- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Ashfaq Ahmed; Ashfaq Ahmed; Rahman Saidur; Rahman Saidur; Piyal Chowdhury; M. Thirugnanasambandam; Hemal Chowdhury; Tamal Chowdhury; Nazia Hossain; Mohammad Sayad Hossen;Abstract Large quantity of animal waste production in Bangladesh has spurred the demand of potential applications for waste management. Therefore, biofuel production from animal waste has been projected as the solution for animal waste management along with the potential of a new source of renewable energy. This study aimed to evaluate the production of biogas from the farm wastes in Bangladesh and presented the potential biological applications for processing the wastes to convert into biogas. The study demonstrated that the highest amount of livestock waste, approximately 229 million ton was produced in 2016 and it was accounted for a total biogas production potential of 16988.97 million m3 which could be converted into 16.68 × 107 MWh of electricity. This study also presented the suitable conversion technologies as well as mechanisms of biogas production from animal waste and related mathematical equations to calculate the amount of total biogas productions. The latest advancements in large scale biogas production via government and non-government organizations have also been documented in this work. Besides biogas production analysis, this study also demonstrated the environmental impacts of biogas application. A net CO2 emission reduction of 4.42 million tons could have been achieved over the diesel power generation along with 29 million ton of biofertilizer. The study also proposed a management plan to improve the current waste removal situation in Bangladesh. Along with that, this review comprehensively outlined the worldwide scenario of biogas production and applications.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.122818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.122818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Sadiq M. Sait; J. U. Ahamed; Rahman Saidur; Rahman Saidur; Tamal Chowdhury; Piyal Chowdhury; Hemal Chowdhury; Anik Paul;Abstract In this paper, energy, exergy, and sustainability analyses are done for the residential sector of Bangladesh based on statistics from 2000 to 2015. The purpose is to gain a deep understanding and pragmatic perception of this sector’s energy consumption. It is found that the energy efficiency varies between 25.54% and 37.77% while the exergy efficiency varies between 6.35% and 9.04%. In order to address the sustainability of this sector several indicators such as depletion number, sustainability index, lack of productivity, relative irreversibility, renewable share, non-renewable share, waste exergy ratio, and environmental effect factor are used. Depletion number varies between 0.91 and 0.94 while sustainability index varies between 1.06 and 1.11. The high rate of depletion of fossil fuels has contributed to a lower value of sustainability index. Among various types of fossil fuel consumed in this sector, both energy and exergy from biofuel is higher, and this is validated from high values obtained for the used indicators. For biofuel, the maximum relative irreversibility is found to be 0.83 and maximum lack of productivity is 12.19. To ensure sustainability and to reduce environmental impact from this sector, it is recommended to introduce sustainable cooking technologies in the rural sector.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2019.100615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2019.100615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Hemal Chowdhury; Abd Halim Shamsuddin; Alyaa Nabihah Razali; Hwai Chyuan Ong; Hwai Chyuan Ong; Arridina Susan Silitonga; Nazia Hossain; Tamal Chowdhury; Teuku Meurah Indra Mahlia;doi: 10.3390/en12203947
Banana stem is being considered as the second largest waste biomass in Malaysia. Therefore, the environmental challenge of managing this huge amount of biomass as well as converting the feedstock into value-added products has spurred the demand for diversified applications to be implemented as a realistic approach. In this study, banana stem waste was experimented for bioethanol generation via hydrolysis and fermentation methods with the presence of Saccharomyces cerevisiae (yeast) subsequently. Along with the experimental analysis, a realistic pilot scale application of electricity generation from the bioethanol has been designed by HOMER software to demonstrate techno-economic and environmental impact. During sulfuric acid and enzymatic hydrolysis, the highest glucose yield was 5.614 and 40.61 g/L, respectively. During fermentation, the maximum and minimum glucose yield was 62.23 g/L at 12 h and 0.69 g/L at 72 h, respectively. Subsequently, 99.8% pure bioethanol was recovered by a distillation process. Plant modeling simulated operating costs 65,980 US$/y, net production cost 869347 US$ and electricity cost 0.392 US$/kWh. The CO2 emission from bioethanol was 97,161 kg/y and SO2 emission was 513 kg/y which is much lower than diesel emission. The overall bioethanol production from banana stem and application of electricity generation presented the approach economically favorable and environmentally benign.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3947/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3947/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Wiley Hemal Chowdhury; Ahmad Rashedi; Marc A. Rosen; Taslima Khanam; Sajal Chandra Banik; Sadiq M. Sait; Rahman Saidur; Rahman Saidur; Tamal Chowdhury;AbstractTransportation sector is one of the core parts of modern civilization. Proper utilization of energy and exergy in this sector is necessary to ensure energy loss and environmental sustainability. Increasing exergy efficiency will reduce carbon emissions from this sector. Since 1970, Reistad estimates have been widely used to determine the energy and exergy efficiencies of this sector. However, the modern transport sector has undergone significant changes in recent decades. Hence, it is necessary to apply new Reistad estimates in determining the energy and exergy efficiencies. This is the first study to apply updated Reistad estimates to explore the energy and exergy efficiencies in the transportation sector of Bangladesh based on the data from 2000 to 2017. The overall exergy efficiency is significantly lower than the energy efficiencies as it ranges from 27.7% to 30.0%. Efficiencies are lower as the maximum portion of input exergy is lost to the environment. The road subsector needs major improvements as it is responsible for major amount of exergy loss. A comparison is made between conventional and updated estimates which highlights that the updated estimates provide more accurate results. Thus, it is recommended to apply updated Reistad estimates in determining the energy and exergy efficiencies of the transport sector.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Kazi Sifatul Islam; Samiul Hasan; Tamal Chowdhury; Hemal Chowdhury; Sadiq M. Sait;doi: 10.3390/su142214965
Climate change and the associated global warming raise the possibility of weather-related natural disasters. Power outages due to natural catastrophes cause substantial financial loss. Moreover, an uninterrupted power supply is essential in disaster-prone areas to continue rescue and other humanitarian activities. Therefore, energy systems must be resilient to withstand power outages due to natural events. Resilience and enhancement techniques, and schemes of integrated electricity and microgrids’ heat demand during power outages, were mainly overlooked in the earlier analysis. Therefore, this analysis aims to analyze a grid-tied microgrid’s survivability during a power outage due to a natural disaster in Texas, USA. Mixed-integer linear programming (MILP) is used to optimize various energy resources, such as PV, battery, grid, and combined heat and power (CHP) for Texas, USA. These technologies were run in an outage condition to observe their resiliency benefits. To determine the resilience performance of the CHP/PV/battery system for the hospital building, a new probabilistic approach was applied. A 24-h outage was simulated in REopt lite software, and this study found that the PV/battery/CHP system could easily withstand the outage. The optimum system consists of 3933 kW of PV, 4441 kWh of storage, and a CHP unit having a capacity of 208 kW. The proposed microgrid emits 79.81% less CO2 than the only grid system. The microgrid has a net benefit of $1,007,204 over the project duration. The introduction of the proposed microgrid will bring about life-cycle savings (LCS) of 37.02 million USD over the project’s lifespan.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142214965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142214965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Hemal Chowdhury; Tamal Chowdhury; Pranta Barua; Nazia Hossain;Abstract During this industrialized era, consumption of high-speed diesel (HSD) is increasing rapidly in the power, transportation, agriculture, and other commercial sectors of Bangladesh, albeit a significant amount of HSD is imported from foreign countries. The fuel mono-dependency on imported HSD demands huge economic investment of any country that consequences a negative impact on the cash flow of the overall economy. This study emphasized the contribution of HSD from petroleum products in significant fields and provided the current scenario of diesel import. Besides fuel issues, the other major environmental concern of Bangladesh is tremendous carbon emission caused by the overuse of diesel that consequences severe environmental pollution. To minimize the investment in imported HSD as well as environmental pollution, an alternative fuel, biodiesel generation, has been proposed in this study. This study also projected the total approximate biodiesel production from chicken skin collected from the whole of Bangladesh. Besides, this study also predicted the possible amount of can be replaced by biodiesel from chicken skin and aimed at the cost reduction due to the replacement of diesel by biodiesel.
Environmental Techno... arrow_drop_down Environmental Technology & InnovationArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eti.2020.101139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Techno... arrow_drop_down Environmental Technology & InnovationArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eti.2020.101139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Tamal Chowdhury; Hemal Chowdhury; Kazi Sifatul Islam; Ayyoob Sharifi; Richard Corkish; Sadiq M. Sait;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Elsevier BV Salman Rahman; Hemal Chowdhury; M.M.K. Bhuiya; Piyal Chowdhury; Samiul Hasan; Samiul Hasan; Tamal Chowdhury;Worldwide, health care sectors are experiencing massive pressure due to the emergence of COVID-19. Many temporary health care centers have been set up to treat infected patients. Increasing energy consumption in these centers is responsible for both rising energy demand and emission. Implementation of renewable energy-based hybrid stone-alone systems can play a vital role in optimizing increasing energy demand. The aim of this analysis is to design a stand-alone system for a temporary health care center located in Saint Martin Island, Bangladesh. This is the first study which highlights the power management of a hospital load. Homer Pro software is used to design the preliminary model, and the proposed configuration comprises PV/Converter/WIND/Battery/Generator. It is observed that the Levelized cost of the proposed system is $0.4688. This system's Levelized cost of energy (LCOE) is 35% lower than the solar home system (SHS). The payback period (PB), rate of investment (ROI), and internal rate of return (IROR) of the optimized system are seven years, 10, and 13%, respectively. The proposed configuration is environmentally sustainable as it generates 27% less CO(2) than a diesel-based fuel system.
Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2021.102346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2021.102346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Monirul Islam Miskat; Protap Sarker; Hemal Chowdhury; Tamal Chowdhury; Md Salman Rahman; Nazia Hossain; Piyal Chowdhury; Sadiq M. Sait;doi: 10.3390/en16031494
Bangladesh is blessed with abundant solar resources. Solar power is considered the most desirable energy source to mitigate the high energy demand of this densely populated country. Although various articles deal with solar energy applications in Bangladesh, no detailed review can be found in the literature. Therefore, in this study, we report on the current scenario of renewable energy in Bangladesh and the most significant potential of solar energy’s contribution among multiple renewable energy resources in mitigating energy demand. One main objective of this analysis was to outline the overall view of solar energy applications in Bangladesh to date, as well as the ongoing development of such projects. The technical and theoretical solar energy potential and the technologies available to harvest solar energy were also investigated. A detailed techno-economic design of solar power applications for the garment industry was also simulated to determine the potential of solar energy for this specific scenario. Additionally, renewable energy policies applied in Bangladesh to date are discussed comprehensively, with an emphasis on various ongoing projects undertaken by the government. Moreover, we elaborate global insight into solar power applications and compare Bangladesh’s current solar power scenario with that of other regions worldwide. Furthermore, the potential of artificial intelligence to accelerate solar energy enhancement is delineated comprehensively. Therefore, in this study, we determined the national scenarios of solar power implementation in Bangladesh and projected the most promising approaches for large-scale solar energy applications using artificial intelligence approaches.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Korean Society of Environmental Engineering Miskat, M; Ahmed, Ashfaq; Rahman, Md Salman; Chowdhury, H; Chowdhury, T; Chowdhury, P; Sait, SM; Park, Y-K;doi: 10.4491/eer.2020.514
Current environmental catastrophes generating from fossil fuel power generation has attracted the attention of energy planners to look for sustainable energy sources. Hydropower is one of the oldest energy sources that have been utilized all over the world to generate electricity, especially in remote areas. Being one of the most densely populated countries, the majority of power demand is fulfilled from fossil fuel. Despite having lots of rivers, Bangladesh has not explored its true potential. So, this paper presents a comprehensive review of the current hydropower potential in Bangladesh. Locations having hydropower potential is evaluated. Different technologies used for hydropower generation have been reviewed. Moreover, global hydropower potential has also been discussed in this study. Based on the economic and environmental study, it is found that small scale hydropower is most feasible in Bangladesh to provide sustainable energy. With a reasonable flow rate, 232 rivers of Bangladesh can be utilized small scale hydropower generation as well as ensuring energy security for remote people. The current study is believed to provide useful information in advancing the generation of hydropower based electricity in Bangladesh.
VU Research Reposito... arrow_drop_down VU Research RepositoryArticle . 2021License: CC BY NCFull-Text: https://vuir.vu.edu.au/43315/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4491/eer.2020.514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert VU Research Reposito... arrow_drop_down VU Research RepositoryArticle . 2021License: CC BY NCFull-Text: https://vuir.vu.edu.au/43315/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4491/eer.2020.514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Ashfaq Ahmed; Ashfaq Ahmed; Rahman Saidur; Rahman Saidur; Piyal Chowdhury; M. Thirugnanasambandam; Hemal Chowdhury; Tamal Chowdhury; Nazia Hossain; Mohammad Sayad Hossen;Abstract Large quantity of animal waste production in Bangladesh has spurred the demand of potential applications for waste management. Therefore, biofuel production from animal waste has been projected as the solution for animal waste management along with the potential of a new source of renewable energy. This study aimed to evaluate the production of biogas from the farm wastes in Bangladesh and presented the potential biological applications for processing the wastes to convert into biogas. The study demonstrated that the highest amount of livestock waste, approximately 229 million ton was produced in 2016 and it was accounted for a total biogas production potential of 16988.97 million m3 which could be converted into 16.68 × 107 MWh of electricity. This study also presented the suitable conversion technologies as well as mechanisms of biogas production from animal waste and related mathematical equations to calculate the amount of total biogas productions. The latest advancements in large scale biogas production via government and non-government organizations have also been documented in this work. Besides biogas production analysis, this study also demonstrated the environmental impacts of biogas application. A net CO2 emission reduction of 4.42 million tons could have been achieved over the diesel power generation along with 29 million ton of biofertilizer. The study also proposed a management plan to improve the current waste removal situation in Bangladesh. Along with that, this review comprehensively outlined the worldwide scenario of biogas production and applications.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.122818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.122818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Sadiq M. Sait; J. U. Ahamed; Rahman Saidur; Rahman Saidur; Tamal Chowdhury; Piyal Chowdhury; Hemal Chowdhury; Anik Paul;Abstract In this paper, energy, exergy, and sustainability analyses are done for the residential sector of Bangladesh based on statistics from 2000 to 2015. The purpose is to gain a deep understanding and pragmatic perception of this sector’s energy consumption. It is found that the energy efficiency varies between 25.54% and 37.77% while the exergy efficiency varies between 6.35% and 9.04%. In order to address the sustainability of this sector several indicators such as depletion number, sustainability index, lack of productivity, relative irreversibility, renewable share, non-renewable share, waste exergy ratio, and environmental effect factor are used. Depletion number varies between 0.91 and 0.94 while sustainability index varies between 1.06 and 1.11. The high rate of depletion of fossil fuels has contributed to a lower value of sustainability index. Among various types of fossil fuel consumed in this sector, both energy and exergy from biofuel is higher, and this is validated from high values obtained for the used indicators. For biofuel, the maximum relative irreversibility is found to be 0.83 and maximum lack of productivity is 12.19. To ensure sustainability and to reduce environmental impact from this sector, it is recommended to introduce sustainable cooking technologies in the rural sector.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2019.100615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2019.100615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Hemal Chowdhury; Abd Halim Shamsuddin; Alyaa Nabihah Razali; Hwai Chyuan Ong; Hwai Chyuan Ong; Arridina Susan Silitonga; Nazia Hossain; Tamal Chowdhury; Teuku Meurah Indra Mahlia;doi: 10.3390/en12203947
Banana stem is being considered as the second largest waste biomass in Malaysia. Therefore, the environmental challenge of managing this huge amount of biomass as well as converting the feedstock into value-added products has spurred the demand for diversified applications to be implemented as a realistic approach. In this study, banana stem waste was experimented for bioethanol generation via hydrolysis and fermentation methods with the presence of Saccharomyces cerevisiae (yeast) subsequently. Along with the experimental analysis, a realistic pilot scale application of electricity generation from the bioethanol has been designed by HOMER software to demonstrate techno-economic and environmental impact. During sulfuric acid and enzymatic hydrolysis, the highest glucose yield was 5.614 and 40.61 g/L, respectively. During fermentation, the maximum and minimum glucose yield was 62.23 g/L at 12 h and 0.69 g/L at 72 h, respectively. Subsequently, 99.8% pure bioethanol was recovered by a distillation process. Plant modeling simulated operating costs 65,980 US$/y, net production cost 869347 US$ and electricity cost 0.392 US$/kWh. The CO2 emission from bioethanol was 97,161 kg/y and SO2 emission was 513 kg/y which is much lower than diesel emission. The overall bioethanol production from banana stem and application of electricity generation presented the approach economically favorable and environmentally benign.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3947/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3947/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Wiley Hemal Chowdhury; Ahmad Rashedi; Marc A. Rosen; Taslima Khanam; Sajal Chandra Banik; Sadiq M. Sait; Rahman Saidur; Rahman Saidur; Tamal Chowdhury;AbstractTransportation sector is one of the core parts of modern civilization. Proper utilization of energy and exergy in this sector is necessary to ensure energy loss and environmental sustainability. Increasing exergy efficiency will reduce carbon emissions from this sector. Since 1970, Reistad estimates have been widely used to determine the energy and exergy efficiencies of this sector. However, the modern transport sector has undergone significant changes in recent decades. Hence, it is necessary to apply new Reistad estimates in determining the energy and exergy efficiencies. This is the first study to apply updated Reistad estimates to explore the energy and exergy efficiencies in the transportation sector of Bangladesh based on the data from 2000 to 2017. The overall exergy efficiency is significantly lower than the energy efficiencies as it ranges from 27.7% to 30.0%. Efficiencies are lower as the maximum portion of input exergy is lost to the environment. The road subsector needs major improvements as it is responsible for major amount of exergy loss. A comparison is made between conventional and updated estimates which highlights that the updated estimates provide more accurate results. Thus, it is recommended to apply updated Reistad estimates in determining the energy and exergy efficiencies of the transport sector.
Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Science &... arrow_drop_down Energy Science & EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ese3.896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Kazi Sifatul Islam; Samiul Hasan; Tamal Chowdhury; Hemal Chowdhury; Sadiq M. Sait;doi: 10.3390/su142214965
Climate change and the associated global warming raise the possibility of weather-related natural disasters. Power outages due to natural catastrophes cause substantial financial loss. Moreover, an uninterrupted power supply is essential in disaster-prone areas to continue rescue and other humanitarian activities. Therefore, energy systems must be resilient to withstand power outages due to natural events. Resilience and enhancement techniques, and schemes of integrated electricity and microgrids’ heat demand during power outages, were mainly overlooked in the earlier analysis. Therefore, this analysis aims to analyze a grid-tied microgrid’s survivability during a power outage due to a natural disaster in Texas, USA. Mixed-integer linear programming (MILP) is used to optimize various energy resources, such as PV, battery, grid, and combined heat and power (CHP) for Texas, USA. These technologies were run in an outage condition to observe their resiliency benefits. To determine the resilience performance of the CHP/PV/battery system for the hospital building, a new probabilistic approach was applied. A 24-h outage was simulated in REopt lite software, and this study found that the PV/battery/CHP system could easily withstand the outage. The optimum system consists of 3933 kW of PV, 4441 kWh of storage, and a CHP unit having a capacity of 208 kW. The proposed microgrid emits 79.81% less CO2 than the only grid system. The microgrid has a net benefit of $1,007,204 over the project duration. The introduction of the proposed microgrid will bring about life-cycle savings (LCS) of 37.02 million USD over the project’s lifespan.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142214965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142214965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Hemal Chowdhury; Tamal Chowdhury; Pranta Barua; Nazia Hossain;Abstract During this industrialized era, consumption of high-speed diesel (HSD) is increasing rapidly in the power, transportation, agriculture, and other commercial sectors of Bangladesh, albeit a significant amount of HSD is imported from foreign countries. The fuel mono-dependency on imported HSD demands huge economic investment of any country that consequences a negative impact on the cash flow of the overall economy. This study emphasized the contribution of HSD from petroleum products in significant fields and provided the current scenario of diesel import. Besides fuel issues, the other major environmental concern of Bangladesh is tremendous carbon emission caused by the overuse of diesel that consequences severe environmental pollution. To minimize the investment in imported HSD as well as environmental pollution, an alternative fuel, biodiesel generation, has been proposed in this study. This study also projected the total approximate biodiesel production from chicken skin collected from the whole of Bangladesh. Besides, this study also predicted the possible amount of can be replaced by biodiesel from chicken skin and aimed at the cost reduction due to the replacement of diesel by biodiesel.
Environmental Techno... arrow_drop_down Environmental Technology & InnovationArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eti.2020.101139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Techno... arrow_drop_down Environmental Technology & InnovationArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eti.2020.101139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Tamal Chowdhury; Hemal Chowdhury; Kazi Sifatul Islam; Ayyoob Sharifi; Richard Corkish; Sadiq M. Sait;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Elsevier BV Salman Rahman; Hemal Chowdhury; M.M.K. Bhuiya; Piyal Chowdhury; Samiul Hasan; Samiul Hasan; Tamal Chowdhury;Worldwide, health care sectors are experiencing massive pressure due to the emergence of COVID-19. Many temporary health care centers have been set up to treat infected patients. Increasing energy consumption in these centers is responsible for both rising energy demand and emission. Implementation of renewable energy-based hybrid stone-alone systems can play a vital role in optimizing increasing energy demand. The aim of this analysis is to design a stand-alone system for a temporary health care center located in Saint Martin Island, Bangladesh. This is the first study which highlights the power management of a hospital load. Homer Pro software is used to design the preliminary model, and the proposed configuration comprises PV/Converter/WIND/Battery/Generator. It is observed that the Levelized cost of the proposed system is $0.4688. This system's Levelized cost of energy (LCOE) is 35% lower than the solar home system (SHS). The payback period (PB), rate of investment (ROI), and internal rate of return (IROR) of the optimized system are seven years, 10, and 13%, respectively. The proposed configuration is environmentally sustainable as it generates 27% less CO(2) than a diesel-based fuel system.
Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2021.102346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2021.102346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Monirul Islam Miskat; Protap Sarker; Hemal Chowdhury; Tamal Chowdhury; Md Salman Rahman; Nazia Hossain; Piyal Chowdhury; Sadiq M. Sait;doi: 10.3390/en16031494
Bangladesh is blessed with abundant solar resources. Solar power is considered the most desirable energy source to mitigate the high energy demand of this densely populated country. Although various articles deal with solar energy applications in Bangladesh, no detailed review can be found in the literature. Therefore, in this study, we report on the current scenario of renewable energy in Bangladesh and the most significant potential of solar energy’s contribution among multiple renewable energy resources in mitigating energy demand. One main objective of this analysis was to outline the overall view of solar energy applications in Bangladesh to date, as well as the ongoing development of such projects. The technical and theoretical solar energy potential and the technologies available to harvest solar energy were also investigated. A detailed techno-economic design of solar power applications for the garment industry was also simulated to determine the potential of solar energy for this specific scenario. Additionally, renewable energy policies applied in Bangladesh to date are discussed comprehensively, with an emphasis on various ongoing projects undertaken by the government. Moreover, we elaborate global insight into solar power applications and compare Bangladesh’s current solar power scenario with that of other regions worldwide. Furthermore, the potential of artificial intelligence to accelerate solar energy enhancement is delineated comprehensively. Therefore, in this study, we determined the national scenarios of solar power implementation in Bangladesh and projected the most promising approaches for large-scale solar energy applications using artificial intelligence approaches.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Korean Society of Environmental Engineering Miskat, M; Ahmed, Ashfaq; Rahman, Md Salman; Chowdhury, H; Chowdhury, T; Chowdhury, P; Sait, SM; Park, Y-K;doi: 10.4491/eer.2020.514
Current environmental catastrophes generating from fossil fuel power generation has attracted the attention of energy planners to look for sustainable energy sources. Hydropower is one of the oldest energy sources that have been utilized all over the world to generate electricity, especially in remote areas. Being one of the most densely populated countries, the majority of power demand is fulfilled from fossil fuel. Despite having lots of rivers, Bangladesh has not explored its true potential. So, this paper presents a comprehensive review of the current hydropower potential in Bangladesh. Locations having hydropower potential is evaluated. Different technologies used for hydropower generation have been reviewed. Moreover, global hydropower potential has also been discussed in this study. Based on the economic and environmental study, it is found that small scale hydropower is most feasible in Bangladesh to provide sustainable energy. With a reasonable flow rate, 232 rivers of Bangladesh can be utilized small scale hydropower generation as well as ensuring energy security for remote people. The current study is believed to provide useful information in advancing the generation of hydropower based electricity in Bangladesh.
VU Research Reposito... arrow_drop_down VU Research RepositoryArticle . 2021License: CC BY NCFull-Text: https://vuir.vu.edu.au/43315/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4491/eer.2020.514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert VU Research Reposito... arrow_drop_down VU Research RepositoryArticle . 2021License: CC BY NCFull-Text: https://vuir.vu.edu.au/43315/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4491/eer.2020.514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu