- home
- Advanced Search
- Energy Research
- 2016-2025
- Energy Research
- 2016-2025
description Publicationkeyboard_double_arrow_right Article , Journal 2019 Spain, Netherlands, Netherlands, Netherlands, ItalyPublisher:Elsevier BV Funded by:EC | DEMOYS, EC | ASCENTEC| DEMOYS ,EC| ASCENTAuthors: M. Martini;Matteo Carmelo Romano;
Leonardo Riva;Matteo Carmelo Romano
Matteo Carmelo Romano in OpenAIREM. van Sint Annaland;
+3 AuthorsM. van Sint Annaland
M. van Sint Annaland in OpenAIREM. Martini;Matteo Carmelo Romano;
Leonardo Riva;Matteo Carmelo Romano
Matteo Carmelo Romano in OpenAIREM. van Sint Annaland;
M. van Sint Annaland
M. van Sint Annaland in OpenAIREIsabel Martínez;
Isabel Martínez;Isabel Martínez
Isabel Martínez in OpenAIREFausto Gallucci;
Fausto Gallucci
Fausto Gallucci in OpenAIREhandle: 10261/183817 , 11311/1078430
A techno-economic analysis of a natural gas combined cycle integrated with a pre-combustion CO2 capture process based on the Ca-Cu process has been carried out. An extensive calculation of the balances of the entire power plant has been done, including the results obtained from a 1-D pseudo homogeneous model for the fixed bed reactors that compose the Ca-Cu process. Moreover, a methodology developed by the authors is here presented for calculating the cost of the electricity produced and of the CO2 avoided. This methodology has been used to perform the economic analysis of the Ca-Cu based power plant and to optimize the size of the Ca-Cu reactors and the pressure drop in critical heat exchangers. An electricity cost of 82.6 €/MWh has been obtained for the Ca-Cu based power plant, which is 2.2 €/MWh below the benchmark power plant based on an Auto Thermal Reformer with an MDEA absorption process for CO2 capture. The improved performance of the Ca-Cu based power plant in terms of electric efficiency and reduced capital cost expenditure is the reason for the reduced electricity costs. Moreover, a lower cost of CO2 avoided is also obtained for the Ca-Cu plant with respect to the benchmark (80.75 €/tCO2 vs. 85.38 €/tCO2), which features 89% of CO2 capture efficiency.
International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 45visibility views 45 download downloads 80 Powered bymore_vert International Journa... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Greenhouse Gas ControlArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Netherlands, Spain, Netherlands, NetherlandsPublisher:Elsevier BV Funded by:EC | HyGridEC| HyGridAuthors: Nordio, Maria; Melendez, Jon;van Sint Annaland, Martin;
van Sint Annaland, Martin
van Sint Annaland, Martin in OpenAIREPacheco Tanaka, D. Alfredo;
+2 AuthorsPacheco Tanaka, D. Alfredo
Pacheco Tanaka, D. Alfredo in OpenAIRENordio, Maria; Melendez, Jon;van Sint Annaland, Martin;
van Sint Annaland, Martin
van Sint Annaland, Martin in OpenAIREPacheco Tanaka, D. Alfredo;
Pacheco Tanaka, D. Alfredo
Pacheco Tanaka, D. Alfredo in OpenAIRELlosa Tanco, Margot;
Llosa Tanco, Margot
Llosa Tanco, Margot in OpenAIREGallucci, Fausto;
Gallucci, Fausto
Gallucci, Fausto in OpenAIREFrom a permeability and selectivity perspective, supported thin-film Pd–Ag membranes are the best candidates for high-purity hydrogen recovery for methane-hydrogen mixtures from the natural gas grid. However, the high hydrogen flux also results in induced bulk-to-membrane mass transfer limitations (concentration polarization) especially when working at low hydrogen concentration and high pressure, which further reduces the hydrogen permeance in the presence of mixtures. Additionally, Pd is a precious metal and its price is lately increasing dramatically. The use of inexpensive CMSM could become a promising alternative. In this manuscript, a detailed comparison between these two membrane technologies, operating under the same working pressure and mixtures, is presented. First, the permeation properties of CMSM and Pd–Ag membranes are compared in terms of permeance and purity, and subsequently, making use of this experimental investigation, an economic evaluation including capital and variable costs has been performed for a separation system to recover 25 kg/day of hydrogen from a methane-hydrogen mixture. To widen the perspective, also a sensitivity analysis by changing the pressure difference, membrane lifetime, membrane support cost and cost of Pd/Ag membrane recovery has been considered. The results show that at high pressure the use of CMSM is to more economic than the Pd-based membranes at the same recovery and similar purity.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.07.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Hydrogen EnergyArticle . 2020Data sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2020.07.191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Netherlands, Spain, Netherlands, NetherlandsPublisher:Elsevier BV Funded by:EC | ASCENTEC| ASCENTAuthors: L. Díez-Martín; G. Grasa;R. Murillo;
M. Martini; +2 AuthorsR. Murillo
R. Murillo in OpenAIREL. Díez-Martín; G. Grasa;R. Murillo;
M. Martini;R. Murillo
R. Murillo in OpenAIREF. Gallucci;
F. Gallucci
F. Gallucci in OpenAIREM. van Sint Annaland;
M. van Sint Annaland
M. van Sint Annaland in OpenAIREhandle: 10261/163868
In this work, the oxidation reaction of high loaded CuO-based materials was investigated under atmospheric and pressurized conditions. The oxygen transport capacity of the materials was firstly tested in the TGA and no losses greater than 5% were observed along 100 oxidation/reduction cycles. The kinetic parameters governing the oxidation reactions of the selected CuO-based materials were determined using a shrinking core model with chemical reaction control. The experimental results suggested that a SCM with chemical reaction control is able to predict the oxidation conversion of high loaded CuO-based materials in powder and pellet form. On the other hand, the effect of total pressure on materials reactivity was analyzed. The kinetic parameters obtained under atmospheric conditions were applied to fit the experimental data obtained under pressurized conditions. The results confirmed that the pressure has not an important effect on the oxidation kinetics of high loaded CuO-based materials and the parameters obtained at atmospheric pressure can be applied to study the oxidation under pressurized conditions.
Fuel arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFuelArticle . 2018License: taverneData sources: Eindhoven University of Technology Research Portalhttp://dx.doi.org/10.1016/j.fu...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.01.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 42visibility views 42 download downloads 108 Powered bymore_vert Fuel arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFuelArticle . 2018License: taverneData sources: Eindhoven University of Technology Research Portalhttp://dx.doi.org/10.1016/j.fu...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2018.01.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 NetherlandsPublisher:Elsevier BV Authors:M. van Sint Annaland;
I. Campos Velarde;M. van Sint Annaland
M. van Sint Annaland in OpenAIREFausto Gallucci;
Fausto Gallucci
Fausto Gallucci in OpenAIREAbstract To enable the investigation of the hydrodynamics of gas–solid fluidized bed reactors at high-temperatures and reactive conditions, a new non-invasive experimental technique has been developed, based on the extension of Particle Image Velocimetry (PIV) coupled with Digital Image Analysis (DIA) using dedicated high-temperature endoscopes for image recording and laser illumination. The new endoscopic-laser PIV/DIA technique (ePIV/DIA) allows to determine simultaneously information from the emulsion and bubble phase with high spatial and temporal resolution in a pseudo-2D columns. The ePIV/DIA technique with single-source laser illumination has first been thoroughly validated at cold-flow conditions by comparison with a standard PIV/DIA technique with LED-illumination, showing very good agreement of the results in terms of particle velocity and solids mass flux profiles. The technique has subsequently been applied to fluidized beds in the bubbling fluidization regime at elevated temperatures to demonstrate its unique possibilities to measure detailed bed hydrodynamics at elevated temperatures.
Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 2016License: taverneData sources: Eindhoven University of Technology Research PortalChemical Engineering ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2016.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 2016License: taverneData sources: Eindhoven University of Technology Research PortalChemical Engineering ScienceArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2016.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 NetherlandsPublisher:Elsevier BV Authors:Sara Najari;
Sara Najari
Sara Najari in OpenAIREGyula Gróf;
Gyula Gróf
Gyula Gróf in OpenAIRESamrand Saeidi;
Samrand Saeidi
Samrand Saeidi in OpenAIREFausto Gallucci;
Fausto Gallucci
Fausto Gallucci in OpenAIREGlobal warming, climate change, fossil fuel depletion and steep hikes in the price of environmentally friendly hydrocarbons motivate researchers to investigate CO2 hydrogenation for hydrocarbons production. However, due to the reaction complexities and varieties of produced species, the process mechanism and subsequently estimation of the kinetic parameters have been controversial yet. Therefore, estimating the kinetic parameters using Artificial Bee Colony (ABC) and Differential Evolution (DE) optimization algorithms based on Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism is proposed as a possible remedy to fulfil the requirements. To this end, a one-dimensional heterogeneous model comprising detailed reaction rates of reverse water gas shift (RWGS), Fisher-Tropsch (FT) reactions and direct hydrogenation (DH) of CO2 is developed. It is observed that ABC exhibiting 6.3% error in predicting total hydrocarbons selectivity is superior to DE algorithm with 32.9% error. Therefore, the model employed the estimated kinetic parameters obtained via ABC algorithm, is exploited for products distribution analysis. Results reveal that maximum 73.21% hydrocarbons (C1–C4) selectivity can be achieved at 573 K and 1 MPa with 0.85% error compared to the experimental value of 72.59%. Accordingly, the proposed model can be exploited as a powerful tool for evaluating and predicting the performance of CO2 hydrogenation to hydrocarbons process.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Italy, NetherlandsPublisher:Elsevier BV Funded by:EC | ASCENTEC| ASCENTAuthors: Martini, Michela; Martãnez, Isabel;Gallucci, Fausto;
Gallucci, Fausto
Gallucci, Fausto in OpenAIRERomano, Matteo C.;
+2 AuthorsRomano, Matteo C.
Romano, Matteo C. in OpenAIREMartini, Michela; Martãnez, Isabel;Gallucci, Fausto;
Gallucci, Fausto
Gallucci, Fausto in OpenAIRERomano, Matteo C.;
Romano, Matteo C.
Romano, Matteo C. in OpenAIREChiesa, Paolo;
Chiesa, Paolo
Chiesa, Paolo in OpenAIREVan Sint Annaland, Martin;
Van Sint Annaland, Martin
Van Sint Annaland, Martin in OpenAIREhandle: 11311/1036736
This work investigates the full process design of a natural gas combined cycle integrated with a packed-bed reactor system where a hydrogen rich gas is produced with inherent CO2 capture based of the CaO/CaCO3 and Cu/CuO chemical loops. The different stages of this Ca-Cu process were modelled with a dynamic 1D pseudo-homogeneous model, proposing a novel reactor configuration allowing to achieve carbon capture efficiency close to 90%. Process simulations of the whole power plant resulted in electric efficiencies of around 48%LHV and SPECCA of 4.7 MJ/kgCO2.
RE.PUBLIC@POLIMI Res... arrow_drop_down Energy ProcediaArticle . 2017License: CC BY NC NDData sources: Eindhoven University of Technology Research Portalhttp://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Energy ProcediaArticle . 2017License: CC BY NC NDData sources: Eindhoven University of Technology Research Portalhttp://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 NetherlandsPublisher:Elsevier BV Authors:Samrand Saeidi;
Hamid Reza Shahhosseini;Samrand Saeidi
Samrand Saeidi in OpenAIREFausto Gallucci;
Fausto Gallucci
Fausto Gallucci in OpenAIRESara Najari;
Sara Najari
Sara Najari in OpenAIREAuto-thermal reforming (ATR), a combination of exothermic partial oxidation and endothermic steam reforming of methane, is an important process to produce syngas for petrochemical industries. In a commercial ATR unit, tubular fixed bed reactors are typically used. Pressure drop across the tube, high manufacturing costs, and low production capacity are some disadvantages of these reactors. The main propose of this study is to offer an optimized radial flow, spherical packed bed reactor as a promising alternative for overcoming the drawbacks of conventional tubular reactors. In the current research, a one dimensional pseudo-homogeneous model based on mass, energy, and momentum balances is applied to simulate the performance of packed-bed reactors for the production of syngas in both tubular and spherical reactors. In the optimization section, the proposed work explores optimal values of various decision variables that simultaneously maximize outlet molar flow rate of H2, CO and minimize molar flow rate of CO2 from novel spherical reactor. The multi-objective model is transformed to a single objective optimization problem by weighted sum method and the single optimum point is found by using genetic algorithm. The optimization results show that the pressure drop in the spherical reactor is negligible in comparison to that of the conventional tubular reactor. Therefore, it is inferred that the spherical reactor can operate with much higher feed flow rate, more catalyst loading, and smaller catalyst particles.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)International Journal of Hydrogen EnergyArticle . 2017License: unspecifiedData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.06.192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)International Journal of Hydrogen EnergyArticle . 2017License: unspecifiedData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2017.06.192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, Netherlands, Netherlands, NetherlandsPublisher:Elsevier BV Authors: J.A. Medrano; M.A. Llosa-Tanco;V. Cechetto;
V. Cechetto
V. Cechetto in OpenAIRED.A. Pacheco-Tanaka;
+1 AuthorsD.A. Pacheco-Tanaka
D.A. Pacheco-Tanaka in OpenAIREJ.A. Medrano; M.A. Llosa-Tanco;V. Cechetto;
V. Cechetto
V. Cechetto in OpenAIRED.A. Pacheco-Tanaka;
D.A. Pacheco-Tanaka
D.A. Pacheco-Tanaka in OpenAIREF. Gallucci;
F. Gallucci
F. Gallucci in OpenAIREThe use of biogas as feedstock for hydrogen production was widely proposed in the literature in the last years as a strategy to reduce anthropogenic carbon emissions. However, its lower heating value compared to natural gas hampers the revamping of existing reforming plants. The use of composite carbon molecular sieve membranes for biogas upgrading (CO2 removal from biogas) was investigated experimentally in this work. In particular, ideal perm-selectivities and permeabilities above the Robeson plot for CO2/CH4 mixtures have been obtained. These membranes show better performances compared to polymeric membranes, which are nowadays commercialized for CO2 separation in natural gas streams. Compared to polymeric membranes, carbon membranes do not show deactivation by plasticization when exposed to CO2, and thus can find industrial application. This work was extended with a techno-economic analysis where carbon membranes are installed in a steam methane reforming plant. Results have been first validated with data from literature and show that the use of biogas increases the costs of hydrogen production to a value of 0.25 €/Nm3 compared to the benchmark technology (0.21 €/Nm3). On the other hand, the use of biogas leads to a decrease in carbon emissions up to 95%, thus the use of biogas for hydrogen production is foreseen as a very interesting alternative to conventional technologies in view of the reduction in the carbon footprint in the novel technologies that are to be installed in the near future.
Chemical Engineering... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2020Data sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.124957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2020Data sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2020.124957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Authors: Niek de Nooijer; Julio Davalos Sanchez; Jon Melendez;Ekain Fernandez;
+3 AuthorsEkain Fernandez
Ekain Fernandez in OpenAIRENiek de Nooijer; Julio Davalos Sanchez; Jon Melendez;Ekain Fernandez;
Ekain Fernandez
Ekain Fernandez in OpenAIREDavid Alfredo Pacheco Tanaka;
David Alfredo Pacheco Tanaka
David Alfredo Pacheco Tanaka in OpenAIREMartin van Sint Annaland;
Martin van Sint Annaland
Martin van Sint Annaland in OpenAIREFausto Gallucci;
Fausto Gallucci
Fausto Gallucci in OpenAIREPd-based membranes have the potential to be used for hydrogen purification and production in membrane reactors. However, the presence of impurities in the feedstock, such as H2S can poison the membrane, thus decreasing the hydrogen permeation by blocking and deactivating active sites of the Pd-alloy on the membrane surface. H2S at high concentrations can even destroy the membrane by the formation of Pd4S. It is known that alloying of Pd with Au enhances the membrane resistance to H2S. This work reports the performance of six PdAgAu/Al2O3 supported membranes, prepared by electroless plating combined with PVD under exposure to trace amounts (<2 ppm) of H2S. The Au content shows not to play a significant role at these low concentrations. Exposure results suggest a dual influence of physisorbed H2S and chemisorbed S species. A Langmuir description shows that the influence of the partial pressure of hydrogen is negligible on the flux inhibition. In the post characterization the absence of Pd4S was shown, however the surface was affected by the exposure to H2S.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.06.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.06.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Netherlands, Netherlands, United Kingdom, NetherlandsPublisher:Elsevier BV Authors:Spallina, Vincenzo;
Shams, Ahmed; Battistella, Alessandro;Spallina, Vincenzo
Spallina, Vincenzo in OpenAIREGallucci, Fausto;
+1 AuthorsGallucci, Fausto
Gallucci, Fausto in OpenAIRESpallina, Vincenzo;
Shams, Ahmed; Battistella, Alessandro;Spallina, Vincenzo
Spallina, Vincenzo in OpenAIREGallucci, Fausto;
Gallucci, Fausto
Gallucci, Fausto in OpenAIREAnnaland, Martin Van Sint;
Annaland, Martin Van Sint
Annaland, Martin Van Sint in OpenAIREThis work addresses the techno-economic assessment of two chemical looping technologies for H2 production from natural gas fully integrated with CO2 capture. In the first configuration, chemical looping combustion operated with a dual circulating fluidized bed system at atmospheric pressure is used as furnace for the reforming reaction. In the second configuration, a chemical looping reforming system at pressurized conditions is used for the production of the reformed syngas. Both configurations have been designed and compared with reference technologies for H2 production based on conventional fired tubular reforming with and without CO2 capture. The results of the analysis show that both new concepts can achieve higher H2 reforming efficiency than a conventional plant when integrated with CO2 capture (+8-10% higher). The improvement in the performance of the plant is accompanied with an efficiency penalty of 4-6% and the cost of CO2 avoidance varies from 20-85 €/tonCO2.
Energy Procedia arrow_drop_down Energy ProcediaArticle . 2017License: CC BY NC NDData sources: Eindhoven University of Technology Research PortalThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Energy ProcediaArticle . 2017License: CC BY NC NDData sources: Eindhoven University of Technology Research PortalThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.1184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu