Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling and optimization of hydrogenation of CO2: Estimation of kinetic parameters via Artificial Bee Colony (ABC) and Differential Evolution (DE) algorithms

estimation of kinetic parameters via artificial bee colony (ABC) and differential evolution (DE) algorithms
Authors: Sara Najari; Gyula Gróf; Samrand Saeidi; Fausto Gallucci;

Modeling and optimization of hydrogenation of CO2: Estimation of kinetic parameters via Artificial Bee Colony (ABC) and Differential Evolution (DE) algorithms

Abstract

Global warming, climate change, fossil fuel depletion and steep hikes in the price of environmentally friendly hydrocarbons motivate researchers to investigate CO2 hydrogenation for hydrocarbons production. However, due to the reaction complexities and varieties of produced species, the process mechanism and subsequently estimation of the kinetic parameters have been controversial yet. Therefore, estimating the kinetic parameters using Artificial Bee Colony (ABC) and Differential Evolution (DE) optimization algorithms based on Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism is proposed as a possible remedy to fulfil the requirements. To this end, a one-dimensional heterogeneous model comprising detailed reaction rates of reverse water gas shift (RWGS), Fisher-Tropsch (FT) reactions and direct hydrogenation (DH) of CO2 is developed. It is observed that ABC exhibiting 6.3% error in predicting total hydrocarbons selectivity is superior to DE algorithm with 32.9% error. Therefore, the model employed the estimated kinetic parameters obtained via ABC algorithm, is exploited for products distribution analysis. Results reveal that maximum 73.21% hydrocarbons (C1–C4) selectivity can be achieved at 573 K and 1 MPa with 0.85% error compared to the experimental value of 72.59%. Accordingly, the proposed model can be exploited as a powerful tool for evaluating and predicting the performance of CO2 hydrogenation to hydrocarbons process.

Country
Netherlands
Keywords

Optimization, ABC algorithm, CO hydrogenation, RWGS, Sustainability and the Environment, SDG 13 – Klimaatactie, CO2 hydrogenation, Energy Engineering and Power Technology, Condensed Matter Physics, FT, Fuel Technology, SDG 13 - Climate Action, SDG 7 - Affordable and Clean Energy, Renewable Energy, DE algorithm, SDG 7 – Betaalbare en schone energie

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
hybrid