Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Change Biology
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems

Authors: Enqing Hou; Enqing Hou; Guoyi Zhou; Yiqi Luo; Marijke Heenan; Xiankai Lu; Yuanwen Kuang; +3 Authors

Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems

Abstract

AbstractClimate is predicted to change over the 21st century. However, little is known about how climate change can affect soil phosphorus (P) cycle and availability in global terrestrial ecosystems, where P is a key limiting nutrient. With a global database of Hedley P fractions and key‐associated physiochemical properties of 760 (seminatural) natural soils compiled from 96 published studies, this study evaluated how climate pattern affected soil P cycle and availability in global terrestrial ecosystems. Overall, soil available P, indexed by Hedley labile inorganic P fraction, significantly decreased with increasing mean annual temperature (MAT) and precipitation (MAP). Hypothesis‐oriented path model analysis suggests that MAT negatively affected soil available P mainly by decreasing soil organic P and primary mineral P and increasing soil sand content. MAP negatively affected soil available P both directly and indirectly through decreasing soil primary mineral P; however, these negative effects were offset by the positive effects of MAP on soil organic P and fine soil particles, resulting in a relatively minor total MAP effect on soil available P. As aridity degree was mainly determined by MAP, aridity also had a relatively minor total effect on soil available P. These global patterns generally hold true irrespective of soil depth (≤10 cm or >10 cm) or site aridity index (≤1.0 or >1.0), and were also true for the low‐sand (≤50%) soils. In contrast, available P of the high‐sand (>50%) soils was positively affected by MAT and aridity and negatively affected by MAP. Our results suggest that temperature and precipitation have contrasting effects on soil P availability and can interact with soil particle size to control soil P availability.

Country
Australia
Related Organizations
Keywords

Climate, Climate Change, Rain, Temperature, Humidity, Phosphorus, Models, Theoretical, Environmental sciences, Biological sciences, Soil, Other biological sciences not elsewhere classified, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    257
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
257
Top 0.1%
Top 10%
Top 1%
Green
hybrid