- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Trystan Watson; Jeff Kettle; F. de Rossi; Vasil Stoichkov; Noel Bristow; Joel Troughton;Abstract The outdoor performance monitoring of two types of perovskite solar cell (PSC) mini-modules based on two different absorbers - CH3NH3PbI3 (MAPI) and Cs0.05FA0.83MA0.17PbI(0.87Br0.13)3 (FMC) is reported. PSC modules displayed markedly different outdoor performance characteristics to other PV technologies owing to the reversible diurnal changes in efficiency, difference in temperature coefficient between absorber layers and response under low light conditions. Examination of diurnal performance parameters on a sunny day showed that whereas the FMC modules maintained their efficiency throughout the day, the MAPI modules peaked in performance during the morning and afternoon, with a strong decrease around midday. Overall, the MAPI modules showed a strongly negative temperature coefficient (TC) for PCE, whereas the FMC modules showed a moderate positive temperature coefficient performance as a function of temperature due to the increase in JSC and FF. Outdoor monitoring of the MAPI modules over several days highlighted that the reduced over the course of the day but recovered overnight. In contrast the FMC modules improved slightly during the daytime although this was too reversed overnight. This paper provides insight into how PSC modules perform under real-life conditions and consider some of the unique characteristics that are observed in this solar cell technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.05.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.05.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Denmark, United KingdomPublisher:Elsevier BV Kettle, J.; Bristow, N.; Gethin, D.T.; Tehrani, Z.; Moudam, O.; Li, B.; Katz, E.A.; Benatto, Gisele Alves dos Reis; Krebs, Frederik C;The proof of concept of using luminescent down shifting (LDS) layers as alternative UV filters for P3HT:PCBM OPVs is demonstrated using a lanthanide-based metal complex. The results are verified using a combination of indoor light soaking, with single cell devices, and outdoor performance monitoring, using a 16-cell monolithically connected OPV module. By applying the LDS layer, a ~5% relative enhancement in photocurrent is observed for both sets of devices. More significantly, indoor light soaking tests on single cell devices without encapsulation showed an 850% enhancement in the measured half-life (T50%). The OPV modules were encapsulated and tested for outdoor stability over a 70 day period in the Negev desert, Israel. The modules made with the LDS filter are shown to match the stability of those made with a commercial UV filter and outperform the modules with no filter applied, with a 51% enhancement in the measured stability (T75%). Significantly, the work provides clear experimental evidence that the LDS layer can act as a UV filter in OPVs without compromising the efficiency of the solar cell, thus providing an added benefit over commercial UV filters.
Solar Energy Materia... arrow_drop_down Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologySolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.09.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologySolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.09.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Italy, Australia, United Kingdom, Spain, Spain, France, United KingdomPublisher:Elsevier BV Funded by:EC | LARGECELLS, EC | SOPHIAEC| LARGECELLS ,EC| SOPHIAMorten V. Madsen; Suren A. Gevorgyan; R. Pacios; J. Ajuria; I. Etxebarria; Jeff Kettle; Noel D. Bristow; Marios Neophytou; Stelios A. Choulis; Lucimara Stolz Roman; Teketel Yohannes; CESTER, ANDREA; Pei Cheng; Xiaowei Zhan; Jiang Wu; Zhiyuan Xie; Wei Chen Tu; Jr Hau He; Christopher J. Fell; Kenrick Anderson; Martin Hermenau; Davide Bartesaghim; L. Jan Anton Kosterm; Florian Machui; Irene González Valls; Monica Lira Cantu; Petr P. Khlyabich; Barry C. Thompson; Ritu Gupta; Kiruthika Shanmugam; Giridhar U. Kulkarni; Yulia Galagan; Antonio Urbina; Jose Abad; Roland Roesch; Harald Hoppe; P. Morvillo; E. Bobeico; Eugen Panaitescu; Latika Menon; Qun Luo; Zhenwu Wu; Changqi Max; Artak Hambarian; Varuzhan Melikyan; M. Hambsch; Paul L. Burn; Paul Meredith; Thomas Rath; Sebastian Dunst; Gregor Trimmel; Giorgio Bardizza; Harald Müllejans; A. E. Goryachev; Ravi K. Misra; Eugene A. Katz; Katsuhiko Takagi; Shinichi Magaino; Hidenori Saito; Daisuke Aoki; Paul M. Sommeling; Jan M. Kroon; Tim Vangerven; Jean Manca; Jurgen Kesters; Wouter Maes; Olga D. Bobkova; Vasily A. Trukhanov; Dmitry Y.u. Paraschuk; Fernando A. Castro; James Blakesley; Sachetan M. Tuladhar; Jason Alexander Röhr; Jenny Nelson; Jiangbin Xia; Elif Alturk Parlak; Tülay Aslı Tumay; Hans Joachim Egelhaaf; David M. Tanenbaum; Gretta Mae Ferguson; Robert Carpenter; Hongzheng Chen; Birger Zimmermann; Lionel Hirsch; Guillaume Wantz; Ziqi Sun; Pradeep Singh; Chaitnya Bapat; Ton Offermans; Frederik C. Krebs;Accurate characterization and reporting of organic photovoltaic (OPV) device performance reniains one of the important challenges in the field. The large spread among the efficiencies of devices with the same structure reported by different groups is significantly caused by different procedures and equipment used during testing. The presented article addresses this issue by offering a new method of device testing using "suitcase sample" approach combined with outdoor testing that limits the diversity of the equipment, and a strict measurement protocol. A round robin outdoor characterization of roll-to-roll coated OPV cells and modules conducted among 46 laboratories worldwide is presented, where the samples and the testing equipment were integrated in a compact suitcase that served both as a sample transportation tool and as a holder and test equipment during testing. In addition, an internet based coordination was used via plasticphotovoltaics.org that allowed fast and efficient communication among participants and provided a controlled reporting format for the results that eased the analysis of the data. The reported deviations among the laboratories were limited to 5% when compared to the Si reference device integrated in the suitcase and were up to 8% when calculated using the local irradiance data. Therefore, this method offers a fast, cheap and efficient tool for sample sharing and testing that allows conducting outdoor measurements of OPV devices in a reproducible manner. (C) 2014 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2014License: CC BY NC NDData sources: Diposit Digital de Documents de la UABINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2014Data sources: University of Groningen Research Portalhttp://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data PortalQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 11 Powered bymore_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2014License: CC BY NC NDData sources: Diposit Digital de Documents de la UABINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2014Data sources: University of Groningen Research Portalhttp://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data PortalQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 DenmarkPublisher:Royal Society of Chemistry (RSC) Jeff Kettle; Noel Bristow; Tracy K. N. Sweet; Nick Jenkins; Gisele A. dos Reis Benatto; Mikkel Jørgensen; Frederik C. Krebs;doi: 10.1039/c5ee02162f
The lamination of OPV modules to corrugated roof cladding has been undertaken.
Energy & Environment... arrow_drop_down Online Research Database In TechnologyArticle . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee02162f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Online Research Database In TechnologyArticle . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee02162f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Ricardo Vignoto Fernandes; Alexandre Urbano; José Leonil Duarte; Noel Bristow; Jeff Kettle; Edson Laureto;Abstract Mixtures of luminescence downshifting (LDS) materials has been used to increase the efficiency of poly(3-hexylthiophene-2,5-diyl):phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) bulk heterojunction solar cell. This layers convert more energetic photons to lower energies that are better matched with wavelength peak of the external quantum efficiency (EQE) of a P3HT:PC61BM solar cell. Experimental studies were used to optimise the optical properties of LDS layers including the maximum of absorbance and the photoluminescence quantum yield (PLQY). To provide the significant improvements, combinations of LDS mixtures were prepared to provide the greatest absorption and PLQY. The approach is shown to simultaneously improve the photocurrent and increase the lifetime of the device by absorbing UV light. By optimising the optical properties of the LDS mixture, a relative increase of about 20% in the photocurrent density produced by the P3HT:PCBM cell could be achieved, which to our knowledge is one of the most significant reported for OPVs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jlumin.2018.06.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jlumin.2018.06.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Jeff Kettle; Noel Bristow;Abstract A comparison of performance parameters for first, second and third generation PV technologies has been conducted. Organic photovoltaic (OPV) modules displayed markedly different outdoor performance characteristics to other PV technologies owing to the positive temperature coefficient, lower thermal mass and response under low light conditions. The linear relationship between irradiance and module temperature rise above ambient is studied, leading to calculation of values for the Ross coefficient for OPV modules. OPVs are shown to possess a lower Ross coefficient than poly-Si, due to the lower absorption of infrared radiation. The effect of wind speed on the Ross coefficient is also investigated, showing the effect that module structure has upon outdoor PV performance, with the OPV module cooling quicker under windy conditions than the poly-Si due to a lower thermal mass. A long term stability study on OPV modules with a silver nanowire-zinc oxide (AgNW-ZnO) composite front electrode has showed two phases of degradation: a short initial burn-in with significant drops in performance; followed by stabilisation and degradation progressing at a much slower rate. During the burn-in period the modules showed diurnal reversible degradation in the short circuit current (ISC), whereas open circuit voltage (VOC) and fill factor (FF) show a steady decline. The reversible degradation is assumed to be related to the desorption of oxygen from the ZnO layer during the day due to UV excitation, leading to an increase in trap formation and a drop in current generation capacity, followed by re-adsorption of the oxygen overnight.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Laurie Hughes; Noel Bristow; Tatyana Korochkina; Pascal Sanchez; David Gomez; Jeff Kettle; David Gethin;Abstract Government edicts and national time bound policy directives are shaping the drive toward cost effective renewables such as photovoltaics (PV). Building Integrated Photovoltaics (BIPV) has the potential to provide significant energy generation by utilising the existing building infrastructure as a power generator, engendering a transformation shift from traditional energy sources. This research presents an innovative study on the industrial viability of utilising “rough” low carbon steel integrated with an Intermediate Layer (IL) to develop lower cost thin film BIPV products and is compared to existing commercial products. Consideration of the final product cost is given and potential business models to enter the BIPV are identified. The lab scale and upscaling elements of the research support the significant benefits of an approach that extends beyond the use of expensive solar grade steel. A state-of-the-art review of existing steel-based BIPV products is given and used as a benchmark to compare the new products. The results demonstrate that a competitively commercial product is viable and also highlight the strong potential for the adoption of a “rough” steel + IL focused approach to BIPV manufacture and a potential new direction to develop cost efficiencies in an increasingly competitive market.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:AIP Publishing Authors: Jeff Kettle; Noel Bristow;doi: 10.1063/1.4906915
The outdoor dependence of temperature and diurnal irradiance on inverted organic photovoltaic (OPV) module performance has been analysed and benchmarked against monocrystalline-silicon (c-Si) photovoltaic technology. This is first such report and it is observed that OPVs exhibit poorer performance under low light conditions, such as overcast days, as a result of inflexion behaviour in the current-voltage curves, which limits the open-circuit voltage (VOC) and fill factor. These characteristics can be removed by photo-annealing at higher irradiance levels, which occur diurnally as irradiance increases after sunrise. We also report the first temperature coefficients for OPVs from outdoor data; the OPV modules showed a positive temperature coefficient, which compared to a negative coefficient from the c-Si modules. Overall, the cell degradation outdoors appears very severe for these modules and highlights the need for improved barrier.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4906915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4906915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Trystan Watson; Jeff Kettle; F. de Rossi; Vasil Stoichkov; Noel Bristow; Joel Troughton;Abstract The outdoor performance monitoring of two types of perovskite solar cell (PSC) mini-modules based on two different absorbers - CH3NH3PbI3 (MAPI) and Cs0.05FA0.83MA0.17PbI(0.87Br0.13)3 (FMC) is reported. PSC modules displayed markedly different outdoor performance characteristics to other PV technologies owing to the reversible diurnal changes in efficiency, difference in temperature coefficient between absorber layers and response under low light conditions. Examination of diurnal performance parameters on a sunny day showed that whereas the FMC modules maintained their efficiency throughout the day, the MAPI modules peaked in performance during the morning and afternoon, with a strong decrease around midday. Overall, the MAPI modules showed a strongly negative temperature coefficient (TC) for PCE, whereas the FMC modules showed a moderate positive temperature coefficient performance as a function of temperature due to the increase in JSC and FF. Outdoor monitoring of the MAPI modules over several days highlighted that the reduced over the course of the day but recovered overnight. In contrast the FMC modules improved slightly during the daytime although this was too reversed overnight. This paper provides insight into how PSC modules perform under real-life conditions and consider some of the unique characteristics that are observed in this solar cell technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.05.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.05.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Denmark, United KingdomPublisher:Elsevier BV Kettle, J.; Bristow, N.; Gethin, D.T.; Tehrani, Z.; Moudam, O.; Li, B.; Katz, E.A.; Benatto, Gisele Alves dos Reis; Krebs, Frederik C;The proof of concept of using luminescent down shifting (LDS) layers as alternative UV filters for P3HT:PCBM OPVs is demonstrated using a lanthanide-based metal complex. The results are verified using a combination of indoor light soaking, with single cell devices, and outdoor performance monitoring, using a 16-cell monolithically connected OPV module. By applying the LDS layer, a ~5% relative enhancement in photocurrent is observed for both sets of devices. More significantly, indoor light soaking tests on single cell devices without encapsulation showed an 850% enhancement in the measured half-life (T50%). The OPV modules were encapsulated and tested for outdoor stability over a 70 day period in the Negev desert, Israel. The modules made with the LDS filter are shown to match the stability of those made with a commercial UV filter and outperform the modules with no filter applied, with a 51% enhancement in the measured stability (T75%). Significantly, the work provides clear experimental evidence that the LDS layer can act as a UV filter in OPVs without compromising the efficiency of the solar cell, thus providing an added benefit over commercial UV filters.
Solar Energy Materia... arrow_drop_down Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologySolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.09.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologySolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.09.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Italy, Australia, United Kingdom, Spain, Spain, France, United KingdomPublisher:Elsevier BV Funded by:EC | LARGECELLS, EC | SOPHIAEC| LARGECELLS ,EC| SOPHIAMorten V. Madsen; Suren A. Gevorgyan; R. Pacios; J. Ajuria; I. Etxebarria; Jeff Kettle; Noel D. Bristow; Marios Neophytou; Stelios A. Choulis; Lucimara Stolz Roman; Teketel Yohannes; CESTER, ANDREA; Pei Cheng; Xiaowei Zhan; Jiang Wu; Zhiyuan Xie; Wei Chen Tu; Jr Hau He; Christopher J. Fell; Kenrick Anderson; Martin Hermenau; Davide Bartesaghim; L. Jan Anton Kosterm; Florian Machui; Irene González Valls; Monica Lira Cantu; Petr P. Khlyabich; Barry C. Thompson; Ritu Gupta; Kiruthika Shanmugam; Giridhar U. Kulkarni; Yulia Galagan; Antonio Urbina; Jose Abad; Roland Roesch; Harald Hoppe; P. Morvillo; E. Bobeico; Eugen Panaitescu; Latika Menon; Qun Luo; Zhenwu Wu; Changqi Max; Artak Hambarian; Varuzhan Melikyan; M. Hambsch; Paul L. Burn; Paul Meredith; Thomas Rath; Sebastian Dunst; Gregor Trimmel; Giorgio Bardizza; Harald Müllejans; A. E. Goryachev; Ravi K. Misra; Eugene A. Katz; Katsuhiko Takagi; Shinichi Magaino; Hidenori Saito; Daisuke Aoki; Paul M. Sommeling; Jan M. Kroon; Tim Vangerven; Jean Manca; Jurgen Kesters; Wouter Maes; Olga D. Bobkova; Vasily A. Trukhanov; Dmitry Y.u. Paraschuk; Fernando A. Castro; James Blakesley; Sachetan M. Tuladhar; Jason Alexander Röhr; Jenny Nelson; Jiangbin Xia; Elif Alturk Parlak; Tülay Aslı Tumay; Hans Joachim Egelhaaf; David M. Tanenbaum; Gretta Mae Ferguson; Robert Carpenter; Hongzheng Chen; Birger Zimmermann; Lionel Hirsch; Guillaume Wantz; Ziqi Sun; Pradeep Singh; Chaitnya Bapat; Ton Offermans; Frederik C. Krebs;Accurate characterization and reporting of organic photovoltaic (OPV) device performance reniains one of the important challenges in the field. The large spread among the efficiencies of devices with the same structure reported by different groups is significantly caused by different procedures and equipment used during testing. The presented article addresses this issue by offering a new method of device testing using "suitcase sample" approach combined with outdoor testing that limits the diversity of the equipment, and a strict measurement protocol. A round robin outdoor characterization of roll-to-roll coated OPV cells and modules conducted among 46 laboratories worldwide is presented, where the samples and the testing equipment were integrated in a compact suitcase that served both as a sample transportation tool and as a holder and test equipment during testing. In addition, an internet based coordination was used via plasticphotovoltaics.org that allowed fast and efficient communication among participants and provided a controlled reporting format for the results that eased the analysis of the data. The reported deviations among the laboratories were limited to 5% when compared to the Si reference device integrated in the suitcase and were up to 8% when calculated using the local irradiance data. Therefore, this method offers a fast, cheap and efficient tool for sample sharing and testing that allows conducting outdoor measurements of OPV devices in a reproducible manner. (C) 2014 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2014License: CC BY NC NDData sources: Diposit Digital de Documents de la UABINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2014Data sources: University of Groningen Research Portalhttp://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data PortalQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 11 Powered bymore_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2014License: CC BY NC NDData sources: Diposit Digital de Documents de la UABINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2014Data sources: University of Groningen Research Portalhttp://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data PortalQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 DenmarkPublisher:Royal Society of Chemistry (RSC) Jeff Kettle; Noel Bristow; Tracy K. N. Sweet; Nick Jenkins; Gisele A. dos Reis Benatto; Mikkel Jørgensen; Frederik C. Krebs;doi: 10.1039/c5ee02162f
The lamination of OPV modules to corrugated roof cladding has been undertaken.
Energy & Environment... arrow_drop_down Online Research Database In TechnologyArticle . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee02162f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Online Research Database In TechnologyArticle . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee02162f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Ricardo Vignoto Fernandes; Alexandre Urbano; José Leonil Duarte; Noel Bristow; Jeff Kettle; Edson Laureto;Abstract Mixtures of luminescence downshifting (LDS) materials has been used to increase the efficiency of poly(3-hexylthiophene-2,5-diyl):phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) bulk heterojunction solar cell. This layers convert more energetic photons to lower energies that are better matched with wavelength peak of the external quantum efficiency (EQE) of a P3HT:PC61BM solar cell. Experimental studies were used to optimise the optical properties of LDS layers including the maximum of absorbance and the photoluminescence quantum yield (PLQY). To provide the significant improvements, combinations of LDS mixtures were prepared to provide the greatest absorption and PLQY. The approach is shown to simultaneously improve the photocurrent and increase the lifetime of the device by absorbing UV light. By optimising the optical properties of the LDS mixture, a relative increase of about 20% in the photocurrent density produced by the P3HT:PCBM cell could be achieved, which to our knowledge is one of the most significant reported for OPVs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jlumin.2018.06.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jlumin.2018.06.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Jeff Kettle; Noel Bristow;Abstract A comparison of performance parameters for first, second and third generation PV technologies has been conducted. Organic photovoltaic (OPV) modules displayed markedly different outdoor performance characteristics to other PV technologies owing to the positive temperature coefficient, lower thermal mass and response under low light conditions. The linear relationship between irradiance and module temperature rise above ambient is studied, leading to calculation of values for the Ross coefficient for OPV modules. OPVs are shown to possess a lower Ross coefficient than poly-Si, due to the lower absorption of infrared radiation. The effect of wind speed on the Ross coefficient is also investigated, showing the effect that module structure has upon outdoor PV performance, with the OPV module cooling quicker under windy conditions than the poly-Si due to a lower thermal mass. A long term stability study on OPV modules with a silver nanowire-zinc oxide (AgNW-ZnO) composite front electrode has showed two phases of degradation: a short initial burn-in with significant drops in performance; followed by stabilisation and degradation progressing at a much slower rate. During the burn-in period the modules showed diurnal reversible degradation in the short circuit current (ISC), whereas open circuit voltage (VOC) and fill factor (FF) show a steady decline. The reversible degradation is assumed to be related to the desorption of oxygen from the ZnO layer during the day due to UV excitation, leading to an increase in trap formation and a drop in current generation capacity, followed by re-adsorption of the oxygen overnight.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Laurie Hughes; Noel Bristow; Tatyana Korochkina; Pascal Sanchez; David Gomez; Jeff Kettle; David Gethin;Abstract Government edicts and national time bound policy directives are shaping the drive toward cost effective renewables such as photovoltaics (PV). Building Integrated Photovoltaics (BIPV) has the potential to provide significant energy generation by utilising the existing building infrastructure as a power generator, engendering a transformation shift from traditional energy sources. This research presents an innovative study on the industrial viability of utilising “rough” low carbon steel integrated with an Intermediate Layer (IL) to develop lower cost thin film BIPV products and is compared to existing commercial products. Consideration of the final product cost is given and potential business models to enter the BIPV are identified. The lab scale and upscaling elements of the research support the significant benefits of an approach that extends beyond the use of expensive solar grade steel. A state-of-the-art review of existing steel-based BIPV products is given and used as a benchmark to compare the new products. The results demonstrate that a competitively commercial product is viable and also highlight the strong potential for the adoption of a “rough” steel + IL focused approach to BIPV manufacture and a potential new direction to develop cost efficiencies in an increasingly competitive market.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:AIP Publishing Authors: Jeff Kettle; Noel Bristow;doi: 10.1063/1.4906915
The outdoor dependence of temperature and diurnal irradiance on inverted organic photovoltaic (OPV) module performance has been analysed and benchmarked against monocrystalline-silicon (c-Si) photovoltaic technology. This is first such report and it is observed that OPVs exhibit poorer performance under low light conditions, such as overcast days, as a result of inflexion behaviour in the current-voltage curves, which limits the open-circuit voltage (VOC) and fill factor. These characteristics can be removed by photo-annealing at higher irradiance levels, which occur diurnally as irradiance increases after sunrise. We also report the first temperature coefficients for OPVs from outdoor data; the OPV modules showed a positive temperature coefficient, which compared to a negative coefficient from the c-Si modules. Overall, the cell degradation outdoors appears very severe for these modules and highlights the need for improved barrier.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4906915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4906915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu