- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Austria, Germany, Germany, GermanyPublisher:Springer Science and Business Media LLC Krysanova, Valentina; Zaherpour, Jamal; Didovets, Iulii; Gosling, Simon N.; Gerten, Dieter; Hanasaki, Naota; Müller Schmied, Hannes; Pokhrel, Yadu; Satoh, Yusuke; Tang, Qiuhong; Wada, Yoshihide; Krysanova, Valentina; Potsdam Institute for Climate Impact Research, Potsdam, Germany; Zaherpour, Jamal; Nottingham, UK; Didovets, Iulii; Potsdam Institute for Climate Impact Research, Potsdam, Germany; Gosling, Simon N.; School of Geography, University of Nottingham, Nottingham, UK; Gerten, Dieter; Geography Dept., Humboldt-Universität zu Berlin, Berlin, Germany; Hanasaki, Naota; Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan; Müller Schmied, Hannes; Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany; Pokhrel, Yadu; Department of Civil and Environmental Engineering, Michigan State University, East Lansing, USA; Satoh, Yusuke; International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria; Tang, Qiuhong; Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Wada, Yoshihide; International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria;AbstractImportance of evaluation of global hydrological models (gHMs) before doing climate impact assessment was underlined in several studies. The main objective of this study is to evaluate the performance of six gHMs in simulating observed discharge for a set of 57 large catchments applying common metrics with thresholds for the monthly and seasonal dynamics and summarize them estimating an aggregated index of model performance for each model in each basin. One model showed a good performance, and other five showed a weak or poor performance in most of the basins. In 15 catchments, evaluation results of all models were poor. The model evaluation was supplemented by climate impact assessment for a subset of 12 representative catchments using (1) usual ensemble mean approach and (2) weighted mean approach based on model performance, and the outcomes were compared. The comparison of impacts in terms of mean monthly and mean annual discharges using two approaches has shown that in four basins, differences were negligible or small, and in eight catchments, differences in mean monthly, mean annual discharge or both were moderate to large. The spreads were notably decreased in most cases when the second method was applied. It can be concluded that for improving credibility of projections, the model evaluation and application of the weighted mean approach could be recommended, especially if the mean monthly (seasonal) impacts are of interest, whereas the ensemble mean approach could be applied for projecting the mean annual changes. The calibration of gHMs could improve their performance and, consequently, the credibility of projections.
Publication Database... arrow_drop_down IIASA DAREArticle . 2020License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/16799/1/Krysanova2020_Article_HowEvaluationOfGlobalHydrologi.pdfData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Humboldt-Universität zu BerlinArticle . 2020 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu BerlinIIASA PUREArticle . 2020 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/16799/1/Krysanova2020_Article_HowEvaluationOfGlobalHydrologi.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02840-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 66visibility views 66 download downloads 33 Powered bymore_vert Publication Database... arrow_drop_down IIASA DAREArticle . 2020License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/16799/1/Krysanova2020_Article_HowEvaluationOfGlobalHydrologi.pdfData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Humboldt-Universität zu BerlinArticle . 2020 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu BerlinIIASA PUREArticle . 2020 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/16799/1/Krysanova2020_Article_HowEvaluationOfGlobalHydrologi.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02840-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2013 France, Germany, United Kingdom, Austria, United Kingdom, Netherlands, Netherlands, France, Netherlands, NetherlandsPublisher:Proceedings of the National Academy of Sciences Funded by:EC | GLOBAL-IQEC| GLOBAL-IQQiuhong Tang; Jacob Schewe; Stephanie Eisner; Rutger Dankers; Nigel W. Arnell; Xingcai Liu; Dominik Wisser; Katja Frieler; Pavel Kabat; Felix T. Portmann; Felix T. Portmann; Tobias Stacke; Douglas B. Clark; Simon N. Gosling; Felipe J. Colón-González; Yoshihide Wada; Yoshimitsu Masaki; Dieter Gerten; Yusuke Satoh; Balázs M. Fekete; Lila Warszawski; Ingjerd Haddeland; Hyungjun Kim; Jens Heinke; Jens Heinke; Franziska Piontek; Torsten Albrecht;Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m 3 per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022Full-Text: https://hdl.handle.net/10568/121092Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1222460110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,362 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022Full-Text: https://hdl.handle.net/10568/121092Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1222460110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 France, United Kingdom, Germany, FrancePublisher:Proceedings of the National Academy of Sciences Douglas B. Clark; Yoshihide Wada; Yusuke Satoh; Rutger Dankers; Pete Falloon; Jens Heinke; Jens Heinke; Tobias Stacke; Simon N. Gosling; Balázs M. Fekete; Hyungjun Kim; Yoshimitsu Masaki; Nigel W. Arnell; Dominik Wisser; Dominik Wisser;Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20–45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5–30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023Full-Text: https://hdl.handle.net/10568/129363Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1302078110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 251 citations 251 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023Full-Text: https://hdl.handle.net/10568/129363Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1302078110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 11 Jul 2022 Netherlands, Netherlands, Austria, Germany, BelgiumPublisher:IOP Publishing Funded by:NSF | CAREER: Humans, Water, an...NSF| CAREER: Humans, Water, and Climate: Advancing Research and Education on Water Resource Sustainability in Managed Land-Water Systems using Integrated Hydrological Modeling FrameworkJulien Boulange; Naota Hanasaki; Yusuke Satoh; Tokuta Yokohata; Hideo Shiogama; Peter Burek; Wim Thiery; Dieter Gerten; Hannes Müller Schmied; Yoshihide Wada; Simon N Gosling; Yadu Pokhrel; Niko Wanders;Future flood and drought risks have been predicted to transition from moderate to high levels at global warmings of 1.5 °C and 2.0 °C above pre-industrial levels, respectively. However, these results were obtained by approximating the equilibrium climate using transient simulations with steadily warming. This approach was recently criticised due to the warmer global land temperature and higher mean precipitation intensities of the transient climate in comparison with the equilibrium climate. Therefore, it is unclear whether floods and droughts projected under a transient climate can be systematically substituted for those occurring in an equilibrated climate. Here, by employing a large ensemble of global hydrological models (HMs) forced by global climate models, we assess the validity of estimating flood and drought characteristics under equilibrium climates from transient simulations. Differences in flood characteristics under transient and equilibrium climates could be largely ascribed to natural variability, indicating that the floods derived from a transient climate reasonably approximate the floods expected in an equally warm, equilibrated climate. By contrast, significant differences in drought intensity between transient and equilibrium climates were detected over a larger global land area than expected from natural variability. Despite the large differences among HMs in representing the low streamflow regime, we found that the drought intensities occurring under a transient climate may not validly represent the intensities in an equally warm equilibrated climate for approximately 6.7% of the global land area.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Vrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu BerlinIIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac27cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 76visibility views 76 download downloads 51 Powered bymore_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Vrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu BerlinIIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac27cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Austria, Germany, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Humans, Water, an...NSF| CAREER: Humans, Water, and Climate: Advancing Research and Education on Water Resource Sustainability in Managed Land-Water Systems using Integrated Hydrological Modeling FrameworkYusuke Satoh; Kei Yoshimura; Yadu Pokhrel; Hyungjun Kim; Hideo Shiogama; Tokuta Yokohata; Naota Hanasaki; Yoshihide Wada; Peter Burek; Edward Byers; Hannes Müller Schmied; Dieter Gerten; Sebastian Ostberg; Simon Newland Gosling; Julien Eric Stanslas Boulange; Taikan Oki;AbstractDroughts that exceed the magnitudes of historical variation ranges could occur increasingly frequently under future climate conditions. However, the time of the emergence of unprecedented drought conditions under climate change has rarely been examined. Here, using multimodel hydrological simulations, we investigate the changes in the frequency of hydrological drought (defined as abnormally low river discharge) under high and low greenhouse gas concentration scenarios and existing water resource management measures and estimate the time of the first emergence of unprecedented regional drought conditions centered on the low-flow season. The times are detected for several subcontinental-scale regions, and three regions, namely, Southwestern South America, Mediterranean Europe, and Northern Africa, exhibit particularly robust results under the high-emission scenario. These three regions are expected to confront unprecedented conditions within the next 30 years with a high likelihood regardless of the emission scenarios. In addition, the results obtained herein demonstrate the benefits of the lower-emission pathway in reducing the likelihood of emergence. The Paris Agreement goals are shown to be effective in reducing the likelihood to the unlikely level in most regions. However, appropriate and prior adaptation measures are considered indispensable when facing unprecedented drought conditions. The results of this study underscore the importance of improving drought preparedness within the considered time horizons.
IIASA DARE arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30729-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu147 citations 147 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30729-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Germany, Netherlands, Austria, Netherlands, United KingdomPublisher:IOP Publishing Funded by:EC | EARTH2OBSERVE, NWO | Compound risk of river an...EC| EARTH2OBSERVE ,NWO| Compound risk of river and coastal floods in global deltas and estuariesJeroen C. J. H. Aerts; Jeroen C. J. H. Aerts; Jamal Zaherpour; Philip J. Ward; Yoshimitsu Masaki; Ted Veldkamp; Ted Veldkamp; Yusuke Satoh; Yadu Pokhrel; H. Müller Schmied; Felix T. Portmann; Fang Zhao; Yoshihide Wada; Yoshihide Wada; Dieter Gerten; Dieter Gerten; H. de Moel; Simon N. Gosling; Xingcai Liu;Human activity has a profound influence on river discharges, hydrological extremes and water-related hazards. In this study, we compare the results of five state-of-the-art global hydrological models (GHMs) with observations to examine the role of human impact parameterizations (HIP) in the simulation of mean, high- and low-flows. The analysis is performed for 471 gauging stations across the globe for the period 1971-2010. We find that the inclusion of HIP improves the performance of the GHMs, both in managed and near-natural catchments. For near-natural catchments, the improvement in performance results from improvements in incoming discharges from upstream managed catchments. This finding is robust across the GHMs, although the level of improvement and the reasons for it vary greatly. The inclusion of HIP leads to a significant decrease in the bias of the long-term mean monthly discharge in 36%-73% of the studied catchments, and an improvement in the modeled hydrological variability in 31%-74% of the studied catchments. Including HIP in the GHMs also leads to an improvement in the simulation of hydrological extremes, compared to when HIP is excluded. Whilst the inclusion of HIP leads to decreases in the simulated high-flows, it can lead to either increases or decreases in the low-flows. This is due to the relative importance of the timing of return flows and reservoir operations as well as their associated uncertainties. Even with the inclusion of HIP, we find that the model performance is still not optimal. This highlights the need for further research linking human management and hydrological domains, especially in those areas in which human impacts are dominant. The large variation in performance between GHMs, regions and performance indicators, calls for a careful selection of GHMs, model components and evaluation metrics in future model applications.
CORE arrow_drop_down Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2018Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab96f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 226 citations 226 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2018Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab96f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 Netherlands, France, United Kingdom, Germany, Switzerland, France, France, France, France, Japan, France, Netherlands, Netherlands, Canada, Spain, France, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | IMPACT2C, EC | HELIXEC| IMPACT2C ,EC| HELIXJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
IIASA PURE arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 202 citations 202 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Springer Science and Business Media LLC Kazuyuki Saito; Tomoko Nitta; Kumiko Takata; Kumiko Takata; Tetsuo Sueyoshi; Tomohiro Hajima; Tokuta Yokohata; Yusuke Satoh; Go Iwahana;AbstractTo date, the treatment of permafrost in global climate models has been simplified due to the prevailing uncertainties in the processes involving frozen ground. In this study, we improved the modeling of permafrost processes in a state-of-the-art climate model by taking into account some of the relevant physical properties of soil such as changes in the thermophysical properties due to soil freezing. As a result, the improved version of the global land surface model was able to reproduce a more realistic permafrost distribution at the southern limit of the permafrost area by increasing the freezing of soil moisture in winter. The improved modeling of permafrost processes also had a significant effect on future projections. Using the conventional formulation, the predicted cumulative reduction of the permafrost area by year 2100 was approximately 60% (40–80% range of uncertainty from a multi-model ensemble) in the RCP8.5 scenario, while with the improved formulation, the reduction was approximately 35% (20–50%). Our results indicate that the improved treatment of permafrost processes in global climate models is important to ensuring more reliable future projections.
Progress in Earth an... arrow_drop_down Progress in Earth and Planetary ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40645-020-00380-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Earth an... arrow_drop_down Progress in Earth and Planetary ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40645-020-00380-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Ahmed Elkouk; Yadu Pokhrel; Yusuke Satoh; Lhoussaine Bouchaou;pmid: 35636116
Climate change is expected to exacerbate drought conditions over many global regions. However, the future risk posed by droughts depends not only on the climate-induced changes but also on the changes in societal exposure and vulnerability to droughts. Here we illustrate how the consideration of human vulnerability alters global drought risk associated with runoff (hydrological) and soil moisture (agriculture) droughts during the 21st-century. We combine the changes in drought frequency, population growth, and human development as a proxy of vulnerability to project global drought risk under plausible climate and socioeconomic development pathways. Results indicate that the shift toward a pathway of high greenhouse gas emissions and socioeconomic inequality leads to i) increased population exposure to runoff and soil moisture droughts by 81% and seven folds, respectively, and ii) a stagnation of human development. These consequences are more pronounced for populations living in low than in very high human development countries. In particular, Sub-Saharan Africa and South Asia, where the majority of the world's less developed countries are located, fare the worst in terms of future drought risk. The disparity in risk between low and very high human development countries can be substantially reduced in the presence of a shift toward a world of rapid and sustainable development that actively reduces social inequality and emissions. Our results underscore the importance of rapid human development in hotspots of drought risk where effective adaptation is most needed to reduce future drought impacts.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 12 Jun 2018 Netherlands, Netherlands, Germany, Austria, United Kingdom, United Kingdom, Switzerland, United KingdomPublisher:IOP Publishing Funded by:EC | HELIXEC| HELIXYadu Pokhrel; Yusuke Satoh; Dieter Gerten; Dieter Gerten; Guoyong Leng; Taikan Oki; Taikan Oki; Ingjerd Haddeland; Jamal Zaherpour; Ted Veldkamp; Ted Veldkamp; Nick J. Mount; Yoshimitsu Masaki; Rutger Dankers; Jacob Schewe; Naota Hanasaki; Hyungjun Kim; Yoshihide Wada; Junguo Liu; Stephanie Eisner; Lukas Gudmundsson; Simon N. Gosling; Hannes Müller Schmied;Global-scale hydrological models are routinely used to assess water scarcity, flood hazards and droughts worldwide. Recent efforts to incorporate anthropogenic activities in these models have enabled more realistic comparisons with observations. Here we evaluate simulations from an ensemble of six models participating in the second phase of the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP2a). We simulate monthly runoff in 40 catchments, spatially distributed across eight global hydrobelts. The performance of each model and the ensemble mean is examined with respect to their ability to replicate observed mean and extreme runoff under human-influenced conditions. Application of a novel integrated evaluation metric to quantify the models' ability to simulate timeseries of monthly runoff suggests that the models generally perform better in the wetter equatorial and northern hydrobelts than in drier southern hydrobelts. When model outputs are temporally aggregated to assess mean annual and extreme runoff, the models perform better. Nevertheless, we find a general trend in the majority of models towards the overestimation of mean annual runoff and all indicators of upper and lower extreme runoff. The models struggle to capture the timing of the seasonal cycle, particularly in northern hydrobelts, while in southern hydrobelts the models struggle to reproduce the magnitude of the seasonal cycle. It is noteworthy that over all hydrological indicators, the ensemble mean fails to perform better than any individual model—a finding that challenges the commonly held perception that model ensemble estimates deliver superior performance over individual models. The study highlights the need for continued model development and improvement. It also suggests that caution should be taken when summarising the simulations from a model ensemble based upon its mean output. Environmental Research Letters, 13 (6) ISSN:1748-9326 ISSN:1748-9318
Nottingham Research ... arrow_drop_down Nottingham Research RepositoryArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)IIASA PUREArticle . 2018 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: IIASA PUREIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: IIASA PUREIIASA DAREArticle . 2018License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2018Oxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveFachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nottingham Research ... arrow_drop_down Nottingham Research RepositoryArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)IIASA PUREArticle . 2018 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: IIASA PUREIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: IIASA PUREIIASA DAREArticle . 2018License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2018Oxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveFachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Austria, Germany, Germany, GermanyPublisher:Springer Science and Business Media LLC Krysanova, Valentina; Zaherpour, Jamal; Didovets, Iulii; Gosling, Simon N.; Gerten, Dieter; Hanasaki, Naota; Müller Schmied, Hannes; Pokhrel, Yadu; Satoh, Yusuke; Tang, Qiuhong; Wada, Yoshihide; Krysanova, Valentina; Potsdam Institute for Climate Impact Research, Potsdam, Germany; Zaherpour, Jamal; Nottingham, UK; Didovets, Iulii; Potsdam Institute for Climate Impact Research, Potsdam, Germany; Gosling, Simon N.; School of Geography, University of Nottingham, Nottingham, UK; Gerten, Dieter; Geography Dept., Humboldt-Universität zu Berlin, Berlin, Germany; Hanasaki, Naota; Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan; Müller Schmied, Hannes; Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany; Pokhrel, Yadu; Department of Civil and Environmental Engineering, Michigan State University, East Lansing, USA; Satoh, Yusuke; International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria; Tang, Qiuhong; Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Wada, Yoshihide; International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria;AbstractImportance of evaluation of global hydrological models (gHMs) before doing climate impact assessment was underlined in several studies. The main objective of this study is to evaluate the performance of six gHMs in simulating observed discharge for a set of 57 large catchments applying common metrics with thresholds for the monthly and seasonal dynamics and summarize them estimating an aggregated index of model performance for each model in each basin. One model showed a good performance, and other five showed a weak or poor performance in most of the basins. In 15 catchments, evaluation results of all models were poor. The model evaluation was supplemented by climate impact assessment for a subset of 12 representative catchments using (1) usual ensemble mean approach and (2) weighted mean approach based on model performance, and the outcomes were compared. The comparison of impacts in terms of mean monthly and mean annual discharges using two approaches has shown that in four basins, differences were negligible or small, and in eight catchments, differences in mean monthly, mean annual discharge or both were moderate to large. The spreads were notably decreased in most cases when the second method was applied. It can be concluded that for improving credibility of projections, the model evaluation and application of the weighted mean approach could be recommended, especially if the mean monthly (seasonal) impacts are of interest, whereas the ensemble mean approach could be applied for projecting the mean annual changes. The calibration of gHMs could improve their performance and, consequently, the credibility of projections.
Publication Database... arrow_drop_down IIASA DAREArticle . 2020License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/16799/1/Krysanova2020_Article_HowEvaluationOfGlobalHydrologi.pdfData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Humboldt-Universität zu BerlinArticle . 2020 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu BerlinIIASA PUREArticle . 2020 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/16799/1/Krysanova2020_Article_HowEvaluationOfGlobalHydrologi.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02840-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 66visibility views 66 download downloads 33 Powered bymore_vert Publication Database... arrow_drop_down IIASA DAREArticle . 2020License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/16799/1/Krysanova2020_Article_HowEvaluationOfGlobalHydrologi.pdfData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Humboldt-Universität zu BerlinArticle . 2020 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu BerlinIIASA PUREArticle . 2020 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/16799/1/Krysanova2020_Article_HowEvaluationOfGlobalHydrologi.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-020-02840-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2013 France, Germany, United Kingdom, Austria, United Kingdom, Netherlands, Netherlands, France, Netherlands, NetherlandsPublisher:Proceedings of the National Academy of Sciences Funded by:EC | GLOBAL-IQEC| GLOBAL-IQQiuhong Tang; Jacob Schewe; Stephanie Eisner; Rutger Dankers; Nigel W. Arnell; Xingcai Liu; Dominik Wisser; Katja Frieler; Pavel Kabat; Felix T. Portmann; Felix T. Portmann; Tobias Stacke; Douglas B. Clark; Simon N. Gosling; Felipe J. Colón-González; Yoshihide Wada; Yoshimitsu Masaki; Dieter Gerten; Yusuke Satoh; Balázs M. Fekete; Lila Warszawski; Ingjerd Haddeland; Hyungjun Kim; Jens Heinke; Jens Heinke; Franziska Piontek; Torsten Albrecht;Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m 3 per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022Full-Text: https://hdl.handle.net/10568/121092Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1222460110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,362 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022Full-Text: https://hdl.handle.net/10568/121092Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1222460110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 France, United Kingdom, Germany, FrancePublisher:Proceedings of the National Academy of Sciences Douglas B. Clark; Yoshihide Wada; Yusuke Satoh; Rutger Dankers; Pete Falloon; Jens Heinke; Jens Heinke; Tobias Stacke; Simon N. Gosling; Balázs M. Fekete; Hyungjun Kim; Yoshimitsu Masaki; Nigel W. Arnell; Dominik Wisser; Dominik Wisser;Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20–45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5–30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023Full-Text: https://hdl.handle.net/10568/129363Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1302078110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 251 citations 251 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023Full-Text: https://hdl.handle.net/10568/129363Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1302078110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 11 Jul 2022 Netherlands, Netherlands, Austria, Germany, BelgiumPublisher:IOP Publishing Funded by:NSF | CAREER: Humans, Water, an...NSF| CAREER: Humans, Water, and Climate: Advancing Research and Education on Water Resource Sustainability in Managed Land-Water Systems using Integrated Hydrological Modeling FrameworkJulien Boulange; Naota Hanasaki; Yusuke Satoh; Tokuta Yokohata; Hideo Shiogama; Peter Burek; Wim Thiery; Dieter Gerten; Hannes Müller Schmied; Yoshihide Wada; Simon N Gosling; Yadu Pokhrel; Niko Wanders;Future flood and drought risks have been predicted to transition from moderate to high levels at global warmings of 1.5 °C and 2.0 °C above pre-industrial levels, respectively. However, these results were obtained by approximating the equilibrium climate using transient simulations with steadily warming. This approach was recently criticised due to the warmer global land temperature and higher mean precipitation intensities of the transient climate in comparison with the equilibrium climate. Therefore, it is unclear whether floods and droughts projected under a transient climate can be systematically substituted for those occurring in an equilibrated climate. Here, by employing a large ensemble of global hydrological models (HMs) forced by global climate models, we assess the validity of estimating flood and drought characteristics under equilibrium climates from transient simulations. Differences in flood characteristics under transient and equilibrium climates could be largely ascribed to natural variability, indicating that the floods derived from a transient climate reasonably approximate the floods expected in an equally warm, equilibrated climate. By contrast, significant differences in drought intensity between transient and equilibrium climates were detected over a larger global land area than expected from natural variability. Despite the large differences among HMs in representing the low streamflow regime, we found that the drought intensities occurring under a transient climate may not validly represent the intensities in an equally warm equilibrated climate for approximately 6.7% of the global land area.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Vrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu BerlinIIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac27cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 76visibility views 76 download downloads 51 Powered bymore_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Vrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu BerlinIIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17494/1/Boulange_2021_Environ._Res._Lett._16_104028.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac27cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Austria, Germany, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Humans, Water, an...NSF| CAREER: Humans, Water, and Climate: Advancing Research and Education on Water Resource Sustainability in Managed Land-Water Systems using Integrated Hydrological Modeling FrameworkYusuke Satoh; Kei Yoshimura; Yadu Pokhrel; Hyungjun Kim; Hideo Shiogama; Tokuta Yokohata; Naota Hanasaki; Yoshihide Wada; Peter Burek; Edward Byers; Hannes Müller Schmied; Dieter Gerten; Sebastian Ostberg; Simon Newland Gosling; Julien Eric Stanslas Boulange; Taikan Oki;AbstractDroughts that exceed the magnitudes of historical variation ranges could occur increasingly frequently under future climate conditions. However, the time of the emergence of unprecedented drought conditions under climate change has rarely been examined. Here, using multimodel hydrological simulations, we investigate the changes in the frequency of hydrological drought (defined as abnormally low river discharge) under high and low greenhouse gas concentration scenarios and existing water resource management measures and estimate the time of the first emergence of unprecedented regional drought conditions centered on the low-flow season. The times are detected for several subcontinental-scale regions, and three regions, namely, Southwestern South America, Mediterranean Europe, and Northern Africa, exhibit particularly robust results under the high-emission scenario. These three regions are expected to confront unprecedented conditions within the next 30 years with a high likelihood regardless of the emission scenarios. In addition, the results obtained herein demonstrate the benefits of the lower-emission pathway in reducing the likelihood of emergence. The Paris Agreement goals are shown to be effective in reducing the likelihood to the unlikely level in most regions. However, appropriate and prior adaptation measures are considered indispensable when facing unprecedented drought conditions. The results of this study underscore the importance of improving drought preparedness within the considered time horizons.
IIASA DARE arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30729-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu147 citations 147 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30729-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Germany, Netherlands, Austria, Netherlands, United KingdomPublisher:IOP Publishing Funded by:EC | EARTH2OBSERVE, NWO | Compound risk of river an...EC| EARTH2OBSERVE ,NWO| Compound risk of river and coastal floods in global deltas and estuariesJeroen C. J. H. Aerts; Jeroen C. J. H. Aerts; Jamal Zaherpour; Philip J. Ward; Yoshimitsu Masaki; Ted Veldkamp; Ted Veldkamp; Yusuke Satoh; Yadu Pokhrel; H. Müller Schmied; Felix T. Portmann; Fang Zhao; Yoshihide Wada; Yoshihide Wada; Dieter Gerten; Dieter Gerten; H. de Moel; Simon N. Gosling; Xingcai Liu;Human activity has a profound influence on river discharges, hydrological extremes and water-related hazards. In this study, we compare the results of five state-of-the-art global hydrological models (GHMs) with observations to examine the role of human impact parameterizations (HIP) in the simulation of mean, high- and low-flows. The analysis is performed for 471 gauging stations across the globe for the period 1971-2010. We find that the inclusion of HIP improves the performance of the GHMs, both in managed and near-natural catchments. For near-natural catchments, the improvement in performance results from improvements in incoming discharges from upstream managed catchments. This finding is robust across the GHMs, although the level of improvement and the reasons for it vary greatly. The inclusion of HIP leads to a significant decrease in the bias of the long-term mean monthly discharge in 36%-73% of the studied catchments, and an improvement in the modeled hydrological variability in 31%-74% of the studied catchments. Including HIP in the GHMs also leads to an improvement in the simulation of hydrological extremes, compared to when HIP is excluded. Whilst the inclusion of HIP leads to decreases in the simulated high-flows, it can lead to either increases or decreases in the low-flows. This is due to the relative importance of the timing of return flows and reservoir operations as well as their associated uncertainties. Even with the inclusion of HIP, we find that the model performance is still not optimal. This highlights the need for further research linking human management and hydrological domains, especially in those areas in which human impacts are dominant. The large variation in performance between GHMs, regions and performance indicators, calls for a careful selection of GHMs, model components and evaluation metrics in future model applications.
CORE arrow_drop_down Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2018Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab96f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 226 citations 226 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2018Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab96f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 Netherlands, France, United Kingdom, Germany, Switzerland, France, France, France, France, Japan, France, Netherlands, Netherlands, Canada, Spain, France, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | IMPACT2C, EC | HELIXEC| IMPACT2C ,EC| HELIXJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
IIASA PURE arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 202 citations 202 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Springer Science and Business Media LLC Kazuyuki Saito; Tomoko Nitta; Kumiko Takata; Kumiko Takata; Tetsuo Sueyoshi; Tomohiro Hajima; Tokuta Yokohata; Yusuke Satoh; Go Iwahana;AbstractTo date, the treatment of permafrost in global climate models has been simplified due to the prevailing uncertainties in the processes involving frozen ground. In this study, we improved the modeling of permafrost processes in a state-of-the-art climate model by taking into account some of the relevant physical properties of soil such as changes in the thermophysical properties due to soil freezing. As a result, the improved version of the global land surface model was able to reproduce a more realistic permafrost distribution at the southern limit of the permafrost area by increasing the freezing of soil moisture in winter. The improved modeling of permafrost processes also had a significant effect on future projections. Using the conventional formulation, the predicted cumulative reduction of the permafrost area by year 2100 was approximately 60% (40–80% range of uncertainty from a multi-model ensemble) in the RCP8.5 scenario, while with the improved formulation, the reduction was approximately 35% (20–50%). Our results indicate that the improved treatment of permafrost processes in global climate models is important to ensuring more reliable future projections.
Progress in Earth an... arrow_drop_down Progress in Earth and Planetary ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40645-020-00380-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Progress in Earth an... arrow_drop_down Progress in Earth and Planetary ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40645-020-00380-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Ahmed Elkouk; Yadu Pokhrel; Yusuke Satoh; Lhoussaine Bouchaou;pmid: 35636116
Climate change is expected to exacerbate drought conditions over many global regions. However, the future risk posed by droughts depends not only on the climate-induced changes but also on the changes in societal exposure and vulnerability to droughts. Here we illustrate how the consideration of human vulnerability alters global drought risk associated with runoff (hydrological) and soil moisture (agriculture) droughts during the 21st-century. We combine the changes in drought frequency, population growth, and human development as a proxy of vulnerability to project global drought risk under plausible climate and socioeconomic development pathways. Results indicate that the shift toward a pathway of high greenhouse gas emissions and socioeconomic inequality leads to i) increased population exposure to runoff and soil moisture droughts by 81% and seven folds, respectively, and ii) a stagnation of human development. These consequences are more pronounced for populations living in low than in very high human development countries. In particular, Sub-Saharan Africa and South Asia, where the majority of the world's less developed countries are located, fare the worst in terms of future drought risk. The disparity in risk between low and very high human development countries can be substantially reduced in the presence of a shift toward a world of rapid and sustainable development that actively reduces social inequality and emissions. Our results underscore the importance of rapid human development in hotspots of drought risk where effective adaptation is most needed to reduce future drought impacts.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 12 Jun 2018 Netherlands, Netherlands, Germany, Austria, United Kingdom, United Kingdom, Switzerland, United KingdomPublisher:IOP Publishing Funded by:EC | HELIXEC| HELIXYadu Pokhrel; Yusuke Satoh; Dieter Gerten; Dieter Gerten; Guoyong Leng; Taikan Oki; Taikan Oki; Ingjerd Haddeland; Jamal Zaherpour; Ted Veldkamp; Ted Veldkamp; Nick J. Mount; Yoshimitsu Masaki; Rutger Dankers; Jacob Schewe; Naota Hanasaki; Hyungjun Kim; Yoshihide Wada; Junguo Liu; Stephanie Eisner; Lukas Gudmundsson; Simon N. Gosling; Hannes Müller Schmied;Global-scale hydrological models are routinely used to assess water scarcity, flood hazards and droughts worldwide. Recent efforts to incorporate anthropogenic activities in these models have enabled more realistic comparisons with observations. Here we evaluate simulations from an ensemble of six models participating in the second phase of the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP2a). We simulate monthly runoff in 40 catchments, spatially distributed across eight global hydrobelts. The performance of each model and the ensemble mean is examined with respect to their ability to replicate observed mean and extreme runoff under human-influenced conditions. Application of a novel integrated evaluation metric to quantify the models' ability to simulate timeseries of monthly runoff suggests that the models generally perform better in the wetter equatorial and northern hydrobelts than in drier southern hydrobelts. When model outputs are temporally aggregated to assess mean annual and extreme runoff, the models perform better. Nevertheless, we find a general trend in the majority of models towards the overestimation of mean annual runoff and all indicators of upper and lower extreme runoff. The models struggle to capture the timing of the seasonal cycle, particularly in northern hydrobelts, while in southern hydrobelts the models struggle to reproduce the magnitude of the seasonal cycle. It is noteworthy that over all hydrological indicators, the ensemble mean fails to perform better than any individual model—a finding that challenges the commonly held perception that model ensemble estimates deliver superior performance over individual models. The study highlights the need for continued model development and improvement. It also suggests that caution should be taken when summarising the simulations from a model ensemble based upon its mean output. Environmental Research Letters, 13 (6) ISSN:1748-9326 ISSN:1748-9318
Nottingham Research ... arrow_drop_down Nottingham Research RepositoryArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)IIASA PUREArticle . 2018 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: IIASA PUREIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: IIASA PUREIIASA DAREArticle . 2018License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2018Oxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveFachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nottingham Research ... arrow_drop_down Nottingham Research RepositoryArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)IIASA PUREArticle . 2018 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: IIASA PUREIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: IIASA PUREIIASA DAREArticle . 2018License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15398/1/Zaherpour_2018_Environ._Res._Lett._13_065015.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Environmental Research LettersArticle . 2018Oxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveFachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu