- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Part of book or chapter of book 2021 ItalyDaniele Piazzullo; Michela Costa; F Calise; M Vicidomini; MDentice D'Accadia;handle: 20.500.14243/426542
Renewable energy sources exploited for Combined Heat and Power (CHP) generation purposes represent a suitable solution for an efficient energy production in industrial and commercial applications, helping to reduce the consumption of fossil fuels and the related emission of GreenHouse Gases (GHG). The aim of this work is to assess the technical, economic and environmental feasibility of an integrated CHP plant, where an Internal Combustion Engine (ICE) fuelled with syngas deriving from gasification of residual biomass is combined with a PV solar system. The ICE has a rated power of 20 kWel and a thermal capacity of 40 kWth; this last achieved by recovering heat from the cooling circuit and from the exhaust gases; the PV system has a peak power of 20 kWel. A 100-kWh lithium battery is also included in the proposed layout, to manage the electrical energy fluxes to and from the national grid. The overall system is dynamically simulated within the TRNSYS environment, with the scope of assessing the conversion efficiency with respect to an annual dynamic load relevant to the energy consumption of a generical farmhouse where the gasifier feedstock is available. The proposed layout reveals as an efficient solution to totally cover the thermal demand during the whole year, as well as to match the electrical load for most of the period analysed. The implemented solution may lead to a reduction of almost 76 tons of CO2 emitted per year, with a related cost saving of about 393 kEUR in an estimated lifetime of 25 years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2761f28197031f02ab83a99039ae6f0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2761f28197031f02ab83a99039ae6f0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2021 ItalyDaniele Piazzullo; Michela Costa; F Calise; M Vicidomini; MDentice D'Accadia;handle: 20.500.14243/426542
Renewable energy sources exploited for Combined Heat and Power (CHP) generation purposes represent a suitable solution for an efficient energy production in industrial and commercial applications, helping to reduce the consumption of fossil fuels and the related emission of GreenHouse Gases (GHG). The aim of this work is to assess the technical, economic and environmental feasibility of an integrated CHP plant, where an Internal Combustion Engine (ICE) fuelled with syngas deriving from gasification of residual biomass is combined with a PV solar system. The ICE has a rated power of 20 kWel and a thermal capacity of 40 kWth; this last achieved by recovering heat from the cooling circuit and from the exhaust gases; the PV system has a peak power of 20 kWel. A 100-kWh lithium battery is also included in the proposed layout, to manage the electrical energy fluxes to and from the national grid. The overall system is dynamically simulated within the TRNSYS environment, with the scope of assessing the conversion efficiency with respect to an annual dynamic load relevant to the energy consumption of a generical farmhouse where the gasifier feedstock is available. The proposed layout reveals as an efficient solution to totally cover the thermal demand during the whole year, as well as to match the electrical load for most of the period analysed. The implemented solution may lead to a reduction of almost 76 tons of CO2 emitted per year, with a related cost saving of about 393 kEUR in an estimated lifetime of 25 years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2761f28197031f02ab83a99039ae6f0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2761f28197031f02ab83a99039ae6f0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object 2020 ItalyPublisher:Prof. Dr. Selahaddin Orhan Akansu Authors: Michela Costa; Daniele Piazzullo; P Annunziata; A Palombo;handle: 11588/857050 , 20.500.14243/426549
Present paper analyses the flexibility of co-combustion power supply in a Spark Ignition (SI) engine fuelled with Natural Gas (NG) and biogas (BG) for cogenerative purposes. The biogas properties are strongly influenced by the source biomass and by the characteristics of the conversion process, thus the possibility of a double-ramp supply with NG taken from the national distribution network allows to compensate for any decay in engine performance linked to the worst quality of the fuel and, therefore, to ensure more stable operations over time. The effects deriving from the addition of NG are quantified through the development of a dedicated one dimensional (1D) numerical model of the engine in GT-Power environment. The combustion sub-model is properly customized according to the different fuel composition relying on a detailed kinetic model, where the laminar flame rate is evaluated for each specific fuel considered. As a result, co-combustion operation appears to be a feasible solution both on the technical and economic point. The developed model can be properly adapted for the executive design of energy systems powered by NG -biogas mixtures, helping in the optimization of the energy and environmental performance.
CNR ExploRA arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11588/857050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11588/857050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object 2020 ItalyPublisher:Prof. Dr. Selahaddin Orhan Akansu Authors: Michela Costa; Daniele Piazzullo; P Annunziata; A Palombo;handle: 11588/857050 , 20.500.14243/426549
Present paper analyses the flexibility of co-combustion power supply in a Spark Ignition (SI) engine fuelled with Natural Gas (NG) and biogas (BG) for cogenerative purposes. The biogas properties are strongly influenced by the source biomass and by the characteristics of the conversion process, thus the possibility of a double-ramp supply with NG taken from the national distribution network allows to compensate for any decay in engine performance linked to the worst quality of the fuel and, therefore, to ensure more stable operations over time. The effects deriving from the addition of NG are quantified through the development of a dedicated one dimensional (1D) numerical model of the engine in GT-Power environment. The combustion sub-model is properly customized according to the different fuel composition relying on a detailed kinetic model, where the laminar flame rate is evaluated for each specific fuel considered. As a result, co-combustion operation appears to be a feasible solution both on the technical and economic point. The developed model can be properly adapted for the executive design of energy systems powered by NG -biogas mixtures, helping in the optimization of the energy and environmental performance.
CNR ExploRA arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11588/857050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11588/857050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Costa M; La Villetta M; Piazzullo D; Cirillo D;doi: 10.3390/en14144226
handle: 20.500.14243/397394
The development of a one-dimensional (1D) phenomenological model for biomass gasification in downdraft reactors is presented in this study; the model was developed with the aim of highlighting the main advantages and limits related to feedstocks that are different from woodchip, such as hydro-char derived from the hydrothermal carbonization of green waste, or a mix of olive pomace and sawdust. An experimental validation of the model is performed. The numerically evaluated temperature evolution along the reactor gasifier is found to be in agreement with locally measured values for all the considered biomasses. The model captures the pressure drop along the reactor axis, despite an underestimation with respect to the performed measurements. The producer gas composition resulting from the numerical model at the exit section is in quite good agreement with gas-chromatograph analyses (12% maximum error for CO and CO2 species), although the model predicts lower methane and hydrogen content in the syngas than the measurements show. Parametric analyses highlight that lower degrees of porosity enhance the pressure drop along the reactor axis, moving the zones characterized by the occurrence of the combustion and gasification phases towards the bottom. An increase in the biomass moisture content is associated with a delayed evolution of the temperature profile. The high energy expenditure in the evaporation phase occurs at the expense of the produced hydrogen and methane in the subsequent phases.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4226/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4226/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Costa M; La Villetta M; Piazzullo D; Cirillo D;doi: 10.3390/en14144226
handle: 20.500.14243/397394
The development of a one-dimensional (1D) phenomenological model for biomass gasification in downdraft reactors is presented in this study; the model was developed with the aim of highlighting the main advantages and limits related to feedstocks that are different from woodchip, such as hydro-char derived from the hydrothermal carbonization of green waste, or a mix of olive pomace and sawdust. An experimental validation of the model is performed. The numerically evaluated temperature evolution along the reactor gasifier is found to be in agreement with locally measured values for all the considered biomasses. The model captures the pressure drop along the reactor axis, despite an underestimation with respect to the performed measurements. The producer gas composition resulting from the numerical model at the exit section is in quite good agreement with gas-chromatograph analyses (12% maximum error for CO and CO2 species), although the model predicts lower methane and hydrogen content in the syngas than the measurements show. Parametric analyses highlight that lower degrees of porosity enhance the pressure drop along the reactor axis, moving the zones characterized by the occurrence of the combustion and gasification phases towards the bottom. An increase in the biomass moisture content is associated with a delayed evolution of the temperature profile. The high energy expenditure in the evaporation phase occurs at the expense of the produced hydrogen and methane in the subsequent phases.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4226/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4226/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV C.T. Chang; M. Costa; M. La Villetta; A. Macaluso; D. Piazzullo; L. Vanoli;handle: 20.500.14243/364446 , 11367/82198
A Combined Heat and Power (CHP) system fuelled with rice husk is analysed from the thermodynamic, exergetic and economic point of view. The system is based on a gasification process coupled with a rice drying system. The produced syngas is employed to power a Spark Ignition (SI) Internal Combustion Engine (ICE) working as an electric generator, while the jacket cooling water powers a bottoming Organic Rankine Cycle (ORC) to produce electricity for plant self-consumption. A parametric analysis is carried out to investigate thermodynamic performances by varying the gasifier Equivalent Ratio (ER): as the ER increases, the ICE produced power and combustion efficiency decrease, while the thermal efficiency increases. However, the system is always capable to produce power for self-consumption and the desiccant flow for drying. The characterization of the engine is then better assessed by means of a dedicated GT-Power engine model, optimized for syngas fuelling, revealing a power derating of the 30% with respect to the natural-gas feeding operation. Other main findings suggest that the global exergetic efficiency ranges between 10.6% and 8.5%, while the economic profitability, represented by the Simple Pay Back, Net Present Value and Profit Ratio, cannot be considered satisfactory due to the consistent investment cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV C.T. Chang; M. Costa; M. La Villetta; A. Macaluso; D. Piazzullo; L. Vanoli;handle: 20.500.14243/364446 , 11367/82198
A Combined Heat and Power (CHP) system fuelled with rice husk is analysed from the thermodynamic, exergetic and economic point of view. The system is based on a gasification process coupled with a rice drying system. The produced syngas is employed to power a Spark Ignition (SI) Internal Combustion Engine (ICE) working as an electric generator, while the jacket cooling water powers a bottoming Organic Rankine Cycle (ORC) to produce electricity for plant self-consumption. A parametric analysis is carried out to investigate thermodynamic performances by varying the gasifier Equivalent Ratio (ER): as the ER increases, the ICE produced power and combustion efficiency decrease, while the thermal efficiency increases. However, the system is always capable to produce power for self-consumption and the desiccant flow for drying. The characterization of the engine is then better assessed by means of a dedicated GT-Power engine model, optimized for syngas fuelling, revealing a power derating of the 30% with respect to the natural-gas feeding operation. Other main findings suggest that the global exergetic efficiency ranges between 10.6% and 8.5%, while the economic profitability, represented by the Simple Pay Back, Net Present Value and Profit Ratio, cannot be considered satisfactory due to the consistent investment cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2019 Italy, Italy, CroatiaPublisher:SAE International Caputo C.; Cirillo D.; Costa M.; Di Blasio G.; Di Palma M.; Piazzullo D.; Vujanović M.;doi: 10.4271/2019-24-0012
handle: 20.500.14243/523593
Syngas produced from biomass gasification is being increasingly considered as a promising alternative to traditional fuels in Spark-Ignition (SI) Internal Combustion Engines (ICEs). Due to the low energy density and extreme variability in the composition of this gaseous fuel, numerical modeling can give an important contribution to assure stable engine performances. The present work intends to give a contribution in this sense in this sense, by proposing a multi-level set of approaches, characterized by an increasing detail, as a tool aimed at the optimization of energy conversion of non-conventional fuels. At first, a specific characterization of the dependency of the syngas laminar flame speed upon its composition is achieved through an iterative approach pursued in the ANSYS ChemkinTM environment, where validated correlations of the flame speed tuning parameters are obtained in a zero-dimensional framework. Subsequently, the interaction between combustion kinetics and fluid dynamics is considered through the development of a mono-dimensional (1D) model of the whole engine system in the GT-Power environment. A predictive combustion model, tuned on the ground of the combustion parameters determined through the previous approach, is implemented to guarantee the correct prediction of the engine efficiencies as the primary energy related to the gaseous fuel composition varies. At last, a 3D Computational Fluid Dynamics (CFD) model is developed within the AVL FIRETM software to reproduce the engine combustion cycle within a Reynolds Averaged Navier Stokes (RANS) schematization. The detailed chemical reaction mechanism GRI-Mech 3.0 is used to give details about the syngas oxidation chain. All the numerical results are validated with respect to literature data as regards the laminar flame speed prediction, and by using experimental measurements under real operation and syngas generation through biomass gasification, as concerns the engine performances. The proposed multi-level analysis is proposed as a robust procedure suitable of fully accounting of the overall variability that characterizes the gaseous fuel as the biomass composition and operative conditions are varied.
IRIS Cnr arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2019 Italy, Italy, CroatiaPublisher:SAE International Caputo C.; Cirillo D.; Costa M.; Di Blasio G.; Di Palma M.; Piazzullo D.; Vujanović M.;doi: 10.4271/2019-24-0012
handle: 20.500.14243/523593
Syngas produced from biomass gasification is being increasingly considered as a promising alternative to traditional fuels in Spark-Ignition (SI) Internal Combustion Engines (ICEs). Due to the low energy density and extreme variability in the composition of this gaseous fuel, numerical modeling can give an important contribution to assure stable engine performances. The present work intends to give a contribution in this sense in this sense, by proposing a multi-level set of approaches, characterized by an increasing detail, as a tool aimed at the optimization of energy conversion of non-conventional fuels. At first, a specific characterization of the dependency of the syngas laminar flame speed upon its composition is achieved through an iterative approach pursued in the ANSYS ChemkinTM environment, where validated correlations of the flame speed tuning parameters are obtained in a zero-dimensional framework. Subsequently, the interaction between combustion kinetics and fluid dynamics is considered through the development of a mono-dimensional (1D) model of the whole engine system in the GT-Power environment. A predictive combustion model, tuned on the ground of the combustion parameters determined through the previous approach, is implemented to guarantee the correct prediction of the engine efficiencies as the primary energy related to the gaseous fuel composition varies. At last, a 3D Computational Fluid Dynamics (CFD) model is developed within the AVL FIRETM software to reproduce the engine combustion cycle within a Reynolds Averaged Navier Stokes (RANS) schematization. The detailed chemical reaction mechanism GRI-Mech 3.0 is used to give details about the syngas oxidation chain. All the numerical results are validated with respect to literature data as regards the laminar flame speed prediction, and by using experimental measurements under real operation and syngas generation through biomass gasification, as concerns the engine performances. The proposed multi-level analysis is proposed as a robust procedure suitable of fully accounting of the overall variability that characterizes the gaseous fuel as the biomass composition and operative conditions are varied.
IRIS Cnr arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:SAE International Piazzullo D; Costa M; Allocca L; Montanaro A; Rocco V;doi: 10.4271/2017-24-0041
handle: 20.500.14243/334078 , 2108/247353
During gasoline direct injection (GDI) in spark ignition engines, droplets may hit piston or liner surfaces and be rebounded or deposit in the liquid phase as wallfilm. This may determine slower secondary atomization and local enrichments of the mixture, hence be the reason of increased unburned hydrocarbons and particulate matter emissions at the exhaust. Complex phenomena indeed characterize the in-cylinder turbulent multi-phase system, where heat transfer involves the gaseous mixture (made of air and gasoline vapor), the liquid phase (droplets not yet evaporated and wallfilm) and the solid walls. A reliable 3D CFD modelling of the in-cylinder processes, therefore, necessarily requires also the correct simulation of the cooling effect due to the subtraction of the latent heat of vaporization of gasoline needed for secondary evaporation in the zone where droplets hit the wall. The related conductive heat transfer within the solid is to be taken into account. In this work, a preliminarily validated spray model is specifically implemented by solving the strongly coupled heat and mass transfer problem describing the liquid and vapor phases thermo-fluidynamics after impact and the wall change of temperature. The discussion is made considering a different boundary condition with respect to standard simulations. Sprays are assumed from to different injectors in order to verify the wallfilm simulation model: the impact over heated walls of the ECN "Spray G" is first discussed, by comparing numerical results with experimental measurements deriving from a combined use of the schlieren and Mie-scattering techniques, then the footprint on the wall of the spray delivered from a 6-hole Bosch injector is related with infrared thermography and LIF measurements taken from the literature.
CNR ExploRA arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2017-24-0041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2017-24-0041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:SAE International Piazzullo D; Costa M; Allocca L; Montanaro A; Rocco V;doi: 10.4271/2017-24-0041
handle: 20.500.14243/334078 , 2108/247353
During gasoline direct injection (GDI) in spark ignition engines, droplets may hit piston or liner surfaces and be rebounded or deposit in the liquid phase as wallfilm. This may determine slower secondary atomization and local enrichments of the mixture, hence be the reason of increased unburned hydrocarbons and particulate matter emissions at the exhaust. Complex phenomena indeed characterize the in-cylinder turbulent multi-phase system, where heat transfer involves the gaseous mixture (made of air and gasoline vapor), the liquid phase (droplets not yet evaporated and wallfilm) and the solid walls. A reliable 3D CFD modelling of the in-cylinder processes, therefore, necessarily requires also the correct simulation of the cooling effect due to the subtraction of the latent heat of vaporization of gasoline needed for secondary evaporation in the zone where droplets hit the wall. The related conductive heat transfer within the solid is to be taken into account. In this work, a preliminarily validated spray model is specifically implemented by solving the strongly coupled heat and mass transfer problem describing the liquid and vapor phases thermo-fluidynamics after impact and the wall change of temperature. The discussion is made considering a different boundary condition with respect to standard simulations. Sprays are assumed from to different injectors in order to verify the wallfilm simulation model: the impact over heated walls of the ECN "Spray G" is first discussed, by comparing numerical results with experimental measurements deriving from a combined use of the schlieren and Mie-scattering techniques, then the footprint on the wall of the spray delivered from a 6-hole Bosch injector is related with infrared thermography and LIF measurements taken from the literature.
CNR ExploRA arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2017-24-0041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2017-24-0041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Michela Costa; Daniele Piazzullo; Davide Di Battista; Angelo De Vita;Energy generation from waste renewable sources represent an efficient way to provide green power with the highest environmental benefits, tackling problems related to the high costs for their disposal through the conversion of these wastes in biofuels. However, several challenges hinder their intensified use, as the huge variability in the amount and composition of these sources forces authors to enlarge their studies on the entire biomass-to-energy chain sustainability where the power technology can be installed with the highest profits. In present work, the technical, environmental and economic impact of the entire biomass-to-energy supply chain is assessed with reference to a real commercially available Combined Heat and Power (CHP) system, the CMD ECO20X based on biomass gasification, installed as operational demonstration in the Municipality of Laurino in the National Park of Cilento, Vallo di Diano, and Alburni (PNCVD) in Southern part of Italy. Several calculation tools previously developed by authors for the analysis of the performance of the various components of the ECO20X system are here employed to define the mass and energy fluxes that characterize its operations in a local supply chain where forest management residues (oak and beech trees) and olive pomace from oil mills in the area are exploited. The analysis aims to quantify the energy absorption necessary for the pretreatment operations of the organic residue (shredding, briquetting, drying) which are essential for gasification, and how much they affect the production deriving from the biomass cogeneration process itself. Then, measurements in terms of pollutants related to the energy production at the municipality and of the air quality in the area, help in the evaluation of the plant environmental impact from a global perspective, by virtue of data obtained from an LCA analysis conducted considering one year functioning of the CHP plant.
IRIS Cnr arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Michela Costa; Daniele Piazzullo; Davide Di Battista; Angelo De Vita;Energy generation from waste renewable sources represent an efficient way to provide green power with the highest environmental benefits, tackling problems related to the high costs for their disposal through the conversion of these wastes in biofuels. However, several challenges hinder their intensified use, as the huge variability in the amount and composition of these sources forces authors to enlarge their studies on the entire biomass-to-energy chain sustainability where the power technology can be installed with the highest profits. In present work, the technical, environmental and economic impact of the entire biomass-to-energy supply chain is assessed with reference to a real commercially available Combined Heat and Power (CHP) system, the CMD ECO20X based on biomass gasification, installed as operational demonstration in the Municipality of Laurino in the National Park of Cilento, Vallo di Diano, and Alburni (PNCVD) in Southern part of Italy. Several calculation tools previously developed by authors for the analysis of the performance of the various components of the ECO20X system are here employed to define the mass and energy fluxes that characterize its operations in a local supply chain where forest management residues (oak and beech trees) and olive pomace from oil mills in the area are exploited. The analysis aims to quantify the energy absorption necessary for the pretreatment operations of the organic residue (shredding, briquetting, drying) which are essential for gasification, and how much they affect the production deriving from the biomass cogeneration process itself. Then, measurements in terms of pollutants related to the energy production at the municipality and of the air quality in the area, help in the evaluation of the plant environmental impact from a global perspective, by virtue of data obtained from an LCA analysis conducted considering one year functioning of the CHP plant.
IRIS Cnr arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Michela Costa; Luca Marchitto; Daniele Piazzullo; Maria Vittoria Prati;handle: 20.500.14243/423333
A combined experimental and numerical characterization of a Compression Ignition (CI) engine is here presented under Diesel and Waste Vegetable Oil (WVO) fueling at different loads. Main objective is to prove the feasibility of preheated WVO as substitute of Diesel fuel in CI engine for cogeneration purposes without modifying the engine geometry. After a characterization of the WVO physical properties, an appropriate pre-heating system is mounted on the engine injection line in order to reduce viscosity. The in-cylinder pressure analysis reveals no significant differences under both fuelling modes, despite an increased fuel consumption measured for WVO. This last provides higher NOx, CO and CO2 emissions, with a strong reduction (50e80%) of the soot amount. The potential impact of employing WVO is then assessed through a Life Cycle Assessment (LCA) methodology with focus on the fuel production and use stages. A reduction in all the major impact categories is noticed with respect to Diesel fueling. At the same time, a 3D CFD model of the engine is developed and validated. The WVO injection process shows slower spray break-up and evaporation rates due to higher viscosity and density. Despite the higher penetration lengths and increased amount of fuel burnt closer to the cylinder walls, the soot at the exhausts remains low as a consequence of the absence of aromatic compounds and an enhanced oxidation process due to the presence of oxygen atoms in the WVO molecules. This aspect is also responsible of the increased NOx release.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Michela Costa; Luca Marchitto; Daniele Piazzullo; Maria Vittoria Prati;handle: 20.500.14243/423333
A combined experimental and numerical characterization of a Compression Ignition (CI) engine is here presented under Diesel and Waste Vegetable Oil (WVO) fueling at different loads. Main objective is to prove the feasibility of preheated WVO as substitute of Diesel fuel in CI engine for cogeneration purposes without modifying the engine geometry. After a characterization of the WVO physical properties, an appropriate pre-heating system is mounted on the engine injection line in order to reduce viscosity. The in-cylinder pressure analysis reveals no significant differences under both fuelling modes, despite an increased fuel consumption measured for WVO. This last provides higher NOx, CO and CO2 emissions, with a strong reduction (50e80%) of the soot amount. The potential impact of employing WVO is then assessed through a Life Cycle Assessment (LCA) methodology with focus on the fuel production and use stages. A reduction in all the major impact categories is noticed with respect to Diesel fueling. At the same time, a 3D CFD model of the engine is developed and validated. The WVO injection process shows slower spray break-up and evaporation rates due to higher viscosity and density. Despite the higher penetration lengths and increased amount of fuel burnt closer to the cylinder walls, the soot at the exhausts remains low as a consequence of the absence of aromatic compounds and an enhanced oxidation process due to the presence of oxygen atoms in the WVO molecules. This aspect is also responsible of the increased NOx release.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Authors: Costa M.; Piazzullo D.;doi: 10.3390/en17030738
handle: 20.500.14243/492681
Syngas from biomass gasification represents an interesting alternative to traditional fuels in spark-ignition (SI) internal combustion engines (ICEs). The presence of inert species in the syngas (H2O, CO2, N2) reduces the amount of primary energy that can be exploited through combustion, but it can also have an insulating effect on the cylinder walls, increasing the average combustion temperature and reducing heat losses. A predictive numerical approach is here proposed to derive hints related to the possible optimization of the syngas-engine coupling and to balance at the best the opposite effects taking place during the energy conversion process. A three-dimensional (3D) computational fluid dynamics (CFD) model is developed, based on a detailed kinetic mechanism of combustion, to reproduce the combustion cycle of a cogenerative engine fueled by syngas deriving from the gasification of different feedstocks. Numerical results are validated with respect to experimental measurements made under real operation. Main findings reveal how heat transfer mainly occurs through the chamber and piston walls up to 50° after top dead center (ATDC), with the presence of inert gases (mostly N2) which decrease the syngas lower calorific value but have a beneficial insulating effect along the liner walls. However, the overall conversion efficiency of the biomass-to-ICE chain is mostly favored by high-quality syngas from biomasses with low-ashes content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Authors: Costa M.; Piazzullo D.;doi: 10.3390/en17030738
handle: 20.500.14243/492681
Syngas from biomass gasification represents an interesting alternative to traditional fuels in spark-ignition (SI) internal combustion engines (ICEs). The presence of inert species in the syngas (H2O, CO2, N2) reduces the amount of primary energy that can be exploited through combustion, but it can also have an insulating effect on the cylinder walls, increasing the average combustion temperature and reducing heat losses. A predictive numerical approach is here proposed to derive hints related to the possible optimization of the syngas-engine coupling and to balance at the best the opposite effects taking place during the energy conversion process. A three-dimensional (3D) computational fluid dynamics (CFD) model is developed, based on a detailed kinetic mechanism of combustion, to reproduce the combustion cycle of a cogenerative engine fueled by syngas deriving from the gasification of different feedstocks. Numerical results are validated with respect to experimental measurements made under real operation. Main findings reveal how heat transfer mainly occurs through the chamber and piston walls up to 50° after top dead center (ATDC), with the presence of inert gases (mostly N2) which decrease the syngas lower calorific value but have a beneficial insulating effect along the liner walls. However, the overall conversion efficiency of the biomass-to-ICE chain is mostly favored by high-quality syngas from biomasses with low-ashes content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 ItalyPublisher:Elsevier BV Authors: Davide Adinolfi; Michela Costa; Adolfo Palombo; Daniele Piazzullo;handle: 11588/880017 , 20.500.14243/440550
Seasonal storage of hydrogen is a valuable option today increasingly considered in order to optimize cogeneration plants under continuous operation in an incentive framework where electricity sale to the national grids is becoming less economically profitable than in the past. The paper concerns the numerical study and optimization of a cogeneration plant installed in an industrial site having an availability of hydrogen over a continuous time scale, to meet the energy needs and mitigating the environmental impact of the plant operation by reducing the energy withdrawal from traditional sources. Two alternatives are analyzed into detail: the former regards energy production through an internal combustion engine, this last properly controlled to be fueled with blends of natural gas and increasing percentages of hydrogen, the latter concerning the addition of fuel cells to the proposed layout to further reduce the electricity integration by the grid. The dynamic response of the cogeneration system under examination is dynamically evaluated to efficiently fulfill the industrial loads to be fulfilled. First, optimization is performed by implementing a PID controller to better track the industrial demand of electric energy. The main results of this solution reveal a 81% reduction of excess electricity, a 7% reduction of natural gas consumed but a 47% raise of CO2 emissions due to the increase in thermal integration. Then, an additional energy generation from fuel cells is assumed. An economic analysis is carried out for each of the implemented configurations. The adoption of fuel cells, despite requiring a greater initial investment, allows obtaining a SPB of 1,4 years ( 16%), 1,17 Mln V of avoided costs ( 18,5%) and 1320 t/year of CO2 emissions avoided ( 95%) with respect to the initial layout.
IRIS Cnr arrow_drop_down International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.10.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.10.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 ItalyPublisher:Elsevier BV Authors: Davide Adinolfi; Michela Costa; Adolfo Palombo; Daniele Piazzullo;handle: 11588/880017 , 20.500.14243/440550
Seasonal storage of hydrogen is a valuable option today increasingly considered in order to optimize cogeneration plants under continuous operation in an incentive framework where electricity sale to the national grids is becoming less economically profitable than in the past. The paper concerns the numerical study and optimization of a cogeneration plant installed in an industrial site having an availability of hydrogen over a continuous time scale, to meet the energy needs and mitigating the environmental impact of the plant operation by reducing the energy withdrawal from traditional sources. Two alternatives are analyzed into detail: the former regards energy production through an internal combustion engine, this last properly controlled to be fueled with blends of natural gas and increasing percentages of hydrogen, the latter concerning the addition of fuel cells to the proposed layout to further reduce the electricity integration by the grid. The dynamic response of the cogeneration system under examination is dynamically evaluated to efficiently fulfill the industrial loads to be fulfilled. First, optimization is performed by implementing a PID controller to better track the industrial demand of electric energy. The main results of this solution reveal a 81% reduction of excess electricity, a 7% reduction of natural gas consumed but a 47% raise of CO2 emissions due to the increase in thermal integration. Then, an additional energy generation from fuel cells is assumed. An economic analysis is carried out for each of the implemented configurations. The adoption of fuel cells, despite requiring a greater initial investment, allows obtaining a SPB of 1,4 years ( 16%), 1,17 Mln V of avoided costs ( 18,5%) and 1320 t/year of CO2 emissions avoided ( 95%) with respect to the initial layout.
IRIS Cnr arrow_drop_down International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.10.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.10.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Part of book or chapter of book 2021 ItalyDaniele Piazzullo; Michela Costa; F Calise; M Vicidomini; MDentice D'Accadia;handle: 20.500.14243/426542
Renewable energy sources exploited for Combined Heat and Power (CHP) generation purposes represent a suitable solution for an efficient energy production in industrial and commercial applications, helping to reduce the consumption of fossil fuels and the related emission of GreenHouse Gases (GHG). The aim of this work is to assess the technical, economic and environmental feasibility of an integrated CHP plant, where an Internal Combustion Engine (ICE) fuelled with syngas deriving from gasification of residual biomass is combined with a PV solar system. The ICE has a rated power of 20 kWel and a thermal capacity of 40 kWth; this last achieved by recovering heat from the cooling circuit and from the exhaust gases; the PV system has a peak power of 20 kWel. A 100-kWh lithium battery is also included in the proposed layout, to manage the electrical energy fluxes to and from the national grid. The overall system is dynamically simulated within the TRNSYS environment, with the scope of assessing the conversion efficiency with respect to an annual dynamic load relevant to the energy consumption of a generical farmhouse where the gasifier feedstock is available. The proposed layout reveals as an efficient solution to totally cover the thermal demand during the whole year, as well as to match the electrical load for most of the period analysed. The implemented solution may lead to a reduction of almost 76 tons of CO2 emitted per year, with a related cost saving of about 393 kEUR in an estimated lifetime of 25 years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2761f28197031f02ab83a99039ae6f0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2761f28197031f02ab83a99039ae6f0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2021 ItalyDaniele Piazzullo; Michela Costa; F Calise; M Vicidomini; MDentice D'Accadia;handle: 20.500.14243/426542
Renewable energy sources exploited for Combined Heat and Power (CHP) generation purposes represent a suitable solution for an efficient energy production in industrial and commercial applications, helping to reduce the consumption of fossil fuels and the related emission of GreenHouse Gases (GHG). The aim of this work is to assess the technical, economic and environmental feasibility of an integrated CHP plant, where an Internal Combustion Engine (ICE) fuelled with syngas deriving from gasification of residual biomass is combined with a PV solar system. The ICE has a rated power of 20 kWel and a thermal capacity of 40 kWth; this last achieved by recovering heat from the cooling circuit and from the exhaust gases; the PV system has a peak power of 20 kWel. A 100-kWh lithium battery is also included in the proposed layout, to manage the electrical energy fluxes to and from the national grid. The overall system is dynamically simulated within the TRNSYS environment, with the scope of assessing the conversion efficiency with respect to an annual dynamic load relevant to the energy consumption of a generical farmhouse where the gasifier feedstock is available. The proposed layout reveals as an efficient solution to totally cover the thermal demand during the whole year, as well as to match the electrical load for most of the period analysed. The implemented solution may lead to a reduction of almost 76 tons of CO2 emitted per year, with a related cost saving of about 393 kEUR in an estimated lifetime of 25 years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2761f28197031f02ab83a99039ae6f0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::2761f28197031f02ab83a99039ae6f0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object 2020 ItalyPublisher:Prof. Dr. Selahaddin Orhan Akansu Authors: Michela Costa; Daniele Piazzullo; P Annunziata; A Palombo;handle: 11588/857050 , 20.500.14243/426549
Present paper analyses the flexibility of co-combustion power supply in a Spark Ignition (SI) engine fuelled with Natural Gas (NG) and biogas (BG) for cogenerative purposes. The biogas properties are strongly influenced by the source biomass and by the characteristics of the conversion process, thus the possibility of a double-ramp supply with NG taken from the national distribution network allows to compensate for any decay in engine performance linked to the worst quality of the fuel and, therefore, to ensure more stable operations over time. The effects deriving from the addition of NG are quantified through the development of a dedicated one dimensional (1D) numerical model of the engine in GT-Power environment. The combustion sub-model is properly customized according to the different fuel composition relying on a detailed kinetic model, where the laminar flame rate is evaluated for each specific fuel considered. As a result, co-combustion operation appears to be a feasible solution both on the technical and economic point. The developed model can be properly adapted for the executive design of energy systems powered by NG -biogas mixtures, helping in the optimization of the energy and environmental performance.
CNR ExploRA arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11588/857050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11588/857050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object 2020 ItalyPublisher:Prof. Dr. Selahaddin Orhan Akansu Authors: Michela Costa; Daniele Piazzullo; P Annunziata; A Palombo;handle: 11588/857050 , 20.500.14243/426549
Present paper analyses the flexibility of co-combustion power supply in a Spark Ignition (SI) engine fuelled with Natural Gas (NG) and biogas (BG) for cogenerative purposes. The biogas properties are strongly influenced by the source biomass and by the characteristics of the conversion process, thus the possibility of a double-ramp supply with NG taken from the national distribution network allows to compensate for any decay in engine performance linked to the worst quality of the fuel and, therefore, to ensure more stable operations over time. The effects deriving from the addition of NG are quantified through the development of a dedicated one dimensional (1D) numerical model of the engine in GT-Power environment. The combustion sub-model is properly customized according to the different fuel composition relying on a detailed kinetic model, where the laminar flame rate is evaluated for each specific fuel considered. As a result, co-combustion operation appears to be a feasible solution both on the technical and economic point. The developed model can be properly adapted for the executive design of energy systems powered by NG -biogas mixtures, helping in the optimization of the energy and environmental performance.
CNR ExploRA arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11588/857050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11588/857050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Costa M; La Villetta M; Piazzullo D; Cirillo D;doi: 10.3390/en14144226
handle: 20.500.14243/397394
The development of a one-dimensional (1D) phenomenological model for biomass gasification in downdraft reactors is presented in this study; the model was developed with the aim of highlighting the main advantages and limits related to feedstocks that are different from woodchip, such as hydro-char derived from the hydrothermal carbonization of green waste, or a mix of olive pomace and sawdust. An experimental validation of the model is performed. The numerically evaluated temperature evolution along the reactor gasifier is found to be in agreement with locally measured values for all the considered biomasses. The model captures the pressure drop along the reactor axis, despite an underestimation with respect to the performed measurements. The producer gas composition resulting from the numerical model at the exit section is in quite good agreement with gas-chromatograph analyses (12% maximum error for CO and CO2 species), although the model predicts lower methane and hydrogen content in the syngas than the measurements show. Parametric analyses highlight that lower degrees of porosity enhance the pressure drop along the reactor axis, moving the zones characterized by the occurrence of the combustion and gasification phases towards the bottom. An increase in the biomass moisture content is associated with a delayed evolution of the temperature profile. The high energy expenditure in the evaporation phase occurs at the expense of the produced hydrogen and methane in the subsequent phases.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4226/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4226/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Costa M; La Villetta M; Piazzullo D; Cirillo D;doi: 10.3390/en14144226
handle: 20.500.14243/397394
The development of a one-dimensional (1D) phenomenological model for biomass gasification in downdraft reactors is presented in this study; the model was developed with the aim of highlighting the main advantages and limits related to feedstocks that are different from woodchip, such as hydro-char derived from the hydrothermal carbonization of green waste, or a mix of olive pomace and sawdust. An experimental validation of the model is performed. The numerically evaluated temperature evolution along the reactor gasifier is found to be in agreement with locally measured values for all the considered biomasses. The model captures the pressure drop along the reactor axis, despite an underestimation with respect to the performed measurements. The producer gas composition resulting from the numerical model at the exit section is in quite good agreement with gas-chromatograph analyses (12% maximum error for CO and CO2 species), although the model predicts lower methane and hydrogen content in the syngas than the measurements show. Parametric analyses highlight that lower degrees of porosity enhance the pressure drop along the reactor axis, moving the zones characterized by the occurrence of the combustion and gasification phases towards the bottom. An increase in the biomass moisture content is associated with a delayed evolution of the temperature profile. The high energy expenditure in the evaporation phase occurs at the expense of the produced hydrogen and methane in the subsequent phases.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4226/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4226/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV C.T. Chang; M. Costa; M. La Villetta; A. Macaluso; D. Piazzullo; L. Vanoli;handle: 20.500.14243/364446 , 11367/82198
A Combined Heat and Power (CHP) system fuelled with rice husk is analysed from the thermodynamic, exergetic and economic point of view. The system is based on a gasification process coupled with a rice drying system. The produced syngas is employed to power a Spark Ignition (SI) Internal Combustion Engine (ICE) working as an electric generator, while the jacket cooling water powers a bottoming Organic Rankine Cycle (ORC) to produce electricity for plant self-consumption. A parametric analysis is carried out to investigate thermodynamic performances by varying the gasifier Equivalent Ratio (ER): as the ER increases, the ICE produced power and combustion efficiency decrease, while the thermal efficiency increases. However, the system is always capable to produce power for self-consumption and the desiccant flow for drying. The characterization of the engine is then better assessed by means of a dedicated GT-Power engine model, optimized for syngas fuelling, revealing a power derating of the 30% with respect to the natural-gas feeding operation. Other main findings suggest that the global exergetic efficiency ranges between 10.6% and 8.5%, while the economic profitability, represented by the Simple Pay Back, Net Present Value and Profit Ratio, cannot be considered satisfactory due to the consistent investment cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV C.T. Chang; M. Costa; M. La Villetta; A. Macaluso; D. Piazzullo; L. Vanoli;handle: 20.500.14243/364446 , 11367/82198
A Combined Heat and Power (CHP) system fuelled with rice husk is analysed from the thermodynamic, exergetic and economic point of view. The system is based on a gasification process coupled with a rice drying system. The produced syngas is employed to power a Spark Ignition (SI) Internal Combustion Engine (ICE) working as an electric generator, while the jacket cooling water powers a bottoming Organic Rankine Cycle (ORC) to produce electricity for plant self-consumption. A parametric analysis is carried out to investigate thermodynamic performances by varying the gasifier Equivalent Ratio (ER): as the ER increases, the ICE produced power and combustion efficiency decrease, while the thermal efficiency increases. However, the system is always capable to produce power for self-consumption and the desiccant flow for drying. The characterization of the engine is then better assessed by means of a dedicated GT-Power engine model, optimized for syngas fuelling, revealing a power derating of the 30% with respect to the natural-gas feeding operation. Other main findings suggest that the global exergetic efficiency ranges between 10.6% and 8.5%, while the economic profitability, represented by the Simple Pay Back, Net Present Value and Profit Ratio, cannot be considered satisfactory due to the consistent investment cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2019 Italy, Italy, CroatiaPublisher:SAE International Caputo C.; Cirillo D.; Costa M.; Di Blasio G.; Di Palma M.; Piazzullo D.; Vujanović M.;doi: 10.4271/2019-24-0012
handle: 20.500.14243/523593
Syngas produced from biomass gasification is being increasingly considered as a promising alternative to traditional fuels in Spark-Ignition (SI) Internal Combustion Engines (ICEs). Due to the low energy density and extreme variability in the composition of this gaseous fuel, numerical modeling can give an important contribution to assure stable engine performances. The present work intends to give a contribution in this sense in this sense, by proposing a multi-level set of approaches, characterized by an increasing detail, as a tool aimed at the optimization of energy conversion of non-conventional fuels. At first, a specific characterization of the dependency of the syngas laminar flame speed upon its composition is achieved through an iterative approach pursued in the ANSYS ChemkinTM environment, where validated correlations of the flame speed tuning parameters are obtained in a zero-dimensional framework. Subsequently, the interaction between combustion kinetics and fluid dynamics is considered through the development of a mono-dimensional (1D) model of the whole engine system in the GT-Power environment. A predictive combustion model, tuned on the ground of the combustion parameters determined through the previous approach, is implemented to guarantee the correct prediction of the engine efficiencies as the primary energy related to the gaseous fuel composition varies. At last, a 3D Computational Fluid Dynamics (CFD) model is developed within the AVL FIRETM software to reproduce the engine combustion cycle within a Reynolds Averaged Navier Stokes (RANS) schematization. The detailed chemical reaction mechanism GRI-Mech 3.0 is used to give details about the syngas oxidation chain. All the numerical results are validated with respect to literature data as regards the laminar flame speed prediction, and by using experimental measurements under real operation and syngas generation through biomass gasification, as concerns the engine performances. The proposed multi-level analysis is proposed as a robust procedure suitable of fully accounting of the overall variability that characterizes the gaseous fuel as the biomass composition and operative conditions are varied.
IRIS Cnr arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2019 Italy, Italy, CroatiaPublisher:SAE International Caputo C.; Cirillo D.; Costa M.; Di Blasio G.; Di Palma M.; Piazzullo D.; Vujanović M.;doi: 10.4271/2019-24-0012
handle: 20.500.14243/523593
Syngas produced from biomass gasification is being increasingly considered as a promising alternative to traditional fuels in Spark-Ignition (SI) Internal Combustion Engines (ICEs). Due to the low energy density and extreme variability in the composition of this gaseous fuel, numerical modeling can give an important contribution to assure stable engine performances. The present work intends to give a contribution in this sense in this sense, by proposing a multi-level set of approaches, characterized by an increasing detail, as a tool aimed at the optimization of energy conversion of non-conventional fuels. At first, a specific characterization of the dependency of the syngas laminar flame speed upon its composition is achieved through an iterative approach pursued in the ANSYS ChemkinTM environment, where validated correlations of the flame speed tuning parameters are obtained in a zero-dimensional framework. Subsequently, the interaction between combustion kinetics and fluid dynamics is considered through the development of a mono-dimensional (1D) model of the whole engine system in the GT-Power environment. A predictive combustion model, tuned on the ground of the combustion parameters determined through the previous approach, is implemented to guarantee the correct prediction of the engine efficiencies as the primary energy related to the gaseous fuel composition varies. At last, a 3D Computational Fluid Dynamics (CFD) model is developed within the AVL FIRETM software to reproduce the engine combustion cycle within a Reynolds Averaged Navier Stokes (RANS) schematization. The detailed chemical reaction mechanism GRI-Mech 3.0 is used to give details about the syngas oxidation chain. All the numerical results are validated with respect to literature data as regards the laminar flame speed prediction, and by using experimental measurements under real operation and syngas generation through biomass gasification, as concerns the engine performances. The proposed multi-level analysis is proposed as a robust procedure suitable of fully accounting of the overall variability that characterizes the gaseous fuel as the biomass composition and operative conditions are varied.
IRIS Cnr arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2019Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2019-24-0012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:SAE International Piazzullo D; Costa M; Allocca L; Montanaro A; Rocco V;doi: 10.4271/2017-24-0041
handle: 20.500.14243/334078 , 2108/247353
During gasoline direct injection (GDI) in spark ignition engines, droplets may hit piston or liner surfaces and be rebounded or deposit in the liquid phase as wallfilm. This may determine slower secondary atomization and local enrichments of the mixture, hence be the reason of increased unburned hydrocarbons and particulate matter emissions at the exhaust. Complex phenomena indeed characterize the in-cylinder turbulent multi-phase system, where heat transfer involves the gaseous mixture (made of air and gasoline vapor), the liquid phase (droplets not yet evaporated and wallfilm) and the solid walls. A reliable 3D CFD modelling of the in-cylinder processes, therefore, necessarily requires also the correct simulation of the cooling effect due to the subtraction of the latent heat of vaporization of gasoline needed for secondary evaporation in the zone where droplets hit the wall. The related conductive heat transfer within the solid is to be taken into account. In this work, a preliminarily validated spray model is specifically implemented by solving the strongly coupled heat and mass transfer problem describing the liquid and vapor phases thermo-fluidynamics after impact and the wall change of temperature. The discussion is made considering a different boundary condition with respect to standard simulations. Sprays are assumed from to different injectors in order to verify the wallfilm simulation model: the impact over heated walls of the ECN "Spray G" is first discussed, by comparing numerical results with experimental measurements deriving from a combined use of the schlieren and Mie-scattering techniques, then the footprint on the wall of the spray delivered from a 6-hole Bosch injector is related with infrared thermography and LIF measurements taken from the literature.
CNR ExploRA arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2017-24-0041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2017-24-0041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:SAE International Piazzullo D; Costa M; Allocca L; Montanaro A; Rocco V;doi: 10.4271/2017-24-0041
handle: 20.500.14243/334078 , 2108/247353
During gasoline direct injection (GDI) in spark ignition engines, droplets may hit piston or liner surfaces and be rebounded or deposit in the liquid phase as wallfilm. This may determine slower secondary atomization and local enrichments of the mixture, hence be the reason of increased unburned hydrocarbons and particulate matter emissions at the exhaust. Complex phenomena indeed characterize the in-cylinder turbulent multi-phase system, where heat transfer involves the gaseous mixture (made of air and gasoline vapor), the liquid phase (droplets not yet evaporated and wallfilm) and the solid walls. A reliable 3D CFD modelling of the in-cylinder processes, therefore, necessarily requires also the correct simulation of the cooling effect due to the subtraction of the latent heat of vaporization of gasoline needed for secondary evaporation in the zone where droplets hit the wall. The related conductive heat transfer within the solid is to be taken into account. In this work, a preliminarily validated spray model is specifically implemented by solving the strongly coupled heat and mass transfer problem describing the liquid and vapor phases thermo-fluidynamics after impact and the wall change of temperature. The discussion is made considering a different boundary condition with respect to standard simulations. Sprays are assumed from to different injectors in order to verify the wallfilm simulation model: the impact over heated walls of the ECN "Spray G" is first discussed, by comparing numerical results with experimental measurements deriving from a combined use of the schlieren and Mie-scattering techniques, then the footprint on the wall of the spray delivered from a 6-hole Bosch injector is related with infrared thermography and LIF measurements taken from the literature.
CNR ExploRA arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2017-24-0041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2017-24-0041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Michela Costa; Daniele Piazzullo; Davide Di Battista; Angelo De Vita;Energy generation from waste renewable sources represent an efficient way to provide green power with the highest environmental benefits, tackling problems related to the high costs for their disposal through the conversion of these wastes in biofuels. However, several challenges hinder their intensified use, as the huge variability in the amount and composition of these sources forces authors to enlarge their studies on the entire biomass-to-energy chain sustainability where the power technology can be installed with the highest profits. In present work, the technical, environmental and economic impact of the entire biomass-to-energy supply chain is assessed with reference to a real commercially available Combined Heat and Power (CHP) system, the CMD ECO20X based on biomass gasification, installed as operational demonstration in the Municipality of Laurino in the National Park of Cilento, Vallo di Diano, and Alburni (PNCVD) in Southern part of Italy. Several calculation tools previously developed by authors for the analysis of the performance of the various components of the ECO20X system are here employed to define the mass and energy fluxes that characterize its operations in a local supply chain where forest management residues (oak and beech trees) and olive pomace from oil mills in the area are exploited. The analysis aims to quantify the energy absorption necessary for the pretreatment operations of the organic residue (shredding, briquetting, drying) which are essential for gasification, and how much they affect the production deriving from the biomass cogeneration process itself. Then, measurements in terms of pollutants related to the energy production at the municipality and of the air quality in the area, help in the evaluation of the plant environmental impact from a global perspective, by virtue of data obtained from an LCA analysis conducted considering one year functioning of the CHP plant.
IRIS Cnr arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors: Michela Costa; Daniele Piazzullo; Davide Di Battista; Angelo De Vita;Energy generation from waste renewable sources represent an efficient way to provide green power with the highest environmental benefits, tackling problems related to the high costs for their disposal through the conversion of these wastes in biofuels. However, several challenges hinder their intensified use, as the huge variability in the amount and composition of these sources forces authors to enlarge their studies on the entire biomass-to-energy chain sustainability where the power technology can be installed with the highest profits. In present work, the technical, environmental and economic impact of the entire biomass-to-energy supply chain is assessed with reference to a real commercially available Combined Heat and Power (CHP) system, the CMD ECO20X based on biomass gasification, installed as operational demonstration in the Municipality of Laurino in the National Park of Cilento, Vallo di Diano, and Alburni (PNCVD) in Southern part of Italy. Several calculation tools previously developed by authors for the analysis of the performance of the various components of the ECO20X system are here employed to define the mass and energy fluxes that characterize its operations in a local supply chain where forest management residues (oak and beech trees) and olive pomace from oil mills in the area are exploited. The analysis aims to quantify the energy absorption necessary for the pretreatment operations of the organic residue (shredding, briquetting, drying) which are essential for gasification, and how much they affect the production deriving from the biomass cogeneration process itself. Then, measurements in terms of pollutants related to the energy production at the municipality and of the air quality in the area, help in the evaluation of the plant environmental impact from a global perspective, by virtue of data obtained from an LCA analysis conducted considering one year functioning of the CHP plant.
IRIS Cnr arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Michela Costa; Luca Marchitto; Daniele Piazzullo; Maria Vittoria Prati;handle: 20.500.14243/423333
A combined experimental and numerical characterization of a Compression Ignition (CI) engine is here presented under Diesel and Waste Vegetable Oil (WVO) fueling at different loads. Main objective is to prove the feasibility of preheated WVO as substitute of Diesel fuel in CI engine for cogeneration purposes without modifying the engine geometry. After a characterization of the WVO physical properties, an appropriate pre-heating system is mounted on the engine injection line in order to reduce viscosity. The in-cylinder pressure analysis reveals no significant differences under both fuelling modes, despite an increased fuel consumption measured for WVO. This last provides higher NOx, CO and CO2 emissions, with a strong reduction (50e80%) of the soot amount. The potential impact of employing WVO is then assessed through a Life Cycle Assessment (LCA) methodology with focus on the fuel production and use stages. A reduction in all the major impact categories is noticed with respect to Diesel fueling. At the same time, a 3D CFD model of the engine is developed and validated. The WVO injection process shows slower spray break-up and evaporation rates due to higher viscosity and density. Despite the higher penetration lengths and increased amount of fuel burnt closer to the cylinder walls, the soot at the exhausts remains low as a consequence of the absence of aromatic compounds and an enhanced oxidation process due to the presence of oxygen atoms in the WVO molecules. This aspect is also responsible of the increased NOx release.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Michela Costa; Luca Marchitto; Daniele Piazzullo; Maria Vittoria Prati;handle: 20.500.14243/423333
A combined experimental and numerical characterization of a Compression Ignition (CI) engine is here presented under Diesel and Waste Vegetable Oil (WVO) fueling at different loads. Main objective is to prove the feasibility of preheated WVO as substitute of Diesel fuel in CI engine for cogeneration purposes without modifying the engine geometry. After a characterization of the WVO physical properties, an appropriate pre-heating system is mounted on the engine injection line in order to reduce viscosity. The in-cylinder pressure analysis reveals no significant differences under both fuelling modes, despite an increased fuel consumption measured for WVO. This last provides higher NOx, CO and CO2 emissions, with a strong reduction (50e80%) of the soot amount. The potential impact of employing WVO is then assessed through a Life Cycle Assessment (LCA) methodology with focus on the fuel production and use stages. A reduction in all the major impact categories is noticed with respect to Diesel fueling. At the same time, a 3D CFD model of the engine is developed and validated. The WVO injection process shows slower spray break-up and evaporation rates due to higher viscosity and density. Despite the higher penetration lengths and increased amount of fuel burnt closer to the cylinder walls, the soot at the exhausts remains low as a consequence of the absence of aromatic compounds and an enhanced oxidation process due to the presence of oxygen atoms in the WVO molecules. This aspect is also responsible of the increased NOx release.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Authors: Costa M.; Piazzullo D.;doi: 10.3390/en17030738
handle: 20.500.14243/492681
Syngas from biomass gasification represents an interesting alternative to traditional fuels in spark-ignition (SI) internal combustion engines (ICEs). The presence of inert species in the syngas (H2O, CO2, N2) reduces the amount of primary energy that can be exploited through combustion, but it can also have an insulating effect on the cylinder walls, increasing the average combustion temperature and reducing heat losses. A predictive numerical approach is here proposed to derive hints related to the possible optimization of the syngas-engine coupling and to balance at the best the opposite effects taking place during the energy conversion process. A three-dimensional (3D) computational fluid dynamics (CFD) model is developed, based on a detailed kinetic mechanism of combustion, to reproduce the combustion cycle of a cogenerative engine fueled by syngas deriving from the gasification of different feedstocks. Numerical results are validated with respect to experimental measurements made under real operation. Main findings reveal how heat transfer mainly occurs through the chamber and piston walls up to 50° after top dead center (ATDC), with the presence of inert gases (mostly N2) which decrease the syngas lower calorific value but have a beneficial insulating effect along the liner walls. However, the overall conversion efficiency of the biomass-to-ICE chain is mostly favored by high-quality syngas from biomasses with low-ashes content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Authors: Costa M.; Piazzullo D.;doi: 10.3390/en17030738
handle: 20.500.14243/492681
Syngas from biomass gasification represents an interesting alternative to traditional fuels in spark-ignition (SI) internal combustion engines (ICEs). The presence of inert species in the syngas (H2O, CO2, N2) reduces the amount of primary energy that can be exploited through combustion, but it can also have an insulating effect on the cylinder walls, increasing the average combustion temperature and reducing heat losses. A predictive numerical approach is here proposed to derive hints related to the possible optimization of the syngas-engine coupling and to balance at the best the opposite effects taking place during the energy conversion process. A three-dimensional (3D) computational fluid dynamics (CFD) model is developed, based on a detailed kinetic mechanism of combustion, to reproduce the combustion cycle of a cogenerative engine fueled by syngas deriving from the gasification of different feedstocks. Numerical results are validated with respect to experimental measurements made under real operation. Main findings reveal how heat transfer mainly occurs through the chamber and piston walls up to 50° after top dead center (ATDC), with the presence of inert gases (mostly N2) which decrease the syngas lower calorific value but have a beneficial insulating effect along the liner walls. However, the overall conversion efficiency of the biomass-to-ICE chain is mostly favored by high-quality syngas from biomasses with low-ashes content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 ItalyPublisher:Elsevier BV Authors: Davide Adinolfi; Michela Costa; Adolfo Palombo; Daniele Piazzullo;handle: 11588/880017 , 20.500.14243/440550
Seasonal storage of hydrogen is a valuable option today increasingly considered in order to optimize cogeneration plants under continuous operation in an incentive framework where electricity sale to the national grids is becoming less economically profitable than in the past. The paper concerns the numerical study and optimization of a cogeneration plant installed in an industrial site having an availability of hydrogen over a continuous time scale, to meet the energy needs and mitigating the environmental impact of the plant operation by reducing the energy withdrawal from traditional sources. Two alternatives are analyzed into detail: the former regards energy production through an internal combustion engine, this last properly controlled to be fueled with blends of natural gas and increasing percentages of hydrogen, the latter concerning the addition of fuel cells to the proposed layout to further reduce the electricity integration by the grid. The dynamic response of the cogeneration system under examination is dynamically evaluated to efficiently fulfill the industrial loads to be fulfilled. First, optimization is performed by implementing a PID controller to better track the industrial demand of electric energy. The main results of this solution reveal a 81% reduction of excess electricity, a 7% reduction of natural gas consumed but a 47% raise of CO2 emissions due to the increase in thermal integration. Then, an additional energy generation from fuel cells is assumed. An economic analysis is carried out for each of the implemented configurations. The adoption of fuel cells, despite requiring a greater initial investment, allows obtaining a SPB of 1,4 years ( 16%), 1,17 Mln V of avoided costs ( 18,5%) and 1320 t/year of CO2 emissions avoided ( 95%) with respect to the initial layout.
IRIS Cnr arrow_drop_down International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.10.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.10.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 ItalyPublisher:Elsevier BV Authors: Davide Adinolfi; Michela Costa; Adolfo Palombo; Daniele Piazzullo;handle: 11588/880017 , 20.500.14243/440550
Seasonal storage of hydrogen is a valuable option today increasingly considered in order to optimize cogeneration plants under continuous operation in an incentive framework where electricity sale to the national grids is becoming less economically profitable than in the past. The paper concerns the numerical study and optimization of a cogeneration plant installed in an industrial site having an availability of hydrogen over a continuous time scale, to meet the energy needs and mitigating the environmental impact of the plant operation by reducing the energy withdrawal from traditional sources. Two alternatives are analyzed into detail: the former regards energy production through an internal combustion engine, this last properly controlled to be fueled with blends of natural gas and increasing percentages of hydrogen, the latter concerning the addition of fuel cells to the proposed layout to further reduce the electricity integration by the grid. The dynamic response of the cogeneration system under examination is dynamically evaluated to efficiently fulfill the industrial loads to be fulfilled. First, optimization is performed by implementing a PID controller to better track the industrial demand of electric energy. The main results of this solution reveal a 81% reduction of excess electricity, a 7% reduction of natural gas consumed but a 47% raise of CO2 emissions due to the increase in thermal integration. Then, an additional energy generation from fuel cells is assumed. An economic analysis is carried out for each of the implemented configurations. The adoption of fuel cells, despite requiring a greater initial investment, allows obtaining a SPB of 1,4 years ( 16%), 1,17 Mln V of avoided costs ( 18,5%) and 1320 t/year of CO2 emissions avoided ( 95%) with respect to the initial layout.
IRIS Cnr arrow_drop_down International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.10.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down International Journal of Hydrogen EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.10.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu