Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Applied Energy
Article . 2020 . Peer-reviewed
http://dx.doi.org/10.1016/j.ap...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Projecting cost development for future large-scale power-to-gas implementations by scaling effects

Authors: Böhm, Hans; Zauner, Andreas; Rosenfeld, Daniel C.; Tichler, Robert;

Projecting cost development for future large-scale power-to-gas implementations by scaling effects

Abstract

Abstract Power-to-gas (PtG) is widely expected to play a valuable role in future renewable energy systems. In addition to partly allowing a further utilization of the existing gas infrastructure for energy transport and storage, hydrogen or synthetic natural gas (SNG) from electric power represents a high-density energy carrier and important feedstock material for further processing. This premise leads to a significant demand for large-scale PtG plants, which was evaluated with an amount of up to 4530 GWel for electrolysis and up to 1360 GWSNG for methanation capacities at a global scale. Together with the upscaling of single-MW plants available today, this will enable to achieve appropriate cost reduction effects through technological learning. Under given scenarios, reduction potentials for CAPEX of >75% are expected for multi-MW PtG plants in the long-term, with significant advantages of PEM and solid oxide electrolysis over alkaline systems in the short- and mid-term. The resulting effects on PtG product costs were evaluated via a holistic techno-economic assessment, resulting in SNG production costs of 15 €-cent/kWh and below for large-scale appliances in 2050, depending on the renewable electricity supply.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    174
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
174
Top 1%
Top 10%
Top 1%
hybrid