- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 AustraliaPublisher:Oxford University Press (OUP) Zhongmin Dai; Guofei Liu; Huaihai Chen; Chengrong Chen; Jingkuan Wang; Shaoying Ai; Dan Wei; Daming Li; Bin Ma; Caixian Tang; Philip C Brookes; Jianming Xu;Abstract Microorganisms play an important role in soil phosphorus (P) cycling and regulation of P availability in agroecosystems. However, the responses of the functional and ecological traits of P-transformation microorganisms to long-term nutrient inputs are largely unknown. This study used metagenomics to investigate changes in the relative abundance of microbial P-transformation genes at four long-term experimental sites that received various inputs of N and P nutrients (up to 39 years). Long-term P input increased microbial P immobilization by decreasing the relative abundance of the P-starvation response gene (phoR) and increasing that of the low-affinity inorganic phosphate transporter gene (pit). This contrasts with previous findings that low-P conditions facilitate P immobilization in culturable microorganisms in short-term studies. In comparison, long-term nitrogen (N) input significantly decreased soil pH, and consequently decreased the relative abundances of total microbial P-solubilizing genes and the abundances of Actinobacteria, Gammaproteobacteria, and Alphaproteobacteria containing genes coding for alkaline phosphatase, and weakened the connection of relevant key genes. This challenges the concept that microbial P-solubilization capacity is mainly regulated by N:P stoichiometry. It is concluded that long-term N inputs decreased microbial P-solubilizing and mineralizing capacity while P inputs favored microbial immobilization via altering the microbial functional profiles, providing a novel insight into the regulation of P cycling in sustainable agroecosystems from a microbial perspective.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10072/396008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-019-0567-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 437 citations 437 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10072/396008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-019-0567-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 AustraliaPublisher:Springer Science and Business Media LLC Mohammad Bahadori; Chengrong Chen; Stephen Lewis; Juntao Wang; Jupei Shen; Enqing Hou; Mehran Rezaei Rashti; Qiaoyun Huang; Zoe Bainbridge; Tom Stevens;AbstractRiver run-off has long been regarded as the largest source of organic-rich suspended particulate matter (SPM) in the Great Barrier Reef (GBR), contributing to high turbidity, pollutant exposure and increasing vulnerability of coral reef to climate change. However, the terrestrial versus marine origin of the SPM in the GBR is uncertain. Here we provide multiple lines of evidence (13C NMR, isotopic and genetic fingerprints) to unravel that a considerable proportion of the terrestrially-derived SPM is degraded in the riverine and estuarine mixing zones before it is transported further offshore. The fingerprints of SPM in the marine environment were completely different from those of terrestrial origin but more consistent with that formed by marine phytoplankton. This result indicates that the SPM in the GBR may not have terrestrial origin but produced locally in the marine environment, which has significant implications on developing better-targeted management practices for improving water quality in the GBR.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1038/s41467-023-41183-zData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/425835Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-41183-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1038/s41467-023-41183-zData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/425835Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-41183-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Lu Yao; Mehran Rezaei Rashti; Daniel M. Brough; Michele A. Burford; Wenzhi Liu; Guihua Liu; Chengrong Chen;Riparian wetland provides important ecosystem function, such as water filtration and nutrient retention. When land use change in upland from native forest to sugarcane cultivation have important impacts on carbon (C) and nutrient availability in downstream wetland systems. Here, we examined concentrations and stoichiometry of C and nutrients in total, labile, biomass pools in upland soil, riparian wetland and sediment along two distinct transects (sugarcane versus forest). Sugarcane cultivation significantly reduced total C, nitrogen (N), labile C and N in riparian soils by 69%, 62%, 33% and 45%, respectively, but significantly increased NO3--N and δ15N by 99% and 56% in riparian areas. The presence of native forest resulted in significantly higher NH4+-N concentrations in downstream wetlands. Concentrations of microbial biomass C and N were generally lower, but the abundance of genes associated with nitrifiers (ammonia oxidizing bacteria and archaea) was higher in the sugarcane transect than in the forest transect. These significantly differences between two transects could be attributed to different organic inputs and biogeochemical processes associated with the different vegetation types and management practices in the upland systems. Difference in δ13C signature from the two transects further confirmed the significant influence of vegetation type on downstream wetlands. Sugarcane cultivation led to a consistent stoichiometric shift in both resource and microbial biomass towards lower C:P and N:P ratios across upland soils, wetlands and sediment, compared with the forest transect. The average total and microbial biomass C:N:P ratios in soil under sugarcane were 136:9:1 and 180:33:1, respectively. The average total and microbial biomass C:N:P ratios in soil under forest were 410:22:1 and 594:76:1, respectively. It is concluded that since microbial demand of C and nutrients is driven by the stoichiometry of the biomass, which is regulated by the resource stoichiometry, a change of resource induced by upland land use change leads to a shift in the stoichiometry of microbial biomass C, N and P.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2019Full-Text: http://hdl.handle.net/10072/396016Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.134127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2019Full-Text: http://hdl.handle.net/10072/396016Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.134127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Zhou, Xiaoqi; Chen, Chengrong; Wang, Yanfen; Xu, Zhihong; Han, Hongyan; Li, Linghao; Wan, Shiqiang;Few studies have conducted the responses of soil extracellular enzyme activities (EEA) to climate change, especially over the long term. In this study, we investigated the six-year responses of soil EEA to warming and increased precipitation in a temperate grassland of northern China at two depths of 0-10 and 10-20 cm. These extracellular enzymes included carbon-acquisition enzymes (β-glucosidase, BG), nitrogen-acquisition enzymes (N-acetylglucosaminidase, NAG; Leucine aminopeptidase, LAP) and phosphorus-acquisition enzymes (acid and alkaline phosphatases). The results showed that warming significantly increased acid phosphatase at the 0-10 cm depth and NAG at the 10-20 cm depth, but dramatically decreased BG and acid phosphatase in the subsurface. In contrast, increased precipitation significantly increased NAG, LAP and alkaline phosphatase in the surface and NAG, LAP and acid phosphatase in the subsurface. There was a significant warming and increased precipitation interaction on BG in the subsurface. Redundancy analysis indicated that the patterns of EEA were mainly driven by soil pH and NH(4)(+)-N and NO(3)(-)-N in the surface, while by NH(4)(+)-N and microbial biomass in the subsurface. Our results suggested that soil EEA responded differentially to warming and increased precipitation at two depths in this region, which may have implications for carbon and nutrient cycling under climate change.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2012.12.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu126 citations 126 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2012.12.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Enqing Hou; Enqing Hou; Guoyi Zhou; Yiqi Luo; Marijke Heenan; Xiankai Lu; Yuanwen Kuang; Yuguang Zhang; Dazhi Wen; Chengrong Chen;AbstractClimate is predicted to change over the 21st century. However, little is known about how climate change can affect soil phosphorus (P) cycle and availability in global terrestrial ecosystems, where P is a key limiting nutrient. With a global database of Hedley P fractions and key‐associated physiochemical properties of 760 (seminatural) natural soils compiled from 96 published studies, this study evaluated how climate pattern affected soil P cycle and availability in global terrestrial ecosystems. Overall, soil available P, indexed by Hedley labile inorganic P fraction, significantly decreased with increasing mean annual temperature (MAT) and precipitation (MAP). Hypothesis‐oriented path model analysis suggests that MAT negatively affected soil available P mainly by decreasing soil organic P and primary mineral P and increasing soil sand content. MAP negatively affected soil available P both directly and indirectly through decreasing soil primary mineral P; however, these negative effects were offset by the positive effects of MAP on soil organic P and fine soil particles, resulting in a relatively minor total MAP effect on soil available P. As aridity degree was mainly determined by MAP, aridity also had a relatively minor total effect on soil available P. These global patterns generally hold true irrespective of soil depth (≤10 cm or >10 cm) or site aridity index (≤1.0 or >1.0), and were also true for the low‐sand (≤50%) soils. In contrast, available P of the high‐sand (>50%) soils was positively affected by MAT and aridity and negatively affected by MAP. Our results suggest that temperature and precipitation have contrasting effects on soil P availability and can interact with soil particle size to control soil P availability.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/381731Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 257 citations 257 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/381731Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 AustraliaPublisher:Public Library of Science (PLoS) Yanfen Wang; Simeon J. Smaill; Xiaoqi Zhou; Xiaoqi Zhou; Xiaoqi Zhou; Peter W. Clinton; Chengrong Chen;Improved understanding of changes in soil recalcitrant organic carbon (C) in response to global warming is critical for predicting changes in soil organic C (SOC) storage. Here, we took advantage of a long-term field experiment with increased temperature and precipitation to investigate the effects of warming, increased precipitation and their interactions on SOC fraction in a semiarid Inner Mongolian grassland of northern China since April 2005. We quantified labile SOC, recalcitrant SOC and stable SOC at 0-10 and 10-20 cm depths. Results showed that neither warming nor increased precipitation affected total SOC and stable SOC at either depth. Increased precipitation significantly increased labile SOC at the 0-10 cm depth. Warming decreased labile SOC (P = 0.038) and marginally but significantly increased recalcitrant SOC at the 10-20 cm depth (P = 0.082). In addition, there were significant interactive effects of warming and increased precipitation on labile SOC and recalcitrant SOC at the 0-10 cm depth (both P<0.05), indicating that that results from single factor experiments should be treated with caution because of multi-factor interactions. Given that the absolute increase of SOC in the recalcitrant SOC pool was much greater than the decrease in labile SOC, and that the mean residence time of recalcitrant SOC is much greater, our results suggest that soil C storage at 10-20 cm depth may increase with increasing temperature in this semiarid grassland.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10072/56404Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0053761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10072/56404Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0053761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Yiming Jing; Yangzhou Xiang; Qi Deng; Chengrong Chen; Renduo Zhang; Leiyi Zhang; Leiyi Zhang; Mehran Rezaei Rashti; Yantao Li;doi: 10.1111/gcbb.12898
handle: 10072/408760
AbstractBiochar application can influence soil nitrogen (N) cycle through biological and abiotic processes. However, studies on comprehensive examination of the effects of biochar application on microbially mediated N‐cycling processes (N mineralization, nitrification, denitrification, and fixation) and soil N fate (i.e., plant N uptake, soil N2O emission, and N leaching) are warranted. Therefore, the aim of this study was to examine the effects of biochar application on soil N transformation, microbial functional gene abundance, enzyme activity, and plant N uptake. To achieve the objective of this study, a meta‐analysis involving 131 peer‐reviewed field experiments was conducted. Results showed that field application of biochar significantly enhanced soil and content, N mineralization, nitrification, N2 fixation, and plant N uptake by 5.3%, 3.7%, 15.3%, 48.5%, 14.7%, and 18.3%, respectively, but reduced N2O emissions and N leaching by 14.9% and 10.9%, respectively. Biochar application also increased the abundance of soil denitrifying/nitrifying genes (amoA, narG, nirS/nirK+S, and nosZ), proportion of N2 fixation bacteria, and N‐acetyl‐glucosaminidase activity by 18.6%–87.6%. Soil content was positively correlated with AOA‐amoA abundance, and soil N2O emission was positively correlated with the relative abundance of genes (e.g., amoA, narG, and nirS/nirK) involved in N2O production. Furthermore, long‐term biochar application tended to increase AOB‐amoA and nirK+S abundance, especially soil N2O emission and N leaching. Overall, the findings of this study indicated that biochar application accelerated microbially mediated N‐cycling processes under field conditions, thereby enhancing soil N availability and plant productivity. However, long‐term biochar application may increase N losses. Therefore, future studies should be conducted to examine the effect of long‐term biochar application on the soil N cycle and the underlying microbial mechanisms.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/408760Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 85 citations 85 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/408760Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Authors: Hanzhi Zhang; Chengrong Chen; Evan M. Gray; Sue E. Boyd;handle: 10072/346677
Abstract The aim of this study was to systemically evaluate how feedstock characteristics and temperature influence biochar evolution during pyrolysis and to establish their relationships with biochar potential for soil amendments. We produced four biochar thermosequences from oak, pine, sugarcane and peanut shell at twelve temperatures (350–900 °C), and characterised them by yield, proximate analysis, elemental analysis, pH, electrical conductivity (EC) and carbon (C) functional groups using FTIR and solid-state 13C CPMAS NMR spectroscopy, along with principal component and cluster analyses. The results showed that not all biochar properties changed consistently with increasing pyrolysis temperature during slow pyrolysis. The significant increase in biochar pH with increasing pyrolysis temperature, was only observed between 350 and 500 °C (p
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu203 citations 203 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Springer Science and Business Media LLC Zhongming Lan; Xiaoqi Zhou; Xiaoqi Zhou; Gary Bacon; Haibo Dong; Chengrong Chen; Yanbin Hao;Few studies have focused on the effects of long-term forest plantations on the soil profile of carbon (C) and nitrogen (N) stocks. In this study, we selected 78-year-old tree plantations that included three coniferous tree species (i.e., slash pine, hoop pine and kauri pine) and a Eucalyptus species in subtropical Australia. We measured soil extractable organic C (EOC) and N (EON) contents and total C and N stocks under different tree species on the forest floor and along a soil profile to 100 cm depth. The results showed that Eucalyptus had significantly higher soil EOC contents (3.3 Mg ha-1) than the other tree species (EOC of 1.9-2.3 Mg ha-1) and had significantly higher EON (156 kg ha-1) contents than slash pine (107 kg ha-1). Eucalyptus had significantly higher soil C (58.9 Mg ha-1) and N (2.03 Mg ha-1) stocks than the other tree species (22.3-27.6 Mg C ha-1 and 0.71-1.23 Mg N ha-1) at 0-100 cm depth. There were no differences in soil C stocks at the 0-100 cm depth among the coniferous tree species. Forest floor C stocks had stronger effects on mineral soil total N stocks than fine root biomass, whereas fine root biomass exerted stronger effects on soil total C stocks at the 0-100 cm depth than forest floor C and N stocks. Our results addressed large differences in soil C and N stocks under different tree species, which can provide useful information for local forest management practices in this region.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-9900-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-9900-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP100200135Guijun Yan; Chengrong Chen; Jian Wang; Jian Wang; Zhihong Xu; Frédérique Reverchon; Dongke Zhang; Hong Yang; Thian Yuan Ho;Mining activities result in extensive soil degradation by removing the top soil, disturbing soil structure and altering microbial communities. Rehabilitation of spent mine sites through revegetation thus requires proper soil amendments. In this study, a pot trial was conducted to investigate the effects of a jarrah biochar on the growth and nutrient status of a native legume, Acacia tetragonophylla, grown in a mixture of topsoil and mine rejects. Two biochar application rates (37 and 74 t ha(-1)) and two types of biochar, namely nutrient-enriched and non-enriched, were tested. We measured the soil pH and electrical conductivity, the carbon (C) and nitrogen (N) contents and C and N isotope composition (δ(13)C and δ(15)N) of soil and plants, the foliar phosphorus content and the growth and leaf biomass of the plants. Whilst no significant effect of biochar was observed on plant growth, biochar amendment affected soil properties and plant nutritional status. The highest rate of biochar application increased soil pH, C content and C/N ratio, and decreased soil δ(13)C. Biochar application also enhanced photosynthetic N use efficiency, as showed by the increase in foliar C/N ratio, and biological N fixation rates, as indicated by foliar δ(15)N. These positive effects were not observed when biochar was nutrient-enriched due to the associated increase in soil N. Revegetation of mine sites with acacia in combination with biochar amendment constitutes a plausible alternative to the wide use of N fertiliser through the supply of additional N to the system, even though other nutrients may be required in order to enhance plant early growth.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2015Full-Text: http://hdl.handle.net/10072/101282Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science and Pollution ResearchArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-014-3451-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2015Full-Text: http://hdl.handle.net/10072/101282Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science and Pollution ResearchArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-014-3451-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 AustraliaPublisher:Oxford University Press (OUP) Zhongmin Dai; Guofei Liu; Huaihai Chen; Chengrong Chen; Jingkuan Wang; Shaoying Ai; Dan Wei; Daming Li; Bin Ma; Caixian Tang; Philip C Brookes; Jianming Xu;Abstract Microorganisms play an important role in soil phosphorus (P) cycling and regulation of P availability in agroecosystems. However, the responses of the functional and ecological traits of P-transformation microorganisms to long-term nutrient inputs are largely unknown. This study used metagenomics to investigate changes in the relative abundance of microbial P-transformation genes at four long-term experimental sites that received various inputs of N and P nutrients (up to 39 years). Long-term P input increased microbial P immobilization by decreasing the relative abundance of the P-starvation response gene (phoR) and increasing that of the low-affinity inorganic phosphate transporter gene (pit). This contrasts with previous findings that low-P conditions facilitate P immobilization in culturable microorganisms in short-term studies. In comparison, long-term nitrogen (N) input significantly decreased soil pH, and consequently decreased the relative abundances of total microbial P-solubilizing genes and the abundances of Actinobacteria, Gammaproteobacteria, and Alphaproteobacteria containing genes coding for alkaline phosphatase, and weakened the connection of relevant key genes. This challenges the concept that microbial P-solubilization capacity is mainly regulated by N:P stoichiometry. It is concluded that long-term N inputs decreased microbial P-solubilizing and mineralizing capacity while P inputs favored microbial immobilization via altering the microbial functional profiles, providing a novel insight into the regulation of P cycling in sustainable agroecosystems from a microbial perspective.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10072/396008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-019-0567-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 437 citations 437 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10072/396008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-019-0567-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 AustraliaPublisher:Springer Science and Business Media LLC Mohammad Bahadori; Chengrong Chen; Stephen Lewis; Juntao Wang; Jupei Shen; Enqing Hou; Mehran Rezaei Rashti; Qiaoyun Huang; Zoe Bainbridge; Tom Stevens;AbstractRiver run-off has long been regarded as the largest source of organic-rich suspended particulate matter (SPM) in the Great Barrier Reef (GBR), contributing to high turbidity, pollutant exposure and increasing vulnerability of coral reef to climate change. However, the terrestrial versus marine origin of the SPM in the GBR is uncertain. Here we provide multiple lines of evidence (13C NMR, isotopic and genetic fingerprints) to unravel that a considerable proportion of the terrestrially-derived SPM is degraded in the riverine and estuarine mixing zones before it is transported further offshore. The fingerprints of SPM in the marine environment were completely different from those of terrestrial origin but more consistent with that formed by marine phytoplankton. This result indicates that the SPM in the GBR may not have terrestrial origin but produced locally in the marine environment, which has significant implications on developing better-targeted management practices for improving water quality in the GBR.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1038/s41467-023-41183-zData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/425835Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-41183-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2023Full-Text: https://doi.org/10.1038/s41467-023-41183-zData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/425835Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-41183-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Lu Yao; Mehran Rezaei Rashti; Daniel M. Brough; Michele A. Burford; Wenzhi Liu; Guihua Liu; Chengrong Chen;Riparian wetland provides important ecosystem function, such as water filtration and nutrient retention. When land use change in upland from native forest to sugarcane cultivation have important impacts on carbon (C) and nutrient availability in downstream wetland systems. Here, we examined concentrations and stoichiometry of C and nutrients in total, labile, biomass pools in upland soil, riparian wetland and sediment along two distinct transects (sugarcane versus forest). Sugarcane cultivation significantly reduced total C, nitrogen (N), labile C and N in riparian soils by 69%, 62%, 33% and 45%, respectively, but significantly increased NO3--N and δ15N by 99% and 56% in riparian areas. The presence of native forest resulted in significantly higher NH4+-N concentrations in downstream wetlands. Concentrations of microbial biomass C and N were generally lower, but the abundance of genes associated with nitrifiers (ammonia oxidizing bacteria and archaea) was higher in the sugarcane transect than in the forest transect. These significantly differences between two transects could be attributed to different organic inputs and biogeochemical processes associated with the different vegetation types and management practices in the upland systems. Difference in δ13C signature from the two transects further confirmed the significant influence of vegetation type on downstream wetlands. Sugarcane cultivation led to a consistent stoichiometric shift in both resource and microbial biomass towards lower C:P and N:P ratios across upland soils, wetlands and sediment, compared with the forest transect. The average total and microbial biomass C:N:P ratios in soil under sugarcane were 136:9:1 and 180:33:1, respectively. The average total and microbial biomass C:N:P ratios in soil under forest were 410:22:1 and 594:76:1, respectively. It is concluded that since microbial demand of C and nutrients is driven by the stoichiometry of the biomass, which is regulated by the resource stoichiometry, a change of resource induced by upland land use change leads to a shift in the stoichiometry of microbial biomass C, N and P.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2019Full-Text: http://hdl.handle.net/10072/396016Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.134127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2019Full-Text: http://hdl.handle.net/10072/396016Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.134127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Zhou, Xiaoqi; Chen, Chengrong; Wang, Yanfen; Xu, Zhihong; Han, Hongyan; Li, Linghao; Wan, Shiqiang;Few studies have conducted the responses of soil extracellular enzyme activities (EEA) to climate change, especially over the long term. In this study, we investigated the six-year responses of soil EEA to warming and increased precipitation in a temperate grassland of northern China at two depths of 0-10 and 10-20 cm. These extracellular enzymes included carbon-acquisition enzymes (β-glucosidase, BG), nitrogen-acquisition enzymes (N-acetylglucosaminidase, NAG; Leucine aminopeptidase, LAP) and phosphorus-acquisition enzymes (acid and alkaline phosphatases). The results showed that warming significantly increased acid phosphatase at the 0-10 cm depth and NAG at the 10-20 cm depth, but dramatically decreased BG and acid phosphatase in the subsurface. In contrast, increased precipitation significantly increased NAG, LAP and alkaline phosphatase in the surface and NAG, LAP and acid phosphatase in the subsurface. There was a significant warming and increased precipitation interaction on BG in the subsurface. Redundancy analysis indicated that the patterns of EEA were mainly driven by soil pH and NH(4)(+)-N and NO(3)(-)-N in the surface, while by NH(4)(+)-N and microbial biomass in the subsurface. Our results suggested that soil EEA responded differentially to warming and increased precipitation at two depths in this region, which may have implications for carbon and nutrient cycling under climate change.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2012.12.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu126 citations 126 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2012.12.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Enqing Hou; Enqing Hou; Guoyi Zhou; Yiqi Luo; Marijke Heenan; Xiankai Lu; Yuanwen Kuang; Yuguang Zhang; Dazhi Wen; Chengrong Chen;AbstractClimate is predicted to change over the 21st century. However, little is known about how climate change can affect soil phosphorus (P) cycle and availability in global terrestrial ecosystems, where P is a key limiting nutrient. With a global database of Hedley P fractions and key‐associated physiochemical properties of 760 (seminatural) natural soils compiled from 96 published studies, this study evaluated how climate pattern affected soil P cycle and availability in global terrestrial ecosystems. Overall, soil available P, indexed by Hedley labile inorganic P fraction, significantly decreased with increasing mean annual temperature (MAT) and precipitation (MAP). Hypothesis‐oriented path model analysis suggests that MAT negatively affected soil available P mainly by decreasing soil organic P and primary mineral P and increasing soil sand content. MAP negatively affected soil available P both directly and indirectly through decreasing soil primary mineral P; however, these negative effects were offset by the positive effects of MAP on soil organic P and fine soil particles, resulting in a relatively minor total MAP effect on soil available P. As aridity degree was mainly determined by MAP, aridity also had a relatively minor total effect on soil available P. These global patterns generally hold true irrespective of soil depth (≤10 cm or >10 cm) or site aridity index (≤1.0 or >1.0), and were also true for the low‐sand (≤50%) soils. In contrast, available P of the high‐sand (>50%) soils was positively affected by MAT and aridity and negatively affected by MAP. Our results suggest that temperature and precipitation have contrasting effects on soil P availability and can interact with soil particle size to control soil P availability.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/381731Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 257 citations 257 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/381731Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 AustraliaPublisher:Public Library of Science (PLoS) Yanfen Wang; Simeon J. Smaill; Xiaoqi Zhou; Xiaoqi Zhou; Xiaoqi Zhou; Peter W. Clinton; Chengrong Chen;Improved understanding of changes in soil recalcitrant organic carbon (C) in response to global warming is critical for predicting changes in soil organic C (SOC) storage. Here, we took advantage of a long-term field experiment with increased temperature and precipitation to investigate the effects of warming, increased precipitation and their interactions on SOC fraction in a semiarid Inner Mongolian grassland of northern China since April 2005. We quantified labile SOC, recalcitrant SOC and stable SOC at 0-10 and 10-20 cm depths. Results showed that neither warming nor increased precipitation affected total SOC and stable SOC at either depth. Increased precipitation significantly increased labile SOC at the 0-10 cm depth. Warming decreased labile SOC (P = 0.038) and marginally but significantly increased recalcitrant SOC at the 10-20 cm depth (P = 0.082). In addition, there were significant interactive effects of warming and increased precipitation on labile SOC and recalcitrant SOC at the 0-10 cm depth (both P<0.05), indicating that that results from single factor experiments should be treated with caution because of multi-factor interactions. Given that the absolute increase of SOC in the recalcitrant SOC pool was much greater than the decrease in labile SOC, and that the mean residence time of recalcitrant SOC is much greater, our results suggest that soil C storage at 10-20 cm depth may increase with increasing temperature in this semiarid grassland.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10072/56404Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0053761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/10072/56404Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0053761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Yiming Jing; Yangzhou Xiang; Qi Deng; Chengrong Chen; Renduo Zhang; Leiyi Zhang; Leiyi Zhang; Mehran Rezaei Rashti; Yantao Li;doi: 10.1111/gcbb.12898
handle: 10072/408760
AbstractBiochar application can influence soil nitrogen (N) cycle through biological and abiotic processes. However, studies on comprehensive examination of the effects of biochar application on microbially mediated N‐cycling processes (N mineralization, nitrification, denitrification, and fixation) and soil N fate (i.e., plant N uptake, soil N2O emission, and N leaching) are warranted. Therefore, the aim of this study was to examine the effects of biochar application on soil N transformation, microbial functional gene abundance, enzyme activity, and plant N uptake. To achieve the objective of this study, a meta‐analysis involving 131 peer‐reviewed field experiments was conducted. Results showed that field application of biochar significantly enhanced soil and content, N mineralization, nitrification, N2 fixation, and plant N uptake by 5.3%, 3.7%, 15.3%, 48.5%, 14.7%, and 18.3%, respectively, but reduced N2O emissions and N leaching by 14.9% and 10.9%, respectively. Biochar application also increased the abundance of soil denitrifying/nitrifying genes (amoA, narG, nirS/nirK+S, and nosZ), proportion of N2 fixation bacteria, and N‐acetyl‐glucosaminidase activity by 18.6%–87.6%. Soil content was positively correlated with AOA‐amoA abundance, and soil N2O emission was positively correlated with the relative abundance of genes (e.g., amoA, narG, and nirS/nirK) involved in N2O production. Furthermore, long‐term biochar application tended to increase AOB‐amoA and nirK+S abundance, especially soil N2O emission and N leaching. Overall, the findings of this study indicated that biochar application accelerated microbially mediated N‐cycling processes under field conditions, thereby enhancing soil N availability and plant productivity. However, long‐term biochar application may increase N losses. Therefore, future studies should be conducted to examine the effect of long‐term biochar application on the soil N cycle and the underlying microbial mechanisms.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/408760Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 85 citations 85 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10072/408760Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Authors: Hanzhi Zhang; Chengrong Chen; Evan M. Gray; Sue E. Boyd;handle: 10072/346677
Abstract The aim of this study was to systemically evaluate how feedstock characteristics and temperature influence biochar evolution during pyrolysis and to establish their relationships with biochar potential for soil amendments. We produced four biochar thermosequences from oak, pine, sugarcane and peanut shell at twelve temperatures (350–900 °C), and characterised them by yield, proximate analysis, elemental analysis, pH, electrical conductivity (EC) and carbon (C) functional groups using FTIR and solid-state 13C CPMAS NMR spectroscopy, along with principal component and cluster analyses. The results showed that not all biochar properties changed consistently with increasing pyrolysis temperature during slow pyrolysis. The significant increase in biochar pH with increasing pyrolysis temperature, was only observed between 350 and 500 °C (p
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu203 citations 203 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Springer Science and Business Media LLC Zhongming Lan; Xiaoqi Zhou; Xiaoqi Zhou; Gary Bacon; Haibo Dong; Chengrong Chen; Yanbin Hao;Few studies have focused on the effects of long-term forest plantations on the soil profile of carbon (C) and nitrogen (N) stocks. In this study, we selected 78-year-old tree plantations that included three coniferous tree species (i.e., slash pine, hoop pine and kauri pine) and a Eucalyptus species in subtropical Australia. We measured soil extractable organic C (EOC) and N (EON) contents and total C and N stocks under different tree species on the forest floor and along a soil profile to 100 cm depth. The results showed that Eucalyptus had significantly higher soil EOC contents (3.3 Mg ha-1) than the other tree species (EOC of 1.9-2.3 Mg ha-1) and had significantly higher EON (156 kg ha-1) contents than slash pine (107 kg ha-1). Eucalyptus had significantly higher soil C (58.9 Mg ha-1) and N (2.03 Mg ha-1) stocks than the other tree species (22.3-27.6 Mg C ha-1 and 0.71-1.23 Mg N ha-1) at 0-100 cm depth. There were no differences in soil C stocks at the 0-100 cm depth among the coniferous tree species. Forest floor C stocks had stronger effects on mineral soil total N stocks than fine root biomass, whereas fine root biomass exerted stronger effects on soil total C stocks at the 0-100 cm depth than forest floor C and N stocks. Our results addressed large differences in soil C and N stocks under different tree species, which can provide useful information for local forest management practices in this region.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-9900-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-9900-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP100200135Guijun Yan; Chengrong Chen; Jian Wang; Jian Wang; Zhihong Xu; Frédérique Reverchon; Dongke Zhang; Hong Yang; Thian Yuan Ho;Mining activities result in extensive soil degradation by removing the top soil, disturbing soil structure and altering microbial communities. Rehabilitation of spent mine sites through revegetation thus requires proper soil amendments. In this study, a pot trial was conducted to investigate the effects of a jarrah biochar on the growth and nutrient status of a native legume, Acacia tetragonophylla, grown in a mixture of topsoil and mine rejects. Two biochar application rates (37 and 74 t ha(-1)) and two types of biochar, namely nutrient-enriched and non-enriched, were tested. We measured the soil pH and electrical conductivity, the carbon (C) and nitrogen (N) contents and C and N isotope composition (δ(13)C and δ(15)N) of soil and plants, the foliar phosphorus content and the growth and leaf biomass of the plants. Whilst no significant effect of biochar was observed on plant growth, biochar amendment affected soil properties and plant nutritional status. The highest rate of biochar application increased soil pH, C content and C/N ratio, and decreased soil δ(13)C. Biochar application also enhanced photosynthetic N use efficiency, as showed by the increase in foliar C/N ratio, and biological N fixation rates, as indicated by foliar δ(15)N. These positive effects were not observed when biochar was nutrient-enriched due to the associated increase in soil N. Revegetation of mine sites with acacia in combination with biochar amendment constitutes a plausible alternative to the wide use of N fertiliser through the supply of additional N to the system, even though other nutrients may be required in order to enhance plant early growth.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2015Full-Text: http://hdl.handle.net/10072/101282Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science and Pollution ResearchArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-014-3451-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2015Full-Text: http://hdl.handle.net/10072/101282Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science and Pollution ResearchArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-014-3451-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu