- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 15 Aug 2017 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Innovation and Knowledge ..., UKRI | Innovation and Knowledge ...UKRI| Innovation and Knowledge Centre for Smart Infrastructure and Construction - Collaborative Programme Tranche 1 ,UKRI| Innovation and Knowledge Centre for Smart Infrastructure and Construction - Collaborative Programme Tranche 2Authors: Du, Sijun; Jia, Y; Seshia, Ashwin;handle: 10034/620192
Vibration energy harvesting based on piezoelectric materials is of interest in several applications such as in powering remote distributed wireless sensor nodes for structural health monitoring. Synchronized switch harvesting on inductor and synchronous electric charge extraction circuits show good power efficiency among reported power management circuits; however, limitations exist due to inductors employed, adaption of response to varying excitation levels, and the synchronized switch damping (SSD) effect. In this paper, an inductorless dynamically configured interface circuit is proposed, which is able to configure the connection of two piezoelectric materials in parallel or in series by periodically evaluating the ambient excitation level. The proposed circuit is designed and fabricated in a 0.35 μHV CMOS process.The fabricated circuit is cointegrated with a piezoelectric bimorph energy harvester and the performance is experimentally validated. With a low power consumption (0.5 μW), the measured results show that the proposed rectifier can provide a 4.5 × boost in harvested energy compared to the conventional full-bridge rectifier without employing an inductor. It also shows a high power efficiency over a wide range of excitation levels and is less susceptible to SSD.
CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDFull-Text: http://ieeexplore.ieee.org/document/7505594/Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Power ElectronicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpel.2016.2587757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDFull-Text: http://ieeexplore.ieee.org/document/7505594/Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Power ElectronicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpel.2016.2587757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xinling Yue; Sijun Du;In the past decades, inductor-based synchronized switch harvesting on inductor (SSHI) rectifiers have been widely employed in many active rectification systems for piezoelectric energy harvesting. Although SSHI rectifiers achieve high energy extraction performance compared to passive full-bridge rectifier (FBR), the performance greatly depends on the inductor employed. While a larger inductor can achieve higher performance, the system form factor is also increased, which is counter to system miniaturization in many applications. To solve this issue, an efficient synchronized switch harvesting on capacitors (SSHC) rectifier was proposed recently. Instead of using large inductors, the SSHC rectifier employs on-chip or off-chip flying capacitors to achieve comparable or higher performance. In previous studies, the flying capacitors are chosen equal to the inherent capacitance of the piezoelectric transducer (PT) to achieve 1/3 voltage flipping efficiency (η F) for a 1-stage SSHC rectifier and 4/5 flipping efficiency for a 8-stage SSHC rectifier. This brief presents that the flipping efficiency can be further increased to 1/2 for a 1-stage SSHC rectifier if the flying capacitor is chosen to be much larger than C P and the 4/5 flipping efficiency can be achieved by employing only 4 flying capacitors. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. Electronic Instrumentation
IEEE Transactions on... arrow_drop_down IEEE Transactions on Circuits & Systems II Express BriefsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcsii.2022.3224033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 25visibility views 25 download downloads 25 Powered bymore_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Circuits & Systems II Express BriefsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcsii.2022.3224033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2016Embargo end date: 08 Aug 2016 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Innovation and Knowledge ...UKRI| Innovation and Knowledge Centre for Smart Infrastructure and Construction - Collaborative Programme Tranche 2Authors: Jia, Yu; Du, Sijun; Seshia, Ashwin A;AbstractThis paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a −3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz.
CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDFull-Text: http://www.nature.com/articles/srep30167Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep30167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDFull-Text: http://www.nature.com/articles/srep30167Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep30167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book , Article 2016 United KingdomPublisher:IEEE Authors: Jia, Yu; Du, Sijun; Seshia, Ashwin A.;handle: 10034/620206
This paper presents a multi-order parametric resonant MEMS piezoelectric disk membrane, for the purpose of broadening the operational frequency bandwidth of a vibration energy harvester by employing the nonlinearity-induced bandwidth broadening associated with this phenomenon as well as the multi-frequency response associated with the higher orders. The fundamental mode -3dB bandwidth at 2.0 g recorded 55 Hz, while the first parametric resonant peak exhibited 365 Hz and the -3dB of the first 8 orders accumulated to 604 Hz. The membrane parametric resonator also experimentally demonstrated over 3-folds improvement in power density compared to a conventional direct resonator (cantilever), when subjected to band-limited white noise.
CORE arrow_drop_down Aston Publications ExplorerPart of book or chapter of book . 2016Data sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDFull-Text: http://ieeexplore.ieee.org/document/7421863Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/memsys.2016.7421863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down Aston Publications ExplorerPart of book or chapter of book . 2016Data sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDFull-Text: http://ieeexplore.ieee.org/document/7421863Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/memsys.2016.7421863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 16 Sep 2019 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Development of remote, se..., UKRI | CSIC Innovation and Knowl...UKRI| Development of remote, self-powered temperature and pressure monitoring system for harsh environment motorsport, automotive and aerospace applications (SELFP) ,UKRI| CSIC Innovation and Knowledge Centre Phase 2Du, S; Jia, Y; Zhao, C; Amaratunga, GAJ; Seshia, AA;Piezoelectric vibration energy harvesting has drawn much interest to power distributed wireless sensor nodes for Internet of Things (IoT) applications where ambient kinetic energy is available. For certain applications, the harvesting system should be small and able to generate sufficient output power. Standard rectification topologies such as the full-bridge rectifier are typically inefficient when adapted to power conditioning from miniaturized harvesters. Therefore, active rectification circuits have been researched to improve overall power conversion efficiency, and meet both the output power and miniaturization requirements while employing a MEMS harvester. In this paper, a MEMS piezoelectric energy harvester is designed and cointegrated with an active synchronized switch harvesting on inductor (SSHI) rectification circuit designed in a CMOS process to achieve high output power for system miniaturization. The system is fully integrated on a nail-size board, which is ready to provide a stable DC power for low-power mini sensors. A MEMS energy harvester of 0.005 cm3 size, co-integrated with the CMOS conditioning circuit, outputs a peak rectified DC power of 40.6 µW and achieves a record DC power density of 8.12 mW/cm3 when compared to state-of-the-art harvesters.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsen.2019.2941180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsen.2019.2941180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 09 Aug 2017 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Innovation and Knowledge ..., UKRI | CSIC Innovation and Knowl...UKRI| Innovation and Knowledge Centre for Smart Infrastructure and Construction - Collaborative Programme Tranche 2 ,UKRI| CSIC Innovation and Knowledge Centre Phase 2Authors: Sijun Du; Ashwin A. Seshia;Piezoelectric vibration energy harvesters have drawn much interest for powering self-sustained electronic devices. Furthermore, the continuous push toward miniaturization and higher levels of integration continues to form key drivers for autonomous sensor systems being developed as parts of the emerging Internet of Things (IoT) paradigm. The synchronized switch harvesting (SSH) on inductor and synchronous electrical charge extraction are two of the most efficient interface circuits for piezoelectric energy harvesters; however, inductors are indispensable components in these interfaces. The required inductor values can be up to 10 mH to achieve high efficiencies, which significantly increase overall system volume, counter to the requirement for miniaturized self-power systems for IoT. An inductorless bias-flip rectifier is proposed in this paper to perform residual charge inversion using capacitors instead of inductors. The voltage flip efficiency goes up to 80% while eight switched capacitors are employed. The proposed SSH on capacitors circuit is designed and fabricated in a 0.35-μm CMOS process. The performance is experimentally measured and it shows a 9.7x performance improvement compared with a full-bridge rectifier for the case of a 2.5-V open-circuit zero-peak voltage amplitude generated by the piezoelectric harvester. This performance improvement is higher than most of the reported state-of-the-art inductor-based interface circuits, while the proposed circuit has a significantly smaller overall volume enabling system miniaturization.
IEEE Journal of Soli... arrow_drop_down IEEE Journal of Solid-State CircuitsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jssc.2017.2725959&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Journal of Soli... arrow_drop_down IEEE Journal of Solid-State CircuitsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jssc.2017.2725959&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 27 Jan 2017 United KingdomPublisher:SAGE Publications Authors: Sijun Du; Ashwin A. Seshia; Yu Jia; Yu Jia;handle: 10034/620357
For a conventional monolithic piezoelectric transducer (PT) using a full-bridge rectifier, there is a threshold voltage that the open-circuit voltage measured across the PT must attain prior to any transfer of energy to the storage capacitor at the output of the rectifier. This threshold voltage usually depends on the voltage of the storage capacitor and the forward voltage drop of diodes. This article presents a scheme of splitting the electrode of a monolithic piezoelectric vibration energy harvester into multiple ( n) equal regions connected in series in order to provide a wider operating voltage range and higher output power while using a full-bridge rectifier as the interface circuit. The performance of different series stage numbers has been theoretically studied and experimentally validated. The number of series stages ([Formula: see text]) can be predefined for a particular implementation, which depends on the specified operating conditions, to achieve optimal performance. This enables the system to attain comparable performance compared to active interface circuits under an increased input range while no additional active circuits are required and the system is comparatively less affected by synchronized switching damping effect.
CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Intelligent Material Systems and StructuresArticle . 2016 . Peer-reviewedData sources: CrossrefJournal of Intelligent Material Systems and StructuresJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/1045389x16682846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Intelligent Material Systems and StructuresArticle . 2016 . Peer-reviewedData sources: CrossrefJournal of Intelligent Material Systems and StructuresJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/1045389x16682846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016 United KingdomPublisher:IOP Publishing Sijun Du; Yu Jia; Yu Jia; Emmanuelle Arroyo; Shao-Tuan Chen; Ashwin A. Seshia;handle: 10034/620415
Energy harvesters withstanding high temperatures could provide potentially unlimited energy to sensor nodes placed in harsh environments, where manual maintenance is difficult and costly. Experimental results on a classical microcantilever show a 67% drop of the maximum power when the temperature is increased up to 160 °C. This decrease is investigated using a lumped-parameters model which takes into account variations in material parameters with temperature, damping increase and thermal stresses induced by mismatched thermal coefficients in a composite cantilever. The model allows a description of the maximum power evolution as a function of temperature and input acceleration. Simulation results further show that an increase in damping and the apparition of thermal stresses are contributing to the power drop at 59% and 13% respectively.
CORE arrow_drop_down COREArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40836/1/Arroyo_2016_J._Phys._Conf._Ser._773_012001.pdfData sources: COREAston Publications ExplorerArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40836/1/Arroyo_2016_J._Phys._Conf._Ser._773_012001.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Physics : Conference SeriesArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/773/1/012001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40836/1/Arroyo_2016_J._Phys._Conf._Ser._773_012001.pdfData sources: COREAston Publications ExplorerArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40836/1/Arroyo_2016_J._Phys._Conf._Ser._773_012001.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Physics : Conference SeriesArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/773/1/012001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 09 Aug 2017 United KingdomPublisher:Elsevier BV Shao-Tuan Chen; Sijun Du; Chun Zhao; Ashwin A. Seshia; Yu Jia; Yu Jia;handle: 10034/620605
This paper presents an enhanced SSHI (synchronized switch harvesting on inductor) rectifier with startup circuit and representative environment validation using real world vibration data collected from a tram. Compared to a conventional SSHI rectifier, the proposed rectifier dynamically monitors the working status of the circuit and restarts it when necessary. The proposed rectifier is designed in a 0.35 μm HV CMOS process and its performance is experimentally evaluated. With a 500-s real-world collected vibration data, the conventional and the proposed SSHI rectifiers record average power performance improvements by 9.2× and 22× respectively, compared to a passive full-bridge rectifier. As the startup circuit helps restart the SSHI rectifier several times, it is able to extract energy in an increased excitation range and its average power output performance is 2.4× higher than a conventional SSHI rectifier.
CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Sensors and Actuators A PhysicalArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sna.2017.07.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Sensors and Actuators A PhysicalArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sna.2017.07.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2015 United KingdomPublisher:IOP Publishing Authors: Sijun Du; Yu Jia; Yu Jia; Ashwin A. Seshia;handle: 10034/620187
Most MEMS piezoelectric vibration energy harvesters involve either cantilever-based topologies, doubly-clamped beams or membrane structures. While these traditional designs offer simplicity, their frequency response for broadband excitation are typically inadequate. This paper presents a new integrated cantilever-on-membrane design that attempts to both optimise the strain distribution on a piezoelectric membrane resonator and improve the power responsiveness of the harvester for broadband excitation. While a classic membrane-based resonator has the potential to theoretically offer wider operational frequency bandwidth than its cantilever counterpart, the addition of a centred proof mass neutralises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and integrates the merits of both the membrane and the cantilever designs. When experimentally subjected to a band-limited white noise excitation, up to approximately two folds of power enhancement was observed for the new membrane harvester compared to a classic plain membrane device.
CORE arrow_drop_down COREArticle . 2015License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40850/1/Jia_2015_J._Phys._Conf._Ser._660_012030.pdfData sources: COREAston Publications ExplorerArticle . 2015License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40850/1/Jia_2015_J._Phys._Conf._Ser._660_012030.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Physics : Conference SeriesArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/660/1/012030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2015License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40850/1/Jia_2015_J._Phys._Conf._Ser._660_012030.pdfData sources: COREAston Publications ExplorerArticle . 2015License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40850/1/Jia_2015_J._Phys._Conf._Ser._660_012030.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Physics : Conference SeriesArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/660/1/012030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 15 Aug 2017 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Innovation and Knowledge ..., UKRI | Innovation and Knowledge ...UKRI| Innovation and Knowledge Centre for Smart Infrastructure and Construction - Collaborative Programme Tranche 1 ,UKRI| Innovation and Knowledge Centre for Smart Infrastructure and Construction - Collaborative Programme Tranche 2Authors: Du, Sijun; Jia, Y; Seshia, Ashwin;handle: 10034/620192
Vibration energy harvesting based on piezoelectric materials is of interest in several applications such as in powering remote distributed wireless sensor nodes for structural health monitoring. Synchronized switch harvesting on inductor and synchronous electric charge extraction circuits show good power efficiency among reported power management circuits; however, limitations exist due to inductors employed, adaption of response to varying excitation levels, and the synchronized switch damping (SSD) effect. In this paper, an inductorless dynamically configured interface circuit is proposed, which is able to configure the connection of two piezoelectric materials in parallel or in series by periodically evaluating the ambient excitation level. The proposed circuit is designed and fabricated in a 0.35 μHV CMOS process.The fabricated circuit is cointegrated with a piezoelectric bimorph energy harvester and the performance is experimentally validated. With a low power consumption (0.5 μW), the measured results show that the proposed rectifier can provide a 4.5 × boost in harvested energy compared to the conventional full-bridge rectifier without employing an inductor. It also shows a high power efficiency over a wide range of excitation levels and is less susceptible to SSD.
CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDFull-Text: http://ieeexplore.ieee.org/document/7505594/Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Power ElectronicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpel.2016.2587757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDFull-Text: http://ieeexplore.ieee.org/document/7505594/Data sources: Bielefeld Academic Search Engine (BASE)IEEE Transactions on Power ElectronicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpel.2016.2587757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xinling Yue; Sijun Du;In the past decades, inductor-based synchronized switch harvesting on inductor (SSHI) rectifiers have been widely employed in many active rectification systems for piezoelectric energy harvesting. Although SSHI rectifiers achieve high energy extraction performance compared to passive full-bridge rectifier (FBR), the performance greatly depends on the inductor employed. While a larger inductor can achieve higher performance, the system form factor is also increased, which is counter to system miniaturization in many applications. To solve this issue, an efficient synchronized switch harvesting on capacitors (SSHC) rectifier was proposed recently. Instead of using large inductors, the SSHC rectifier employs on-chip or off-chip flying capacitors to achieve comparable or higher performance. In previous studies, the flying capacitors are chosen equal to the inherent capacitance of the piezoelectric transducer (PT) to achieve 1/3 voltage flipping efficiency (η F) for a 1-stage SSHC rectifier and 4/5 flipping efficiency for a 8-stage SSHC rectifier. This brief presents that the flipping efficiency can be further increased to 1/2 for a 1-stage SSHC rectifier if the flying capacitor is chosen to be much larger than C P and the 4/5 flipping efficiency can be achieved by employing only 4 flying capacitors. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. Electronic Instrumentation
IEEE Transactions on... arrow_drop_down IEEE Transactions on Circuits & Systems II Express BriefsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcsii.2022.3224033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 25visibility views 25 download downloads 25 Powered bymore_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Circuits & Systems II Express BriefsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tcsii.2022.3224033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2016Embargo end date: 08 Aug 2016 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Innovation and Knowledge ...UKRI| Innovation and Knowledge Centre for Smart Infrastructure and Construction - Collaborative Programme Tranche 2Authors: Jia, Yu; Du, Sijun; Seshia, Ashwin A;AbstractThis paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a −3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz.
CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDFull-Text: http://www.nature.com/articles/srep30167Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep30167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDFull-Text: http://www.nature.com/articles/srep30167Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep30167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book , Article 2016 United KingdomPublisher:IEEE Authors: Jia, Yu; Du, Sijun; Seshia, Ashwin A.;handle: 10034/620206
This paper presents a multi-order parametric resonant MEMS piezoelectric disk membrane, for the purpose of broadening the operational frequency bandwidth of a vibration energy harvester by employing the nonlinearity-induced bandwidth broadening associated with this phenomenon as well as the multi-frequency response associated with the higher orders. The fundamental mode -3dB bandwidth at 2.0 g recorded 55 Hz, while the first parametric resonant peak exhibited 365 Hz and the -3dB of the first 8 orders accumulated to 604 Hz. The membrane parametric resonator also experimentally demonstrated over 3-folds improvement in power density compared to a conventional direct resonator (cantilever), when subjected to band-limited white noise.
CORE arrow_drop_down Aston Publications ExplorerPart of book or chapter of book . 2016Data sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDFull-Text: http://ieeexplore.ieee.org/document/7421863Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/memsys.2016.7421863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down Aston Publications ExplorerPart of book or chapter of book . 2016Data sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDFull-Text: http://ieeexplore.ieee.org/document/7421863Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/memsys.2016.7421863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 16 Sep 2019 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Development of remote, se..., UKRI | CSIC Innovation and Knowl...UKRI| Development of remote, self-powered temperature and pressure monitoring system for harsh environment motorsport, automotive and aerospace applications (SELFP) ,UKRI| CSIC Innovation and Knowledge Centre Phase 2Du, S; Jia, Y; Zhao, C; Amaratunga, GAJ; Seshia, AA;Piezoelectric vibration energy harvesting has drawn much interest to power distributed wireless sensor nodes for Internet of Things (IoT) applications where ambient kinetic energy is available. For certain applications, the harvesting system should be small and able to generate sufficient output power. Standard rectification topologies such as the full-bridge rectifier are typically inefficient when adapted to power conditioning from miniaturized harvesters. Therefore, active rectification circuits have been researched to improve overall power conversion efficiency, and meet both the output power and miniaturization requirements while employing a MEMS harvester. In this paper, a MEMS piezoelectric energy harvester is designed and cointegrated with an active synchronized switch harvesting on inductor (SSHI) rectification circuit designed in a CMOS process to achieve high output power for system miniaturization. The system is fully integrated on a nail-size board, which is ready to provide a stable DC power for low-power mini sensors. A MEMS energy harvester of 0.005 cm3 size, co-integrated with the CMOS conditioning circuit, outputs a peak rectified DC power of 40.6 µW and achieves a record DC power density of 8.12 mW/cm3 when compared to state-of-the-art harvesters.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsen.2019.2941180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsen.2019.2941180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 09 Aug 2017 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Innovation and Knowledge ..., UKRI | CSIC Innovation and Knowl...UKRI| Innovation and Knowledge Centre for Smart Infrastructure and Construction - Collaborative Programme Tranche 2 ,UKRI| CSIC Innovation and Knowledge Centre Phase 2Authors: Sijun Du; Ashwin A. Seshia;Piezoelectric vibration energy harvesters have drawn much interest for powering self-sustained electronic devices. Furthermore, the continuous push toward miniaturization and higher levels of integration continues to form key drivers for autonomous sensor systems being developed as parts of the emerging Internet of Things (IoT) paradigm. The synchronized switch harvesting (SSH) on inductor and synchronous electrical charge extraction are two of the most efficient interface circuits for piezoelectric energy harvesters; however, inductors are indispensable components in these interfaces. The required inductor values can be up to 10 mH to achieve high efficiencies, which significantly increase overall system volume, counter to the requirement for miniaturized self-power systems for IoT. An inductorless bias-flip rectifier is proposed in this paper to perform residual charge inversion using capacitors instead of inductors. The voltage flip efficiency goes up to 80% while eight switched capacitors are employed. The proposed SSH on capacitors circuit is designed and fabricated in a 0.35-μm CMOS process. The performance is experimentally measured and it shows a 9.7x performance improvement compared with a full-bridge rectifier for the case of a 2.5-V open-circuit zero-peak voltage amplitude generated by the piezoelectric harvester. This performance improvement is higher than most of the reported state-of-the-art inductor-based interface circuits, while the proposed circuit has a significantly smaller overall volume enabling system miniaturization.
IEEE Journal of Soli... arrow_drop_down IEEE Journal of Solid-State CircuitsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jssc.2017.2725959&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Journal of Soli... arrow_drop_down IEEE Journal of Solid-State CircuitsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jssc.2017.2725959&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 27 Jan 2017 United KingdomPublisher:SAGE Publications Authors: Sijun Du; Ashwin A. Seshia; Yu Jia; Yu Jia;handle: 10034/620357
For a conventional monolithic piezoelectric transducer (PT) using a full-bridge rectifier, there is a threshold voltage that the open-circuit voltage measured across the PT must attain prior to any transfer of energy to the storage capacitor at the output of the rectifier. This threshold voltage usually depends on the voltage of the storage capacitor and the forward voltage drop of diodes. This article presents a scheme of splitting the electrode of a monolithic piezoelectric vibration energy harvester into multiple ( n) equal regions connected in series in order to provide a wider operating voltage range and higher output power while using a full-bridge rectifier as the interface circuit. The performance of different series stage numbers has been theoretically studied and experimentally validated. The number of series stages ([Formula: see text]) can be predefined for a particular implementation, which depends on the specified operating conditions, to achieve optimal performance. This enables the system to attain comparable performance compared to active interface circuits under an increased input range while no additional active circuits are required and the system is comparatively less affected by synchronized switching damping effect.
CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Intelligent Material Systems and StructuresArticle . 2016 . Peer-reviewedData sources: CrossrefJournal of Intelligent Material Systems and StructuresJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/1045389x16682846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Intelligent Material Systems and StructuresArticle . 2016 . Peer-reviewedData sources: CrossrefJournal of Intelligent Material Systems and StructuresJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/1045389x16682846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016 United KingdomPublisher:IOP Publishing Sijun Du; Yu Jia; Yu Jia; Emmanuelle Arroyo; Shao-Tuan Chen; Ashwin A. Seshia;handle: 10034/620415
Energy harvesters withstanding high temperatures could provide potentially unlimited energy to sensor nodes placed in harsh environments, where manual maintenance is difficult and costly. Experimental results on a classical microcantilever show a 67% drop of the maximum power when the temperature is increased up to 160 °C. This decrease is investigated using a lumped-parameters model which takes into account variations in material parameters with temperature, damping increase and thermal stresses induced by mismatched thermal coefficients in a composite cantilever. The model allows a description of the maximum power evolution as a function of temperature and input acceleration. Simulation results further show that an increase in damping and the apparition of thermal stresses are contributing to the power drop at 59% and 13% respectively.
CORE arrow_drop_down COREArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40836/1/Arroyo_2016_J._Phys._Conf._Ser._773_012001.pdfData sources: COREAston Publications ExplorerArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40836/1/Arroyo_2016_J._Phys._Conf._Ser._773_012001.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Physics : Conference SeriesArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/773/1/012001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40836/1/Arroyo_2016_J._Phys._Conf._Ser._773_012001.pdfData sources: COREAston Publications ExplorerArticle . 2016License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40836/1/Arroyo_2016_J._Phys._Conf._Ser._773_012001.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Physics : Conference SeriesArticle . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/773/1/012001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 09 Aug 2017 United KingdomPublisher:Elsevier BV Shao-Tuan Chen; Sijun Du; Chun Zhao; Ashwin A. Seshia; Yu Jia; Yu Jia;handle: 10034/620605
This paper presents an enhanced SSHI (synchronized switch harvesting on inductor) rectifier with startup circuit and representative environment validation using real world vibration data collected from a tram. Compared to a conventional SSHI rectifier, the proposed rectifier dynamically monitors the working status of the circuit and restarts it when necessary. The proposed rectifier is designed in a 0.35 μm HV CMOS process and its performance is experimentally evaluated. With a 500-s real-world collected vibration data, the conventional and the proposed SSHI rectifiers record average power performance improvements by 9.2× and 22× respectively, compared to a passive full-bridge rectifier. As the startup circuit helps restart the SSHI rectifier several times, it is able to extract energy in an increased excitation range and its average power output performance is 2.4× higher than a conventional SSHI rectifier.
CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Sensors and Actuators A PhysicalArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sna.2017.07.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Chester: Chester Digital RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Sensors and Actuators A PhysicalArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sna.2017.07.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2015 United KingdomPublisher:IOP Publishing Authors: Sijun Du; Yu Jia; Yu Jia; Ashwin A. Seshia;handle: 10034/620187
Most MEMS piezoelectric vibration energy harvesters involve either cantilever-based topologies, doubly-clamped beams or membrane structures. While these traditional designs offer simplicity, their frequency response for broadband excitation are typically inadequate. This paper presents a new integrated cantilever-on-membrane design that attempts to both optimise the strain distribution on a piezoelectric membrane resonator and improve the power responsiveness of the harvester for broadband excitation. While a classic membrane-based resonator has the potential to theoretically offer wider operational frequency bandwidth than its cantilever counterpart, the addition of a centred proof mass neutralises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and integrates the merits of both the membrane and the cantilever designs. When experimentally subjected to a band-limited white noise excitation, up to approximately two folds of power enhancement was observed for the new membrane harvester compared to a classic plain membrane device.
CORE arrow_drop_down COREArticle . 2015License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40850/1/Jia_2015_J._Phys._Conf._Ser._660_012030.pdfData sources: COREAston Publications ExplorerArticle . 2015License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40850/1/Jia_2015_J._Phys._Conf._Ser._660_012030.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Physics : Conference SeriesArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/660/1/012030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2015License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40850/1/Jia_2015_J._Phys._Conf._Ser._660_012030.pdfData sources: COREAston Publications ExplorerArticle . 2015License: CC BYFull-Text: https://publications.aston.ac.uk/id/eprint/40850/1/Jia_2015_J._Phys._Conf._Ser._660_012030.pdfData sources: CORE (RIOXX-UK Aggregator)University of Chester: Chester Digital RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Physics : Conference SeriesArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/660/1/012030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu