiencies. The model was validated with a wide experimental activity so acting as virtual development platform. The results show how the best global efficiency (0.59) is achieved adopting a dual axial intake port configuration, with a suitable choice result of a trade-off between displaced volume and revolution speed. The analysis also show that the pump keeps its efficiency close to the design one for a wide operating range which is particularly suitable for the cooling of an ICE.
E3S Web of Conferenc... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202131207017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert E3S Web of Conferenc... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202131207017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors: Fatigati, F; Vittorini, D; Di Bartolomeo, M; Cipollone, R;handle: 11697/219821
A promising solution for the Combined Heat and Power (CHP) micro production is certainly represented by Organic Rankine Cycle (ORC)-based power units. In the domestic appliances with electrical power range of the units below 1 kW, the reduced dimensions of the components represent a critical aspect as well as the need to guarantee a high reliability. When the hot source is represented by solar energy, the optimization of the electricity production keeping insured the thermal energy availability represents an aspect which invites to a proper management of the unit. Solar-based ORC-recovery units frequently work in off-design conditions due to the variability of the hot source and to the Domestic Hot Water (DHW) requirements. For this reason, the design and the selection of the components should be carefully performed. The expander is commonly retained the key component of the unit being the one that mainly affects the behaviour. For the mentioned power ranges, the volumetric expander is the best technological option and, among those available, Sliding Rotary Vane Expander (SVRE) are gaining a sensible interest. At off design conditions, according to permeability theory, the expander intake pressure linearly varies with mass flow rate of the Working Fluid (WF) which is the most suitable and easiest parameter to be changed. This modifies the performances of the unit, both from a thermodynamic and technological point of view. In this paper, the speed variation of the expander is considered as control parameter to restore design expander intake pressure. In order to assess a strategy for the speed variation of the expander, in this paper a comprehensive model of the SVRE is presented when it operates in a solar-driven ORC-based unit. The model is physically based and recovers and widens the permeability theory developed by the authors in previous works. An experimental ORC-based unit was fully instrumented and operated, coupled with a reservoir, usually present when flat plate solar collectors are used, which store the thermal energy which fulfils thermal energy requests and feeds the generating unit. The model was widely validated with the experimental data properly conceived for the purpose. In the unit the expander speed was varied and, thanks to the permeability theory, the relationships between WF flowrate variations, inlet expander pressure and expander speed variation were investigated. The potentiality of a control strategy of the expander revolution speed of the expander was fixed as well as a deeper understanding of the SVRE behaviour and relationships between operating variables. In particular, it was observed that varying the speed from 1000 RPM up to 2000 RPM, the expander behaviour was optimized ensuring proper working condition matching with a (30–100 g/s) flowrate range.
Energy Conversion an... arrow_drop_down Energy Conversion and Management: XArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2023.100428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and Management: XArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2023.100428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 ItalyPublisher:IOP Publishing Authors: Marco Di Bartolomeo; Davide Di Battista; Roberto Cipollone;handle: 11697/237601
Abstract Engine thermal management is a promising option to reduce fuel consumption and harmful emissions of Internal Combustion Engines. This is particularly suitable to support the transition towards a carbon-neutral transportation sector, considering that the role of combustion engines is expected to persist in the near and medium future. In this study, a prototype pump electrically actuated was compared to a mechanical pump of a downsized gasoline engine that propels a real vehicle. In the first phase of the analysis, the cooling circuit was tested from a hydraulic point of view on all its branches using an engine mounted on a bench equal to that working on the vehicle. The hydraulic circuit was fully characterized via pressure transducers and flow meters in all branches for different thermostat lifts, representing different coolant temperatures. On the same bench, the OEM pump and an electrically actuated one, suitably redesigned on an operating point more representative of the real operating conditions, were tested. A vehicle propelled with the same tested engine (having a conventional mechanically actuated pump) was run on the road following three different driving cycles. The engine revolution speeds were registered, as well as the temperature of the cooling fluid. The electric and mechanical pumps were compared using the performance maps previously obtained. The electric pump speed was set to deliver the same coolant flow rate as the OEM pump, following the same sequence of thermostat lifts. The results show that a 60 % average reduction of the pump energy consumption is possible, leading to an average specific CO2 emission reduction of 1 g/km. This result is even more relevant during urban driving, with emission savings hitting 2.5 g/km.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2648/1/012079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2648/1/012079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 Italy, United Kingdom, ItalyPublisher:Elsevier BV Giuseppe Bianchi; Giuseppe Bianchi; Fabio Fatigati; Marco Di Bartolomeo; Davide Di Battista; Roberto Cipollone;handle: 11697/117587
Abstract The current work presents a thermodynamic analysis of a Trilateral Flash Cycle (TFC) system for low grade heat to power conversion applications. Novel aspects of the research are the usage of rotary positive displacement expanders as prime movers of the TFC system as well as the reference to working fluids and their mixtures at the state of the art. In particular, the role of a correct built-in volume ratio of the expander with respect to the pressure ratio of the thermodynamic cycle is emphasized. In fact, a mismatching of these two quantities would lead to an isochoric expansion process which, in turn, might negatively affect the overall power recovery. With reference to a transcritical CO 2 stream at 100°C as heat source for the TFC system, parametric and screening studies were carried out using different expander built-in volume ratios and working fluids respectively. Among the fluids analyzed, results showed that pure substances such as R1234ze(E) and propane would provide a greater specific work but, on the other hand, would require built-in volume ratios (8 and 14) that are beyond the capabilities of rotary positive displacement expanders (5). The addition of CO 2 to the afore mentioned working fluids would ease the mismatching issue but, at the same time, would reduce the specific power output. Regarding the built-in volume ratio analysis, it was found that optimal values change in accordance to the working fluid and refer to an expansion process with a slight isochoric phase.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2017License: CC BY NC NDBrunel University London: Brunel University Research Archive (BURA)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 3 Powered bymore_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2017License: CC BY NC NDBrunel University London: Brunel University Research Archive (BURA)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Part of book or chapter of book 2019 ItalyPublisher:AIP Publishing Authors: Cinocca, Andrea; Di Bartolomeo, Marco; Cipollone, Roberto; Carapellucci, Roberto;doi: 10.1063/1.5138780
handle: 11697/142829
https://aip.scitatio... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaPart of book or chapter of book . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5138780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://aip.scitatio... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaPart of book or chapter of book . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5138780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Authors: Fatigati, Fabio; Di Bartolomeo, Marco; Cipollone, Roberto;handle: 11697/132168
Abstract Rotary Vane Expander is an interesting solution for small-scale ORC power unit due to its reliability, flexibility and competitive cost. As demonstrated by the authors in previous works, the introduction of a secondary intake port leads to an increase of the aspirated mass flow rate and consequently of the mechanical power produced by the machine. In this paper, theoretical and experimental studies were conducted in order to assess the potential benefits in terms of efficiency introduced by the dual intake expander and the trade-off with the produced power for a given pressure-drop. The theoretical results showed that if the relative gain of mechanical power produced by the dual intake technology is higher than that of working fluid mass flow rate, the efficiency grows when the same machines operate at the same upstream and downstream pressures. Two expanders have been designated, built and tested giving the possibility to experimentally verify the performances of a single and a double intake machine. From measured data a mathematical model of the expander was validated, allowing to use it as a virtual platform for further machine optimization and improvement. It was observed that the efficiency gain introduced by the dual intake device depends on the OEM volumetric efficiency and on the pressure ratio. The global efficiency of the dual intake expander grows up to 30% if the volumetric efficiency is 50% and the pressure ratio is 2.3 while the efficiency benefit decreases to 5% if the volumetric efficiency is 70% and the pressure ratio is 3. Nevertheless, even if the global efficiency would be equal for the two machines, the dual intake technology always allows to increase the delivered mechanical power.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2019License: CC BY NC NDEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2019License: CC BY NC NDEnergy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Authors: Fatigati F.; Di Bartolomeo M.; Cipollone R.;handle: 11697/148292
Abstract Rotary Vane Expanders (RVE) are very suitable prime movers for ORC-based power units in on-the-road transportation sector. RVEs suffer volumetric efficiency deficits due to leakages which limit the overall expander efficiency and can vanish their intrinsic benefits with respect to the other prime movers. Making reference to a 2 kW Sliding RVE type (SRVE), the paper presents a theoretical and experimental contribution which goes deep into the effect of leakages inside the machine and aims to quantify their amount and effects on the expander performances. The results showed that the volumetric losses increase the mass flow rate aspirated by the machine if the intake pressure is kept constant. This increase favors a greater recovery from the hot source (up to 50%) but part of it bypasses the vanes, producing a volumetric loss. An interesting feature is that part of this additional mass is exchanged among vanes and this produces a beneficial effect on the indicated power (16.6% increase with respect the ideal case). The resulting knowledge further supported the effectiveness of dual intake expander technology which allows to theoretically reduce the leakages between adjacent vane up to 60–70% ensuring an improvement of expander efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2024 ItalyPublisher:IOP Publishing Di Bartolomeo M.; Coletta A.; Deriszadeh A.; Di Battista D.; Carapellucci R.; Cipollone R.;handle: 11697/253762
Abstract Adopting efficient power plants based on renewable energy sources is extremely important to face the challenges of global warming. Concentrated Solar Power Plant (CSP) is a technology option that can achieve the decarbonization target of the electricity sector in large power plants and simultaneously meet the growing demand for electricity. In this study, a CSP plant using air as heat transfer fluid, whose transformations realize a Discrete Ericsson Cycle (DEC), was referenced. Solar fields are based on parabolic trough collectors. The DEC consists of a series of inter-cooled compressions and inter-heated expansions (four and two, respectively, in this paper), whose net result is a useful work. In this paper, a mixture of air and Cr2O3 nanoparticles at different particle concentration has been considered as working fluid to enhance the performances of the compression and expansion transformations in a DEC-based plant. The presence of particles cools the air during compression and heat the air during expansion, approaching isothermal processes. A sensitivity analysis referred to the particle concentration has been discussed and the power and the efficiency of the plant have been discussed outlining benefits and drawbacks. Nanoparticle concentration less that 0,05% in volume (10 % in mass) produce a power and efficiency output increase close to 3 % without any sensible constraint. At higher concentrations, more significant variations are achieved with a 15 % power output increase for a mass concentration of nanoparticles of 50%. Such mass concentration corresponds to just 0.05 % in volume, allowing a potential operativity of the turbomachines. In this condition, the overall CSP efficiency improve by 1.5 percentage points.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2024License: CC BYJournal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2893/1/012018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2024License: CC BYJournal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2893/1/012018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2018 ItalyPublisher:Elsevier BV Authors: Fatigati, Fabio; Bartolomeo, Marco Di; Cipollone, Roberto;handle: 11697/128401
Abstract In the present work a novel technology based on a dual injection vane expander has been introduced. The component works on a power unit fed by the exhaust gases of 3L turbocharged diesel engine. The new device was tested in a wide range of operating conditions and its numerical model was validated on the experimental data. The performances of the new machine were compared to those of the original one. The results showed that the dual injection expander provided an increase of the indicated and mechanical power up to 50% and 30%. Mass flow rate can be increased by 30% and this widens the performances of the power unit; this aspect is particularly suitable for a recovery unit fed by the widely changing exhaust gases flow rates in ICEs.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2018License: CC 0add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2018License: CC 0add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2020 ItalyPublisher:EDP Sciences Fatigati F.; Di Bartolomeo M.; Lo Biundo G.; Pallante F.; Cipollone R.;handle: 11697/167657
To date, Sliding Vane Pump (SVP) technology is one of the most attractive solution in different technical applications thanks to its reliability and compactness and capability to keep a high efficiency even when it is working far from rated condition. In particular, this feature makes the SVP suitable to be employed for the oil circulation (SVOP) in Internal Combustion Engine (ICE) which is characterized by a wide oil flow rates variation, delivered pressure and temperature variation which causes operating conditions of the pump far from the design point. Flow delivered changes in these machines are produced by varying the eccentricity for a mechanical connection with the engine - or by varying the speed of revolution. The mild hybridization of the powertrains calls for a strong development of electrically assisted engine auxiliaries which undoubtedly makes the flow variations easier to be done, but the presence of an electric motor requires some technological choices not fully assessed, a cost increase and a reliability decrease. The paper presents a mathematical model of a SVOP for oil circulation in ICE, suitably validated by a wide experimental activity. The model integrates a mono and zero-dimensional fluid-dynamic analysis and allows to represent the intimate behaviour of the machine. Moreover, it was employed as virtual platform to discuss pros and cons of different flow rate variation strategies and their effect on the efficiency of the SVOP.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2020License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019706022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2020License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019706022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2021 ItalyPublisher:EDP Sciences Funded by:EC | LONGRUNEC| LONGRUNFatigati F.; Di Battista D.; Di Bartolomeo M.; Mariani L.; Cipollone R.;handle: 11697/201326
Presently the on-the-road transportation sector is responsible of the 21% of the whole CO2 amount emitted into atmosphere. This pushes the International Governments and Organizations to provide strict limitations in terms of ICEs emissions, also introducing fees payment for the car manufacturers. The vehicle electrification allows certainly to meet these requirements, but the higher cost and the need of a green electricity still limit a widespread diffusion among all social classes. Thus, the technological improvement of internal combustion engine plays a key role in the transition period. Among these technologies, the engine thermal management allows to achieve a good compromise between the CO2 emission reduction and related costs. It was demonstrated that replacing the conventional centrifugal pump of engine cooling system with a sliding vane rotary pump (SVRP), important benefits in terms of CO2 emission reduction can be achieved as centrifugal pump efficiency decreases significantly when the engine works far from the maximum load (i.e. design point of the pump). Nevertheless, the complex thermo-fluid-dynamic phenomena taking place inside a SVRP make its design not immediate, particularly if heavy duty ICE cooling systems are considered. These applications indeed are challenging due to the wide operating range and the huge flow rates which pump must deliver. These operating requirements make difficult the choice of the main design parameters: among the different ones, the pump revolution speed and displaced volume. In the present paper a design strategy is developed for this type of pumps based on a comprehensive mathematical model of the processes occurring, predicting volumetric, indicated and mechanical efficiencies. The model was validated with a wide experimental activity so acting as virtual development platform. The results show how the best global efficiency (0.59) is achieved adopting a dual axial intake port configuration, with a suitable choice result of a trade-off between displaced volume and revolution speed. The analysis also show that the pump keeps its efficiency close to the design one for a wide operating range which is particularly suitable for the cooling of an ICE.
E3S Web of Conferenc... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202131207017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert E3S Web of Conferenc... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202131207017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors: Fatigati, F; Vittorini, D; Di Bartolomeo, M; Cipollone, R;handle: 11697/219821
A promising solution for the Combined Heat and Power (CHP) micro production is certainly represented by Organic Rankine Cycle (ORC)-based power units. In the domestic appliances with electrical power range of the units below 1 kW, the reduced dimensions of the components represent a critical aspect as well as the need to guarantee a high reliability. When the hot source is represented by solar energy, the optimization of the electricity production keeping insured the thermal energy availability represents an aspect which invites to a proper management of the unit. Solar-based ORC-recovery units frequently work in off-design conditions due to the variability of the hot source and to the Domestic Hot Water (DHW) requirements. For this reason, the design and the selection of the components should be carefully performed. The expander is commonly retained the key component of the unit being the one that mainly affects the behaviour. For the mentioned power ranges, the volumetric expander is the best technological option and, among those available, Sliding Rotary Vane Expander (SVRE) are gaining a sensible interest. At off design conditions, according to permeability theory, the expander intake pressure linearly varies with mass flow rate of the Working Fluid (WF) which is the most suitable and easiest parameter to be changed. This modifies the performances of the unit, both from a thermodynamic and technological point of view. In this paper, the speed variation of the expander is considered as control parameter to restore design expander intake pressure. In order to assess a strategy for the speed variation of the expander, in this paper a comprehensive model of the SVRE is presented when it operates in a solar-driven ORC-based unit. The model is physically based and recovers and widens the permeability theory developed by the authors in previous works. An experimental ORC-based unit was fully instrumented and operated, coupled with a reservoir, usually present when flat plate solar collectors are used, which store the thermal energy which fulfils thermal energy requests and feeds the generating unit. The model was widely validated with the experimental data properly conceived for the purpose. In the unit the expander speed was varied and, thanks to the permeability theory, the relationships between WF flowrate variations, inlet expander pressure and expander speed variation were investigated. The potentiality of a control strategy of the expander revolution speed of the expander was fixed as well as a deeper understanding of the SVRE behaviour and relationships between operating variables. In particular, it was observed that varying the speed from 1000 RPM up to 2000 RPM, the expander behaviour was optimized ensuring proper working condition matching with a (30–100 g/s) flowrate range.
Energy Conversion an... arrow_drop_down Energy Conversion and Management: XArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2023.100428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and Management: XArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2023.100428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023 ItalyPublisher:IOP Publishing Authors: Marco Di Bartolomeo; Davide Di Battista; Roberto Cipollone;handle: 11697/237601
Abstract Engine thermal management is a promising option to reduce fuel consumption and harmful emissions of Internal Combustion Engines. This is particularly suitable to support the transition towards a carbon-neutral transportation sector, considering that the role of combustion engines is expected to persist in the near and medium future. In this study, a prototype pump electrically actuated was compared to a mechanical pump of a downsized gasoline engine that propels a real vehicle. In the first phase of the analysis, the cooling circuit was tested from a hydraulic point of view on all its branches using an engine mounted on a bench equal to that working on the vehicle. The hydraulic circuit was fully characterized via pressure transducers and flow meters in all branches for different thermostat lifts, representing different coolant temperatures. On the same bench, the OEM pump and an electrically actuated one, suitably redesigned on an operating point more representative of the real operating conditions, were tested. A vehicle propelled with the same tested engine (having a conventional mechanically actuated pump) was run on the road following three different driving cycles. The engine revolution speeds were registered, as well as the temperature of the cooling fluid. The electric and mechanical pumps were compared using the performance maps previously obtained. The electric pump speed was set to deliver the same coolant flow rate as the OEM pump, following the same sequence of thermostat lifts. The results show that a 60 % average reduction of the pump energy consumption is possible, leading to an average specific CO2 emission reduction of 1 g/km. This result is even more relevant during urban driving, with emission savings hitting 2.5 g/km.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2648/1/012079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2648/1/012079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 Italy, United Kingdom, ItalyPublisher:Elsevier BV Giuseppe Bianchi; Giuseppe Bianchi; Fabio Fatigati; Marco Di Bartolomeo; Davide Di Battista; Roberto Cipollone;handle: 11697/117587
Abstract The current work presents a thermodynamic analysis of a Trilateral Flash Cycle (TFC) system for low grade heat to power conversion applications. Novel aspects of the research are the usage of rotary positive displacement expanders as prime movers of the TFC system as well as the reference to working fluids and their mixtures at the state of the art. In particular, the role of a correct built-in volume ratio of the expander with respect to the pressure ratio of the thermodynamic cycle is emphasized. In fact, a mismatching of these two quantities would lead to an isochoric expansion process which, in turn, might negatively affect the overall power recovery. With reference to a transcritical CO 2 stream at 100°C as heat source for the TFC system, parametric and screening studies were carried out using different expander built-in volume ratios and working fluids respectively. Among the fluids analyzed, results showed that pure substances such as R1234ze(E) and propane would provide a greater specific work but, on the other hand, would require built-in volume ratios (8 and 14) that are beyond the capabilities of rotary positive displacement expanders (5). The addition of CO 2 to the afore mentioned working fluids would ease the mismatching issue but, at the same time, would reduce the specific power output. Regarding the built-in volume ratio analysis, it was found that optimal values change in accordance to the working fluid and refer to an expansion process with a slight isochoric phase.
Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2017License: CC BY NC NDBrunel University London: Brunel University Research Archive (BURA)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 3 Powered bymore_vert Archivio Istituziona... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaConference object . 2017License: CC BY NC NDBrunel University London: Brunel University Research Archive (BURA)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.07.246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Part of book or chapter of book 2019 ItalyPublisher:AIP Publishing Authors: Cinocca, Andrea; Di Bartolomeo, Marco; Cipollone, Roberto; Carapellucci, Roberto;doi: 10.1063/1.5138780
handle: 11697/142829
https://aip.scitatio... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaPart of book or chapter of book . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5138780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://aip.scitatio... arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaPart of book or chapter of book . 2019add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5138780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu