- home
- Advanced Search
Filters
Year range
-chevron_right GO
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:EC | STOREandGOEC| STOREandGOAuthors: Hans Böhm; Andreas Zauner; Daniel C. Rosenfeld; Robert Tichler;Abstract Power-to-gas (PtG) is widely expected to play a valuable role in future renewable energy systems. In addition to partly allowing a further utilization of the existing gas infrastructure for energy transport and storage, hydrogen or synthetic natural gas (SNG) from electric power represents a high-density energy carrier and important feedstock material for further processing. This premise leads to a significant demand for large-scale PtG plants, which was evaluated with an amount of up to 4530 GWel for electrolysis and up to 1360 GWSNG for methanation capacities at a global scale. Together with the upscaling of single-MW plants available today, this will enable to achieve appropriate cost reduction effects through technological learning. Under given scenarios, reduction potentials for CAPEX of >75% are expected for multi-MW PtG plants in the long-term, with significant advantages of PEM and solid oxide electrolysis over alkaline systems in the short- and mid-term. The resulting effects on PtG product costs were evaluated via a holistic techno-economic assessment, resulting in SNG production costs of 15 €-cent/kWh and below for large-scale appliances in 2050, depending on the renewable electricity supply.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 152 citations 152 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023Publisher:MDPI AG Martin Hammerschmid; Daniel Cenk Rosenfeld; Alexander Bartik; Florian Benedikt; Josef Fuchs; Stefan Müller;doi: 10.3390/en16062641
Digital reflections of physical energy plants can help support and optimize energy technologies within their lifecycle. So far, no framework for the evolution of virtual representations throughout the process development lifecycle exists. Based on various concepts of virtual representations in different industries, this review paper focuses on developing a novel virtual representation framework for the process development environment within the energy sector. The proposed methodology enables the continuous evolution of virtual representations along the process development lifecycle. A novel definition for virtual representations in the process development environment is developed. Additionally, the most important virtual representation challenges, properties, and applications for developing a widely applicable framework are summarized. The essential sustainability indicators for the energy sector are listed to standardize the process evaluation throughout the process development lifecycle. The virtual representation and physical facility development can be synchronized by introducing a novel model readiness level. All these thoughts are covered through the novel virtual representation framework. Finally, the digital twin of a Bio-SNG production route is presented, to show the benefits of the methodology through a use case. This methodology helps to accelerate and monitor energy technology developments through the early implementation of virtual representations.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: Daniel C. Rosenfeld; Johannes Lindorfer; Markus Ellersdorfer;Abstract Background Due to climate change and the rising world population, sustainable energy and fertilizer production faces many challenges. The utilization of organic waste fractions is one possible solution for promoting sustainability. Organic waste fractions have a high potential for biomethane production, which could positively contribute to the current energy mix. Furthermore, organic waste fractions could be used for nutrient recovery (i.e., the recovery of N and P) concurrently to their use in biomethane production. This study examined the theoretical potential of organic waste fractions for valorization in Austria. Further, it provides a theoretical overview of biomethane production and nutrient-recovery potential. Results This analysis revealed a total substrate potential of 13 Mt per year in Austria, with the highest contribution from manure. Over 900 million Nm3 of biomethane could potentially be produced from organic waste fractions. Furthermore, developing organic waste fractions as an energy source could improve the impact of the natural gas consuming sectors on climate, reducing 2.4 Mt of CO2 emissions annually. Regarding nutrient recovery, more than 60 kt of N and 20 kt of P could potentially be recovered per year. Conclusion The study shows a high potential for producing biomethane from organic waste fractions in Austria. The overall production potential could substitute up to 11% of the Austrian natural gas demand, which could highly decrease the CO2 emissions from fossil energy carriers. Furthermore, a high nutrient recovery potential was identified for an inclusive implementation of an efficient recovery.
Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-020-00272-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-020-00272-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Daniel C. Rosenfeld; Hans Böhm; Johannes Lindorfer; Markus Lehner;Abstract Since the European Union's target a domestic greenhouse gas emission reduction of 80% till 2050, as compared to the value of 1990 (European Commission, 2011), there has been an increasing interest in greening large industrial processes. Thus, gas greening and alternative emission reduction processes are gaining importance. In this study, a gas greening system for an integrated steel plant, producing synthetic natural gas serving as a substitute for the fossil fuel-based gas, was investigated. The analysed system consisted of a Power-to-Gas unit combined with a biomass gasification plant, where carbon rich steel gases were used as a CO2 source for methanation. To analyse the system, three extreme value scenarios and three constrained scenarios were defined and evaluated. The biomass gasification plant, set to a maximum nominal power of 105 MWth, was the main limiting factor for the constrained scenarios. The assessment included a basic mass and energy balance, techno-economic analysis, sensitivity analysis, and CO2 potential impact analysis. It was found that the main cost influencing factor throughout all six scenarios was the energy supply cost (electricity and biomass).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Stefan Müller; Lara Theiss; Benjamin Fleiß; Martin Hammerschmid; Josef Fuchs; Stefan Penthor; Daniel C. Rosenfeld; Markus Lehner; Hermann Hofbauer;AbstractThe present work describes the results achieved during a study aiming at the full replacement of the natural gas demand of an integrated hot metal production. This work implements a novel approach using a biomass gasification plant combined with an electrolysis unit to substitute the present natural gas demand of an integrated hot metal production. Therefore, a simulation platform, including mathematical models for all relevant process units, enabling the calculation of all relevant mass and energy balances was created. As a result, the calculations show that a natural gas demand of about 385 MW can be replaced and an additional 100 MW hydrogen-rich reducing gas can be produced by the use of 132 MW of biomass together with 571 MW electricity produced from renewable energy. The results achieved indicate that a full replacement of the natural gas demand would be possible from a technological point of view. At the same time, the technological readiness level of available electrolysis units shows that a production at such a large scale has not been demonstrated yet.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-020-01021-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-020-01021-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:EC | STOREandGOEC| STOREandGOAuthors: Hans Böhm; Andreas Zauner; Daniel C. Rosenfeld; Robert Tichler;Abstract Power-to-gas (PtG) is widely expected to play a valuable role in future renewable energy systems. In addition to partly allowing a further utilization of the existing gas infrastructure for energy transport and storage, hydrogen or synthetic natural gas (SNG) from electric power represents a high-density energy carrier and important feedstock material for further processing. This premise leads to a significant demand for large-scale PtG plants, which was evaluated with an amount of up to 4530 GWel for electrolysis and up to 1360 GWSNG for methanation capacities at a global scale. Together with the upscaling of single-MW plants available today, this will enable to achieve appropriate cost reduction effects through technological learning. Under given scenarios, reduction potentials for CAPEX of >75% are expected for multi-MW PtG plants in the long-term, with significant advantages of PEM and solid oxide electrolysis over alkaline systems in the short- and mid-term. The resulting effects on PtG product costs were evaluated via a holistic techno-economic assessment, resulting in SNG production costs of 15 €-cent/kWh and below for large-scale appliances in 2050, depending on the renewable electricity supply.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 152 citations 152 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2023Publisher:MDPI AG Martin Hammerschmid; Daniel Cenk Rosenfeld; Alexander Bartik; Florian Benedikt; Josef Fuchs; Stefan Müller;doi: 10.3390/en16062641
Digital reflections of physical energy plants can help support and optimize energy technologies within their lifecycle. So far, no framework for the evolution of virtual representations throughout the process development lifecycle exists. Based on various concepts of virtual representations in different industries, this review paper focuses on developing a novel virtual representation framework for the process development environment within the energy sector. The proposed methodology enables the continuous evolution of virtual representations along the process development lifecycle. A novel definition for virtual representations in the process development environment is developed. Additionally, the most important virtual representation challenges, properties, and applications for developing a widely applicable framework are summarized. The essential sustainability indicators for the energy sector are listed to standardize the process evaluation throughout the process development lifecycle. The virtual representation and physical facility development can be synchronized by introducing a novel model readiness level. All these thoughts are covered through the novel virtual representation framework. Finally, the digital twin of a Bio-SNG production route is presented, to show the benefits of the methodology through a use case. This methodology helps to accelerate and monitor energy technology developments through the early implementation of virtual representations.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: Daniel C. Rosenfeld; Johannes Lindorfer; Markus Ellersdorfer;Abstract Background Due to climate change and the rising world population, sustainable energy and fertilizer production faces many challenges. The utilization of organic waste fractions is one possible solution for promoting sustainability. Organic waste fractions have a high potential for biomethane production, which could positively contribute to the current energy mix. Furthermore, organic waste fractions could be used for nutrient recovery (i.e., the recovery of N and P) concurrently to their use in biomethane production. This study examined the theoretical potential of organic waste fractions for valorization in Austria. Further, it provides a theoretical overview of biomethane production and nutrient-recovery potential. Results This analysis revealed a total substrate potential of 13 Mt per year in Austria, with the highest contribution from manure. Over 900 million Nm3 of biomethane could potentially be produced from organic waste fractions. Furthermore, developing organic waste fractions as an energy source could improve the impact of the natural gas consuming sectors on climate, reducing 2.4 Mt of CO2 emissions annually. Regarding nutrient recovery, more than 60 kt of N and 20 kt of P could potentially be recovered per year. Conclusion The study shows a high potential for producing biomethane from organic waste fractions in Austria. The overall production potential could substitute up to 11% of the Austrian natural gas demand, which could highly decrease the CO2 emissions from fossil energy carriers. Furthermore, a high nutrient recovery potential was identified for an inclusive implementation of an efficient recovery.
Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-020-00272-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy, Sustainabili... arrow_drop_down Energy, Sustainability and SocietyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13705-020-00272-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Daniel C. Rosenfeld; Hans Böhm; Johannes Lindorfer; Markus Lehner;Abstract Since the European Union's target a domestic greenhouse gas emission reduction of 80% till 2050, as compared to the value of 1990 (European Commission, 2011), there has been an increasing interest in greening large industrial processes. Thus, gas greening and alternative emission reduction processes are gaining importance. In this study, a gas greening system for an integrated steel plant, producing synthetic natural gas serving as a substitute for the fossil fuel-based gas, was investigated. The analysed system consisted of a Power-to-Gas unit combined with a biomass gasification plant, where carbon rich steel gases were used as a CO2 source for methanation. To analyse the system, three extreme value scenarios and three constrained scenarios were defined and evaluated. The biomass gasification plant, set to a maximum nominal power of 105 MWth, was the main limiting factor for the constrained scenarios. The assessment included a basic mass and energy balance, techno-economic analysis, sensitivity analysis, and CO2 potential impact analysis. It was found that the main cost influencing factor throughout all six scenarios was the energy supply cost (electricity and biomass).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Stefan Müller; Lara Theiss; Benjamin Fleiß; Martin Hammerschmid; Josef Fuchs; Stefan Penthor; Daniel C. Rosenfeld; Markus Lehner; Hermann Hofbauer;AbstractThe present work describes the results achieved during a study aiming at the full replacement of the natural gas demand of an integrated hot metal production. This work implements a novel approach using a biomass gasification plant combined with an electrolysis unit to substitute the present natural gas demand of an integrated hot metal production. Therefore, a simulation platform, including mathematical models for all relevant process units, enabling the calculation of all relevant mass and energy balances was created. As a result, the calculations show that a natural gas demand of about 385 MW can be replaced and an additional 100 MW hydrogen-rich reducing gas can be produced by the use of 132 MW of biomass together with 571 MW electricity produced from renewable energy. The results achieved indicate that a full replacement of the natural gas demand would be possible from a technological point of view. At the same time, the technological readiness level of available electrolysis units shows that a production at such a large scale has not been demonstrated yet.
Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-020-01021-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biomass Conversion a... arrow_drop_down Biomass Conversion and BiorefineryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-020-01021-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu