- home
- Advanced Search
- Energy Research
- 2021-2025
- Energy Research
- 2021-2025
description Publicationkeyboard_double_arrow_right Other literature type , Project deliverable 2021Publisher:Zenodo Funded by:EC | MPC-. GTEC| MPC-. GTCaminade, Anne; Cano, Hector; Boydens, Wim; Wang, Qian; Hoogmartens, Jan; Helsen, Lieve; Sulc, Jan; De Backer, Lien; Figueroa, Iago Cupeiro; Jorissen, Filip; Himpe, Eline;Current and best practices for hybridGEOTABS design and control around Europe are described in this report. It provides an overview of the design of a hybridGEOTABS building and the core modules, and an overview of the latest developments for controlling integrated building systems using MPC. The report provides an overview of the state-of-the-art hybridGEOTABS design and control during the hybridGEOTABS project and allows to understand the issues various stakeholders are facing, for which solutions are developed in the hybridGEOTABS project. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723649
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5109594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 34visibility views 34 download downloads 32 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5109594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwedenPublisher:Elsevier BV Henrikki Pieskä; Cong Wang; Cong Wang; Qian Wang; Behrouz Nourozi; Adnan Ploskić;Abstract In recent years, the increasing occurrence of heatwaves raises the cooling need of residential buildings in Scandinavian countries, which are traditionally not equipped with active cooling systems. Indoor overheating caused by such heatwaves leads to severe consequences for occupants, especially kids and seniors. Efficient and economical cooling solutions are urgently needed to cope with frequent heatwaves. The present study investigated the novel usage of the geothermal-assisted mechanical ventilation with heat recovery (GEO-MVHR) system for cooling purposes in typical Swedish multi-family dwellings. The cooling potential of the system and its contributions to thermal comfort were evaluated. Dynamic simulations were conducted to assess the system's cooling performance under two climate scenarios: the climate of 2018 representing an extreme year with excessively hot summer and the climate of a typical meteorological year. The GEO-MVHR system shows great potential in mitigating indoor overheating with improved thermal comfort. A ventilation airflow rate of 0.50–0.70 l/s/m2 is suggested for multi-family dwellings to maximize the cooling potential of the GEO-MVHR system. The indoor operative temperature could be reduced by up to 3 °C with the GEO-MVHR system operating for cooling. Modulating the supply air temperature of the GEO-MVHR system based on indoor thermal conditions is recommended, as it shows the advantage of avoiding unnecessary overcooling and energy saving.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2021.108114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2021.108114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:MDPI AG Funded by:EC | HYPERGRYDEC| HYPERGRYDAuthors: Mustapha Habib; Elmar Bollin; Qian Wang;doi: 10.3390/en16083539
Building energy management systems (BEMSs), dedicated to sustainable buildings, may have additional duties, such as hosting efficient energy management systems (EMSs) algorithms. This duty can become crucial when operating renewable energy sources (RES) and eventual electric energy storage systems (ESSs). Sophisticated EMS approaches that aim to manage RES and ESSs in real time may need high computing capabilities that BEMSs typically cannot provide. This article addresses and validates a fuzzy logic-based EMS for the optimal management of photovoltaic (PV) systems with lead-acid ESSs using an edge computing technology. The proposed method is tested on a real smart grid prototype in comparison with a classical rule-based EMS for different weather conditions. The goal is to investigate the efficacy of islanding the building local network as a control command, along with ESS power control. The results show the implementation feasibility and performance of the fuzzy algorithm in the optimal management of ESSs in both operation modes: grid-connected and islanded modes.
University of Applie... arrow_drop_down University of Applied Sciences: OPUS-HSOArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16083539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 12 Powered bymore_vert University of Applie... arrow_drop_down University of Applied Sciences: OPUS-HSOArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16083539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Giorgos Aspetakis; Qian Wang;Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: David Weinberg; Qian Wang; Thomas Ohlson Timoudas; Carlo Fischione;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2022.104351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2022.104351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Yiyu Ding; Thomas Ohlson Timoudas; Qian Wang; Shuqin Chen; Helge Brattebø; Natasa Nord;In the face of green energy initiatives and progressively increasing shares of more energy-efficient buildings, there is a pressing need to transform district heating towards low-temperature district heating. The substantially lowered supply temperature of low-temperature district heating broadens the opportunities and challenges to integrate distributed renewable energy, which requires enhancement on intelligent heating load prediction. Meanwhile, to fulfill the temperature requirements for domestic hot water and space heating, separate energy conversion units on user-side, such as building-sized boosting heat pumps shall be implemented to upgrade the temperature level of the low-temperature district heating network. This study conducted hybrid heating load prediction methods with long-term and short-term prediction, and the main work consisted of four steps: (1) acquisition and processing of district heating data of 20 district heating supplied nursing homes in the Nordic climate (2016–2019); (2) long-term district heating load prediction through linear regression, energy signature curve in hourly resolution, providing an overall view and boundary conditions for the unit sizing; (3) short-term district heating load prediction through two Artificial Neural Network models, f72 and g120, with different precdiction input parameters; (4) evaluation of the predicted load profiles based on the measured data. Although the three prediction models met the quality criteria, it was found that including the historical hourly heating loads as the input to the forecasting model enhanced the prediction quality, especially for the peak load and low-mild heating season. Furthermore, a possible application of the heating load profiles was proposed by integrating two building-sized heat pumps in low-temperature district heating, which may be a promising heat supply method in low-temperature district heating.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Lars Herre; Behrouz Nourozi; Mohammad Reza Hesamzadeh; Qian Wang; Lennart Söder;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2023.107062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2023.107062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Henrikki Pieskä; Cong Wang; Behrouz Nourozi; Adnan Ploskić; Qian Wang;The European Commission aims to reduce the greenhouse gas emissions of the European Union's building stock by 60% by 2030 compared with 1990. Meanwhile, the global demand for cooling is projected to grow 3% yearly between 2020 and 2050. High-temperature cooling systems provide cooling with lower exergy use than conventional cooling systems and enable the integration of renewable energy sources, and can play a crucial role in meeting the growing cooling demand with less energy use. The aim of this study is to analyse and critically evaluate two high-temperature cooling systems in terms of their energy and exergy use in a case study. We also consider thermal comfort performance, CO2 emissions, and sensitivity to changing operating conditions. The two systems considered are a mechanical ventilation system with heat recovery combined with geothermal cooling (GeoMVHR) and a radiant cooling system with ceiling panels connected to the same geothermal cooling (GeoRadiant) system. The study is conducted using building energy models of a typical office building belonging to a three-building school complex located in Sant Cugat near Barcelona, Spain. IDA ICE 4.8 simulation software was used for the simulations. The results show that the two different installations can produce near-identical thermal comfort conditions for the occupants. The GeoRadiant system achieves this result with 72% lower electricity use and 60% less exergy destruction than the GeoMVHR system. Due to the higher electricity use, the CO2 emissions caused by the GeoMVHR system are 3.5 times the emissions caused by the GeoRadiant system. Datasets: "Building energy simulation data results" and "Acquired data from existing and/or new installed meters or from existing BEMS (pre intervention EcoSCADA monitoring data)" - Raw data is available upon request. Follow the link and fill the request form.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.104738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.104738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 SwedenPublisher:Elsevier BV Funded by:EC | HYPERGRYDEC| HYPERGRYDAuthors: Habib, Mustapha; Gram, Annika; Harrag, Abdelghani; Wang, Qian;This paper presents a methodology for the analysis and simulation of the effect of operating large photovoltaic (PV) plants, in coordination, as static synchronous compensators (STATCOM). The goal is to improve voltage profiles at different load nodes and reduce power losses in transmission lines. The proposed approach takes into account the varying reactive power capacity in PV inverters, which depends on weather conditions. To implement the proposed method, proper Internet of Things (IoT) hardware and software solutions are required. In this context, the grid status and weather data need to be transmitted continuously, via wireless communication technology, to an edge computer. Based on the transmitted data, and using the system mathematical model, an optimization algorithm is then responsible for finding out the optimal reactive power setpoint for each plant in real time. The proposed method is implemented and tested successfully using MATLAB platform with the MATPOWER IEEE 30-bus test grid model. When only five 20 MW PV plants are connected to different locations in the grid with a penetration rate lower than 25 percent, the simulation shows the effectiveness of the optimal coordination of PV plants to deal with the effect on the transmission grid of instantaneous operation of multiple loads. In this context, a daily load profile of heat pumps, operating in winter scenario in multiple households, is approved. An improvement up to 68 percent in the global voltage profiles in the load buses for one-day scenario is achieved. Furthermore, total accumulated active and reactive power losses are reduced by 24.1 percent.
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2022.108455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2022.108455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwedenPublisher:Elsevier BV Funded by:EC | HYPERGRYDEC| HYPERGRYDAuthors: Habib, Mustapha; Bollin, Elmar; Wang, Qian;Recently, photovoltaic (PV) with energy storage systems (ESS) have been widely adopted in buildings to overcome growing power demands and earn financial benefits. The overall energy cost can be optimized by combining a well-sized hybrid PV/ESS system with an efficient energy management system (EMS). Generally, EMS is implemented within the overall functions of the Building Automation System (BAS). However, due to its limited computing resources, BAS cannot handle complex algorithms that aim to optimize energy use in real-time under different operating conditions. Furthermore, islanding the building's local network to maximize the PV energy share represents a challenging task due to the potential technical risks. In this context, this article addresses an improved approach based on upgrading the BAS data analytics capability by means of an edge computing technology. The edge communicates with the BAS low-level controller using a serial communication protocol. Taking advantage of the high computing ability of the edge device, an optimization-based EMS of the PV/ESS hybrid system is implemented. Different testing scenarios have been carried out on a real prototype with different weather conditions, and the results show the implementation feasibility and technical performance of such advanced EMS for the management of building energy resources. It has also been proven to be feasible and advantageous to operate the local energy network in island mode while ensuring system safety. Additionally, an estimated energy saving improvement of 6.23 % has been achieved using optimization-based EMS compared to the classical rule-based EMS, with better ESS constraints fulfillment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2023.108479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2023.108479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Other literature type , Project deliverable 2021Publisher:Zenodo Funded by:EC | MPC-. GTEC| MPC-. GTCaminade, Anne; Cano, Hector; Boydens, Wim; Wang, Qian; Hoogmartens, Jan; Helsen, Lieve; Sulc, Jan; De Backer, Lien; Figueroa, Iago Cupeiro; Jorissen, Filip; Himpe, Eline;Current and best practices for hybridGEOTABS design and control around Europe are described in this report. It provides an overview of the design of a hybridGEOTABS building and the core modules, and an overview of the latest developments for controlling integrated building systems using MPC. The report provides an overview of the state-of-the-art hybridGEOTABS design and control during the hybridGEOTABS project and allows to understand the issues various stakeholders are facing, for which solutions are developed in the hybridGEOTABS project. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723649
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5109594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 34visibility views 34 download downloads 32 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5109594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwedenPublisher:Elsevier BV Henrikki Pieskä; Cong Wang; Cong Wang; Qian Wang; Behrouz Nourozi; Adnan Ploskić;Abstract In recent years, the increasing occurrence of heatwaves raises the cooling need of residential buildings in Scandinavian countries, which are traditionally not equipped with active cooling systems. Indoor overheating caused by such heatwaves leads to severe consequences for occupants, especially kids and seniors. Efficient and economical cooling solutions are urgently needed to cope with frequent heatwaves. The present study investigated the novel usage of the geothermal-assisted mechanical ventilation with heat recovery (GEO-MVHR) system for cooling purposes in typical Swedish multi-family dwellings. The cooling potential of the system and its contributions to thermal comfort were evaluated. Dynamic simulations were conducted to assess the system's cooling performance under two climate scenarios: the climate of 2018 representing an extreme year with excessively hot summer and the climate of a typical meteorological year. The GEO-MVHR system shows great potential in mitigating indoor overheating with improved thermal comfort. A ventilation airflow rate of 0.50–0.70 l/s/m2 is suggested for multi-family dwellings to maximize the cooling potential of the GEO-MVHR system. The indoor operative temperature could be reduced by up to 3 °C with the GEO-MVHR system operating for cooling. Modulating the supply air temperature of the GEO-MVHR system based on indoor thermal conditions is recommended, as it shows the advantage of avoiding unnecessary overcooling and energy saving.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2021.108114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2021.108114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:MDPI AG Funded by:EC | HYPERGRYDEC| HYPERGRYDAuthors: Mustapha Habib; Elmar Bollin; Qian Wang;doi: 10.3390/en16083539
Building energy management systems (BEMSs), dedicated to sustainable buildings, may have additional duties, such as hosting efficient energy management systems (EMSs) algorithms. This duty can become crucial when operating renewable energy sources (RES) and eventual electric energy storage systems (ESSs). Sophisticated EMS approaches that aim to manage RES and ESSs in real time may need high computing capabilities that BEMSs typically cannot provide. This article addresses and validates a fuzzy logic-based EMS for the optimal management of photovoltaic (PV) systems with lead-acid ESSs using an edge computing technology. The proposed method is tested on a real smart grid prototype in comparison with a classical rule-based EMS for different weather conditions. The goal is to investigate the efficacy of islanding the building local network as a control command, along with ESS power control. The results show the implementation feasibility and performance of the fuzzy algorithm in the optimal management of ESSs in both operation modes: grid-connected and islanded modes.
University of Applie... arrow_drop_down University of Applied Sciences: OPUS-HSOArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16083539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 12 Powered bymore_vert University of Applie... arrow_drop_down University of Applied Sciences: OPUS-HSOArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16083539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Giorgos Aspetakis; Qian Wang;Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: David Weinberg; Qian Wang; Thomas Ohlson Timoudas; Carlo Fischione;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2022.104351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2022.104351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Yiyu Ding; Thomas Ohlson Timoudas; Qian Wang; Shuqin Chen; Helge Brattebø; Natasa Nord;In the face of green energy initiatives and progressively increasing shares of more energy-efficient buildings, there is a pressing need to transform district heating towards low-temperature district heating. The substantially lowered supply temperature of low-temperature district heating broadens the opportunities and challenges to integrate distributed renewable energy, which requires enhancement on intelligent heating load prediction. Meanwhile, to fulfill the temperature requirements for domestic hot water and space heating, separate energy conversion units on user-side, such as building-sized boosting heat pumps shall be implemented to upgrade the temperature level of the low-temperature district heating network. This study conducted hybrid heating load prediction methods with long-term and short-term prediction, and the main work consisted of four steps: (1) acquisition and processing of district heating data of 20 district heating supplied nursing homes in the Nordic climate (2016–2019); (2) long-term district heating load prediction through linear regression, energy signature curve in hourly resolution, providing an overall view and boundary conditions for the unit sizing; (3) short-term district heating load prediction through two Artificial Neural Network models, f72 and g120, with different precdiction input parameters; (4) evaluation of the predicted load profiles based on the measured data. Although the three prediction models met the quality criteria, it was found that including the historical hourly heating loads as the input to the forecasting model enhanced the prediction quality, especially for the peak load and low-mild heating season. Furthermore, a possible application of the heating load profiles was proposed by integrating two building-sized heat pumps in low-temperature district heating, which may be a promising heat supply method in low-temperature district heating.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2022.116163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Lars Herre; Behrouz Nourozi; Mohammad Reza Hesamzadeh; Qian Wang; Lennart Söder;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2023.107062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2023.107062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Henrikki Pieskä; Cong Wang; Behrouz Nourozi; Adnan Ploskić; Qian Wang;The European Commission aims to reduce the greenhouse gas emissions of the European Union's building stock by 60% by 2030 compared with 1990. Meanwhile, the global demand for cooling is projected to grow 3% yearly between 2020 and 2050. High-temperature cooling systems provide cooling with lower exergy use than conventional cooling systems and enable the integration of renewable energy sources, and can play a crucial role in meeting the growing cooling demand with less energy use. The aim of this study is to analyse and critically evaluate two high-temperature cooling systems in terms of their energy and exergy use in a case study. We also consider thermal comfort performance, CO2 emissions, and sensitivity to changing operating conditions. The two systems considered are a mechanical ventilation system with heat recovery combined with geothermal cooling (GeoMVHR) and a radiant cooling system with ceiling panels connected to the same geothermal cooling (GeoRadiant) system. The study is conducted using building energy models of a typical office building belonging to a three-building school complex located in Sant Cugat near Barcelona, Spain. IDA ICE 4.8 simulation software was used for the simulations. The results show that the two different installations can produce near-identical thermal comfort conditions for the occupants. The GeoRadiant system achieves this result with 72% lower electricity use and 60% less exergy destruction than the GeoMVHR system. Due to the higher electricity use, the CO2 emissions caused by the GeoMVHR system are 3.5 times the emissions caused by the GeoRadiant system. Datasets: "Building energy simulation data results" and "Acquired data from existing and/or new installed meters or from existing BEMS (pre intervention EcoSCADA monitoring data)" - Raw data is available upon request. Follow the link and fill the request form.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.104738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.104738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 SwedenPublisher:Elsevier BV Funded by:EC | HYPERGRYDEC| HYPERGRYDAuthors: Habib, Mustapha; Gram, Annika; Harrag, Abdelghani; Wang, Qian;This paper presents a methodology for the analysis and simulation of the effect of operating large photovoltaic (PV) plants, in coordination, as static synchronous compensators (STATCOM). The goal is to improve voltage profiles at different load nodes and reduce power losses in transmission lines. The proposed approach takes into account the varying reactive power capacity in PV inverters, which depends on weather conditions. To implement the proposed method, proper Internet of Things (IoT) hardware and software solutions are required. In this context, the grid status and weather data need to be transmitted continuously, via wireless communication technology, to an edge computer. Based on the transmitted data, and using the system mathematical model, an optimization algorithm is then responsible for finding out the optimal reactive power setpoint for each plant in real time. The proposed method is implemented and tested successfully using MATLAB platform with the MATPOWER IEEE 30-bus test grid model. When only five 20 MW PV plants are connected to different locations in the grid with a penetration rate lower than 25 percent, the simulation shows the effectiveness of the optimal coordination of PV plants to deal with the effect on the transmission grid of instantaneous operation of multiple loads. In this context, a daily load profile of heat pumps, operating in winter scenario in multiple households, is approved. An improvement up to 68 percent in the global voltage profiles in the load buses for one-day scenario is achieved. Furthermore, total accumulated active and reactive power losses are reduced by 24.1 percent.
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2022.108455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2022.108455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwedenPublisher:Elsevier BV Funded by:EC | HYPERGRYDEC| HYPERGRYDAuthors: Habib, Mustapha; Bollin, Elmar; Wang, Qian;Recently, photovoltaic (PV) with energy storage systems (ESS) have been widely adopted in buildings to overcome growing power demands and earn financial benefits. The overall energy cost can be optimized by combining a well-sized hybrid PV/ESS system with an efficient energy management system (EMS). Generally, EMS is implemented within the overall functions of the Building Automation System (BAS). However, due to its limited computing resources, BAS cannot handle complex algorithms that aim to optimize energy use in real-time under different operating conditions. Furthermore, islanding the building's local network to maximize the PV energy share represents a challenging task due to the potential technical risks. In this context, this article addresses an improved approach based on upgrading the BAS data analytics capability by means of an edge computing technology. The edge communicates with the BAS low-level controller using a serial communication protocol. Taking advantage of the high computing ability of the edge device, an optimization-based EMS of the PV/ESS hybrid system is implemented. Different testing scenarios have been carried out on a real prototype with different weather conditions, and the results show the implementation feasibility and technical performance of such advanced EMS for the management of building energy resources. It has also been proven to be feasible and advantageous to operate the local energy network in island mode while ensuring system safety. Additionally, an estimated energy saving improvement of 6.23 % has been achieved using optimization-based EMS compared to the classical rule-based EMS, with better ESS constraints fulfillment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2023.108479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2023.108479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu