- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, United Kingdom, ItalyPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Liquid Fuel and bioEnergy..., UKRI | ISCF Wave 1: North East C...UKRI| Liquid Fuel and bioEnergy Supply from CO2 Reduction ,UKRI| ISCF Wave 1: North East Centre for Energy MaterialsKeith Scott; Eileen Hao Yu; Hang Xiang; Hamish A. Miller; Shahid Rasul; Shahid Rasul; Marco Bellini; Henriette Christensen;doi: 10.1039/c9se00625g
handle: 20.500.14243/362646
Formate as a medium for CO2 utilisation and energy storage.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00625g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00625g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, United Kingdom, ItalyPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Liquid Fuel and bioEnergy..., UKRI | ISCF Wave 1: North East C...UKRI| Liquid Fuel and bioEnergy Supply from CO2 Reduction ,UKRI| ISCF Wave 1: North East Centre for Energy MaterialsKeith Scott; Eileen Hao Yu; Hang Xiang; Hamish A. Miller; Shahid Rasul; Shahid Rasul; Marco Bellini; Henriette Christensen;doi: 10.1039/c9se00625g
handle: 20.500.14243/362646
Formate as a medium for CO2 utilisation and energy storage.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00625g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00625g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Wiley Chen Yanxin; Bellini Marco; Bevilacqua Manuela; Fornasiero Paolo; Lavacchi Alessandro; Miller Hamish A; Wang Lianqin; Vizza Francesco;pmid: 25504942
handle: 11368/2837992 , 20.500.14243/268499 , 2158/1009812
AbstractA 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd cm−2), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm−2 at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm−2 by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm−2. Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro‐oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2‐fed proton exchange membrane fuel cells.
Archivio istituziona... arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Wiley Chen Yanxin; Bellini Marco; Bevilacqua Manuela; Fornasiero Paolo; Lavacchi Alessandro; Miller Hamish A; Wang Lianqin; Vizza Francesco;pmid: 25504942
handle: 11368/2837992 , 20.500.14243/268499 , 2158/1009812
AbstractA 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd cm−2), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm−2 at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm−2 by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm−2. Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro‐oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2‐fed proton exchange membrane fuel cells.
Archivio istituziona... arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Hamish Andrew Miller; Jacopo Ruggeri; Andrea Marchionni; Marco Bellini; Maria Vincenza Pagliaro; Carlo Bartoli; Andrea Pucci; Elisa Passaglia; Francesco Vizza;doi: 10.3390/en11020369
handle: 20.500.14243/346232 , 11568/920889
This article describes the development of a high power density Direct Formate Fuel Cell (DFFC) fed with potassium formate (KCOOH). The membrane electrode assembly (MEA) contains no platinum metal. The cathode catalyst is FeCo/C combined with a commercial anion exchange membrane (AEM). To enhance the power output and energy efficiency we have employed a nanostructured Pd/C-CeO2 anode catalyst. The activity for the formate oxidation reaction (FOR) is enhanced when compared to a Pd/C catalyst with the same Pd loading. Fuel cell tests at 60 °C show a peak power density of almost 250 mW cm−2. The discharge energy (14 kJ), faradic efficiency (89%) and energy efficiency (46%) were determined for a single fuel charge (30 mL of 4 M KCOOH and 4 M KOH). Energy analysis demonstrates that removal of the expensive KOH electrolyte is essential for the future development of these devices. To compensate we apply for the first time a polymeric ionomer in the catalyst layer of the anode electrode. A homopolymer is synthesized by the radical polymerization of vinyl benzene chloride followed by amination with 1,4-diazabicyclo[2.2.2]octane (DABCO). The energy delivered, energy efficiency and fuel consumption efficiency of DFFCs fed with 4 M KCOOH are doubled with the use of the ionomer.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/369/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2018License: CC BYData sources: Archivio della Ricerca - Università di Pisaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/369/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2018License: CC BYData sources: Archivio della Ricerca - Università di Pisaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Hamish Andrew Miller; Jacopo Ruggeri; Andrea Marchionni; Marco Bellini; Maria Vincenza Pagliaro; Carlo Bartoli; Andrea Pucci; Elisa Passaglia; Francesco Vizza;doi: 10.3390/en11020369
handle: 20.500.14243/346232 , 11568/920889
This article describes the development of a high power density Direct Formate Fuel Cell (DFFC) fed with potassium formate (KCOOH). The membrane electrode assembly (MEA) contains no platinum metal. The cathode catalyst is FeCo/C combined with a commercial anion exchange membrane (AEM). To enhance the power output and energy efficiency we have employed a nanostructured Pd/C-CeO2 anode catalyst. The activity for the formate oxidation reaction (FOR) is enhanced when compared to a Pd/C catalyst with the same Pd loading. Fuel cell tests at 60 °C show a peak power density of almost 250 mW cm−2. The discharge energy (14 kJ), faradic efficiency (89%) and energy efficiency (46%) were determined for a single fuel charge (30 mL of 4 M KCOOH and 4 M KOH). Energy analysis demonstrates that removal of the expensive KOH electrolyte is essential for the future development of these devices. To compensate we apply for the first time a polymeric ionomer in the catalyst layer of the anode electrode. A homopolymer is synthesized by the radical polymerization of vinyl benzene chloride followed by amination with 1,4-diazabicyclo[2.2.2]octane (DABCO). The energy delivered, energy efficiency and fuel consumption efficiency of DFFCs fed with 4 M KCOOH are doubled with the use of the ionomer.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/369/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2018License: CC BYData sources: Archivio della Ricerca - Università di Pisaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/369/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2018License: CC BYData sources: Archivio della Ricerca - Università di Pisaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Wiley Samuel P. Annen; Andrea Marchionni; Werner Oberhauser; Francesco Vizza; Hansjörg Grützmacher; Hansjörg Grützmacher; Jonathan Filippi; Manuela Bevilacqua; Hamish A. Miller; Alessandro Lavacchi; Marco Bellini;pmid: 25082272
handle: 20.500.14243/227918 , 2158/910130
AbstractInvited for this month’s cover are the groups of Hansjörg Grützmacher at ETH in Zürich and Francesco Vizza at ICCOM‐CNR in Florence. The image shows in an allegoric form an organometallic fuel cell releasing energy and fine chemicals produced through the electrooxidation of renewable diols. The Communication itself is available at 10.1002/cssc.201402316
ChemSusChem arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2014Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2014Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Wiley Samuel P. Annen; Andrea Marchionni; Werner Oberhauser; Francesco Vizza; Hansjörg Grützmacher; Hansjörg Grützmacher; Jonathan Filippi; Manuela Bevilacqua; Hamish A. Miller; Alessandro Lavacchi; Marco Bellini;pmid: 25082272
handle: 20.500.14243/227918 , 2158/910130
AbstractInvited for this month’s cover are the groups of Hansjörg Grützmacher at ETH in Zürich and Francesco Vizza at ICCOM‐CNR in Florence. The image shows in an allegoric form an organometallic fuel cell releasing energy and fine chemicals produced through the electrooxidation of renewable diols. The Communication itself is available at 10.1002/cssc.201402316
ChemSusChem arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2014Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2014Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Wiley Wang Lianqin; Lavacchi Alessandro; Bevilacqua Manuela; Bellini Marco; Fornasiero Paolo; Filippi Jonathan; Innocenti Massimo; Innocenti Massimo; Marchionni Andrea; Miller Hamish Andrew; Vizza Francesco;handle: 11368/2858935 , 20.500.14243/299976 , 2158/1009811
AbstractCarbon supported nanostructured palladium or palladium alloys are considered the best performing anode electrocatalysts currently employed in alkaline electrolyte membrane direct ethanol fuel cells (AEM‐DEFCs). High initial peak power densities are generally obtained as Pd preferentially favors the selective oxidation of ethanol forming acetate thus avoiding strongly poisoning intermediates such as CO. However, few studies exist that investigate DEFC performance in terms of both energy efficiency and discharge energy density, as well as power density depending on the concentration of fuel. In this paper we have determined such parameters for room temperature air breathing AEM‐DEFCs equipped with Pd based anodes, anion exchange membranes and FeCo/C cathode electrocatalysts. Combined with the optimization of the fuel composition a maximum energy efficiency of ≈7 % was obtained for this AEM‐DEFC. Such a performance suggests that devices of this type are suitable for supplying low power applications such as small portable electronic devices.
Archivio istituziona... arrow_drop_down ChemCatChemArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cctc.201500189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ChemCatChemArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cctc.201500189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Wiley Wang Lianqin; Lavacchi Alessandro; Bevilacqua Manuela; Bellini Marco; Fornasiero Paolo; Filippi Jonathan; Innocenti Massimo; Innocenti Massimo; Marchionni Andrea; Miller Hamish Andrew; Vizza Francesco;handle: 11368/2858935 , 20.500.14243/299976 , 2158/1009811
AbstractCarbon supported nanostructured palladium or palladium alloys are considered the best performing anode electrocatalysts currently employed in alkaline electrolyte membrane direct ethanol fuel cells (AEM‐DEFCs). High initial peak power densities are generally obtained as Pd preferentially favors the selective oxidation of ethanol forming acetate thus avoiding strongly poisoning intermediates such as CO. However, few studies exist that investigate DEFC performance in terms of both energy efficiency and discharge energy density, as well as power density depending on the concentration of fuel. In this paper we have determined such parameters for room temperature air breathing AEM‐DEFCs equipped with Pd based anodes, anion exchange membranes and FeCo/C cathode electrocatalysts. Combined with the optimization of the fuel composition a maximum energy efficiency of ≈7 % was obtained for this AEM‐DEFC. Such a performance suggests that devices of this type are suitable for supplying low power applications such as small portable electronic devices.
Archivio istituziona... arrow_drop_down ChemCatChemArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cctc.201500189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ChemCatChemArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cctc.201500189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2017 ItalyAuthors: Marco Bellini;handle: 20.500.14243/387312
The production of hydrogen by the electrolysis of water is a well-established technology. However, it does not have a significant commercial impact due to its high-energy cost. A traditional Proton Exchange Membrane (PEM) electrolyzer needs more than 45 kWhkgH2-1 to achieve a significant rate of hydrogen production. This is the main reason why water electrolysis accounts for only a small proportion of the world's hydrogen production (circa 4%). Since the thermodynamic barrier of water electrolysis consumes 68% of the whole energy input of the device, our strategy for reducing the energy cost is the replacement of the unfavorable anodic oxygen evolution reaction with a more suitable reaction: the partial oxidation of a bioalcohol to a carboxylate. This process needs only 20 kWh for the evolution of one kilogram of hydrogen at the same working conditions of traditional PEM electrolyzers, with a net energy saving of about 44%. Such electrolytic processes that lead to the concomitant generation of hydrogen and industrially relevant chemicals, like acetate and lactate, are often indicated as "electrochemical reforming", or "electroreforming". In order to obtain selective oxidation of alcohols to carboxylic compounds of interest to the fine chemical industry, several anodic catalysts have been investigated, ranging from nanostructured palladium catalysts to rhodium organometallic compounds.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::b3f695b5ae7709f4461275fd246c4d69&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::b3f695b5ae7709f4461275fd246c4d69&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2017 ItalyAuthors: Marco Bellini;handle: 20.500.14243/387312
The production of hydrogen by the electrolysis of water is a well-established technology. However, it does not have a significant commercial impact due to its high-energy cost. A traditional Proton Exchange Membrane (PEM) electrolyzer needs more than 45 kWhkgH2-1 to achieve a significant rate of hydrogen production. This is the main reason why water electrolysis accounts for only a small proportion of the world's hydrogen production (circa 4%). Since the thermodynamic barrier of water electrolysis consumes 68% of the whole energy input of the device, our strategy for reducing the energy cost is the replacement of the unfavorable anodic oxygen evolution reaction with a more suitable reaction: the partial oxidation of a bioalcohol to a carboxylate. This process needs only 20 kWh for the evolution of one kilogram of hydrogen at the same working conditions of traditional PEM electrolyzers, with a net energy saving of about 44%. Such electrolytic processes that lead to the concomitant generation of hydrogen and industrially relevant chemicals, like acetate and lactate, are often indicated as "electrochemical reforming", or "electroreforming". In order to obtain selective oxidation of alcohols to carboxylic compounds of interest to the fine chemical industry, several anodic catalysts have been investigated, ranging from nanostructured palladium catalysts to rhodium organometallic compounds.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::b3f695b5ae7709f4461275fd246c4d69&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::b3f695b5ae7709f4461275fd246c4d69&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Wang, Lianqin; LAVACCHI, ALESSANDRO; BELLINI, MARCO; D’Acapito, Francesco; DI BENEDETTO, FRANCESCO; INNOCENTI, MASSIMO; Miller, Hamish A.; Montegrossi, Giordano; ZAFFERONI, CLAUDIO; VIZZA, FRANCESCO;handle: 20.500.14243/295201 , 11392/2455392 , 2158/1009192
Deactivation is one the main causes still preventing the full exploitation of palladium electrocatalysts in alkaline direct alcohol fuel cells and the electrochemical reforming of alcohols. While often attributed to the adsorption of poisoning species generated in the alcohols oxidation, in the present work we demonstrate that deactivation is provoked by the formation of palladium oxides. A combined approach including i) fuel cell runs, ii) cyclic voltammetry and iii) near edge X-ray absorption spectroscopy has enabled us to draw the conclusions reported in the paper.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2015.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2015.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Wang, Lianqin; LAVACCHI, ALESSANDRO; BELLINI, MARCO; D’Acapito, Francesco; DI BENEDETTO, FRANCESCO; INNOCENTI, MASSIMO; Miller, Hamish A.; Montegrossi, Giordano; ZAFFERONI, CLAUDIO; VIZZA, FRANCESCO;handle: 20.500.14243/295201 , 11392/2455392 , 2158/1009192
Deactivation is one the main causes still preventing the full exploitation of palladium electrocatalysts in alkaline direct alcohol fuel cells and the electrochemical reforming of alcohols. While often attributed to the adsorption of poisoning species generated in the alcohols oxidation, in the present work we demonstrate that deactivation is provoked by the formation of palladium oxides. A combined approach including i) fuel cell runs, ii) cyclic voltammetry and iii) near edge X-ray absorption spectroscopy has enabled us to draw the conclusions reported in the paper.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2015.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2015.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 France, Italy, Italy, Italy, Italy, United KingdomPublisher:American Chemical Society (ACS) Funded by:EC | CREATE, UKRI | FUEL CELL TECHNOLOGIES FO...EC| CREATE ,UKRI| FUEL CELL TECHNOLOGIES FOR AN AMMONIA ECONOMYMarco Bellini; Maria V. Pagliaro; Anna Lenarda; Paolo Fornasiero; Marcello Marelli; Claudio Evangelisti; Massimo Innocenti; Qingying Jia; Sanjeev Mukerjee; Jasna Jankovic; Lianqin Wang; John R. Varcoe; Chethana B. Krishnamurthy; Ilya Grinberg; Elena Davydova; Dario R. Dekel; Hamish A. Miller; Francesco Vizza;handle: 11368/2954376 , 20.500.14243/386759 , 2158/1208112
Anion exchange membrane fuel cells (AEMFCs) offer several important advantages with respect to proton exchange membrane fuel cells, including the possibility of avoiding the use of platinum catalysts to help overcome the high cost of fuel cell systems. Despite such potential benefits, the slow kinetics of the hydrogen oxidation reaction (HOR) in alkaline media and limitations in performance stability (because of the degradation of the anion conducting polymer electrolyte components) have generally impeded AEMFC development. Replacing Pt with an active but more sustainable HOR catalyst is a key objective. Herein, we report the synthesis of a Pd-CeO2/C catalyst with engineered Pd-to-CeO2 interfacial contact. The optimized Pd-CeO2 interfacial contact affords an increased HOR activity leading to >1.4 W cm-2 peak power densities in AEMFC tests. This is the only Pt-free HOR catalyst yet reported that matches state-of-the-art AEMFC power performances (>1 W cm-2). Density functional theory calculations suggest that the exceptional HOR activity is attributable to a weakening of the hydrogen binding energy through the interaction of Pd atoms with the oxygen atoms of CeO2. This interaction is facilitated by a structure that consists of oxidized Pd atoms coordinated by four CeO2 oxygen atoms, confirmed by X-ray absorption spectroscopy.
ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.9b00657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.9b00657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 France, Italy, Italy, Italy, Italy, United KingdomPublisher:American Chemical Society (ACS) Funded by:EC | CREATE, UKRI | FUEL CELL TECHNOLOGIES FO...EC| CREATE ,UKRI| FUEL CELL TECHNOLOGIES FOR AN AMMONIA ECONOMYMarco Bellini; Maria V. Pagliaro; Anna Lenarda; Paolo Fornasiero; Marcello Marelli; Claudio Evangelisti; Massimo Innocenti; Qingying Jia; Sanjeev Mukerjee; Jasna Jankovic; Lianqin Wang; John R. Varcoe; Chethana B. Krishnamurthy; Ilya Grinberg; Elena Davydova; Dario R. Dekel; Hamish A. Miller; Francesco Vizza;handle: 11368/2954376 , 20.500.14243/386759 , 2158/1208112
Anion exchange membrane fuel cells (AEMFCs) offer several important advantages with respect to proton exchange membrane fuel cells, including the possibility of avoiding the use of platinum catalysts to help overcome the high cost of fuel cell systems. Despite such potential benefits, the slow kinetics of the hydrogen oxidation reaction (HOR) in alkaline media and limitations in performance stability (because of the degradation of the anion conducting polymer electrolyte components) have generally impeded AEMFC development. Replacing Pt with an active but more sustainable HOR catalyst is a key objective. Herein, we report the synthesis of a Pd-CeO2/C catalyst with engineered Pd-to-CeO2 interfacial contact. The optimized Pd-CeO2 interfacial contact affords an increased HOR activity leading to >1.4 W cm-2 peak power densities in AEMFC tests. This is the only Pt-free HOR catalyst yet reported that matches state-of-the-art AEMFC power performances (>1 W cm-2). Density functional theory calculations suggest that the exceptional HOR activity is attributable to a weakening of the hydrogen binding energy through the interaction of Pd atoms with the oxygen atoms of CeO2. This interaction is facilitated by a structure that consists of oxidized Pd atoms coordinated by four CeO2 oxygen atoms, confirmed by X-ray absorption spectroscopy.
ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.9b00657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.9b00657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, GermanyPublisher:Wiley Funded by:EC | DECOREEC| DECOREMaria G. Folliero; Maria G. Folliero; Maria V. Pagliaro; Hamish A. Miller; Alessandro Lavacchi; Marco Bellini; Andrea Marchionni; Francesco Vizza; Jonathan Filippi; Lianqin Wang;handle: 11365/1028180
AbstractDirect fuel cells such as those fed with ethanol (DEFCs) that employ anion exchange membranes can use non‐platinum catalysts, which greatly reduces their system costs. In this study, we describe a passive air‐breathing monoplanar alkaline DEFC equipped with a nanostructured carbon‐supported anode (Pd) and cathode (FeCo) electrocatalysts. This DEFC was able to supply up to 30 mW cm−2 of peak electrical power density and was able to provide an almost constant amount of power at 1 mA cm−2 load for 3 months at room temperature. After such long periods of functioning at constant load, no degradation (physical or electrochemical) of the Pd‐based anode catalyst was observed.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, GermanyPublisher:Wiley Funded by:EC | DECOREEC| DECOREMaria G. Folliero; Maria G. Folliero; Maria V. Pagliaro; Hamish A. Miller; Alessandro Lavacchi; Marco Bellini; Andrea Marchionni; Francesco Vizza; Jonathan Filippi; Lianqin Wang;handle: 11365/1028180
AbstractDirect fuel cells such as those fed with ethanol (DEFCs) that employ anion exchange membranes can use non‐platinum catalysts, which greatly reduces their system costs. In this study, we describe a passive air‐breathing monoplanar alkaline DEFC equipped with a nanostructured carbon‐supported anode (Pd) and cathode (FeCo) electrocatalysts. This DEFC was able to supply up to 30 mW cm−2 of peak electrical power density and was able to provide an almost constant amount of power at 1 mA cm−2 load for 3 months at room temperature. After such long periods of functioning at constant load, no degradation (physical or electrochemical) of the Pd‐based anode catalyst was observed.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:American Chemical Society (ACS) Funded by:MIURMIURWerner Oberhauser; Lorenzo Poggini; Laura Capozzoli; Marco Bellini; Jonathan Filippi; Francesco Vizza;Diamine-capped PtCu nanoparticles have been synthesized by the simultaneous reduction of the corresponding bis-imine metal complexes with hydrogen and supported onto a high-surface-area carbon. The obtained heterogeneous catalyst was tested in thermally conducted aerobic oxidation of ethanol to acetic acid in water as well as in the electrochemical oxidation of ethanol. Both types of catalyses mediated by the PtCu alloy confirmed a notable increase in catalytic activity compared to the pure Pt- and Cu-based counterparts due to a clear bimetallic effect.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.inorgchem.2c04202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.inorgchem.2c04202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:American Chemical Society (ACS) Funded by:MIURMIURWerner Oberhauser; Lorenzo Poggini; Laura Capozzoli; Marco Bellini; Jonathan Filippi; Francesco Vizza;Diamine-capped PtCu nanoparticles have been synthesized by the simultaneous reduction of the corresponding bis-imine metal complexes with hydrogen and supported onto a high-surface-area carbon. The obtained heterogeneous catalyst was tested in thermally conducted aerobic oxidation of ethanol to acetic acid in water as well as in the electrochemical oxidation of ethanol. Both types of catalyses mediated by the PtCu alloy confirmed a notable increase in catalytic activity compared to the pure Pt- and Cu-based counterparts due to a clear bimetallic effect.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.inorgchem.2c04202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.inorgchem.2c04202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, United Kingdom, ItalyPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Liquid Fuel and bioEnergy..., UKRI | ISCF Wave 1: North East C...UKRI| Liquid Fuel and bioEnergy Supply from CO2 Reduction ,UKRI| ISCF Wave 1: North East Centre for Energy MaterialsKeith Scott; Eileen Hao Yu; Hang Xiang; Hamish A. Miller; Shahid Rasul; Shahid Rasul; Marco Bellini; Henriette Christensen;doi: 10.1039/c9se00625g
handle: 20.500.14243/362646
Formate as a medium for CO2 utilisation and energy storage.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00625g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00625g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Italy, United Kingdom, ItalyPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Liquid Fuel and bioEnergy..., UKRI | ISCF Wave 1: North East C...UKRI| Liquid Fuel and bioEnergy Supply from CO2 Reduction ,UKRI| ISCF Wave 1: North East Centre for Energy MaterialsKeith Scott; Eileen Hao Yu; Hang Xiang; Hamish A. Miller; Shahid Rasul; Shahid Rasul; Marco Bellini; Henriette Christensen;doi: 10.1039/c9se00625g
handle: 20.500.14243/362646
Formate as a medium for CO2 utilisation and energy storage.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00625g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00625g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Wiley Chen Yanxin; Bellini Marco; Bevilacqua Manuela; Fornasiero Paolo; Lavacchi Alessandro; Miller Hamish A; Wang Lianqin; Vizza Francesco;pmid: 25504942
handle: 11368/2837992 , 20.500.14243/268499 , 2158/1009812
AbstractA 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd cm−2), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm−2 at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm−2 by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm−2. Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro‐oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2‐fed proton exchange membrane fuel cells.
Archivio istituziona... arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Wiley Chen Yanxin; Bellini Marco; Bevilacqua Manuela; Fornasiero Paolo; Lavacchi Alessandro; Miller Hamish A; Wang Lianqin; Vizza Francesco;pmid: 25504942
handle: 11368/2837992 , 20.500.14243/268499 , 2158/1009812
AbstractA 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd cm−2), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm−2 at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm−2 by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm−2. Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro‐oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2‐fed proton exchange membrane fuel cells.
Archivio istituziona... arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Hamish Andrew Miller; Jacopo Ruggeri; Andrea Marchionni; Marco Bellini; Maria Vincenza Pagliaro; Carlo Bartoli; Andrea Pucci; Elisa Passaglia; Francesco Vizza;doi: 10.3390/en11020369
handle: 20.500.14243/346232 , 11568/920889
This article describes the development of a high power density Direct Formate Fuel Cell (DFFC) fed with potassium formate (KCOOH). The membrane electrode assembly (MEA) contains no platinum metal. The cathode catalyst is FeCo/C combined with a commercial anion exchange membrane (AEM). To enhance the power output and energy efficiency we have employed a nanostructured Pd/C-CeO2 anode catalyst. The activity for the formate oxidation reaction (FOR) is enhanced when compared to a Pd/C catalyst with the same Pd loading. Fuel cell tests at 60 °C show a peak power density of almost 250 mW cm−2. The discharge energy (14 kJ), faradic efficiency (89%) and energy efficiency (46%) were determined for a single fuel charge (30 mL of 4 M KCOOH and 4 M KOH). Energy analysis demonstrates that removal of the expensive KOH electrolyte is essential for the future development of these devices. To compensate we apply for the first time a polymeric ionomer in the catalyst layer of the anode electrode. A homopolymer is synthesized by the radical polymerization of vinyl benzene chloride followed by amination with 1,4-diazabicyclo[2.2.2]octane (DABCO). The energy delivered, energy efficiency and fuel consumption efficiency of DFFCs fed with 4 M KCOOH are doubled with the use of the ionomer.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/369/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2018License: CC BYData sources: Archivio della Ricerca - Università di Pisaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/369/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2018License: CC BYData sources: Archivio della Ricerca - Università di Pisaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Hamish Andrew Miller; Jacopo Ruggeri; Andrea Marchionni; Marco Bellini; Maria Vincenza Pagliaro; Carlo Bartoli; Andrea Pucci; Elisa Passaglia; Francesco Vizza;doi: 10.3390/en11020369
handle: 20.500.14243/346232 , 11568/920889
This article describes the development of a high power density Direct Formate Fuel Cell (DFFC) fed with potassium formate (KCOOH). The membrane electrode assembly (MEA) contains no platinum metal. The cathode catalyst is FeCo/C combined with a commercial anion exchange membrane (AEM). To enhance the power output and energy efficiency we have employed a nanostructured Pd/C-CeO2 anode catalyst. The activity for the formate oxidation reaction (FOR) is enhanced when compared to a Pd/C catalyst with the same Pd loading. Fuel cell tests at 60 °C show a peak power density of almost 250 mW cm−2. The discharge energy (14 kJ), faradic efficiency (89%) and energy efficiency (46%) were determined for a single fuel charge (30 mL of 4 M KCOOH and 4 M KOH). Energy analysis demonstrates that removal of the expensive KOH electrolyte is essential for the future development of these devices. To compensate we apply for the first time a polymeric ionomer in the catalyst layer of the anode electrode. A homopolymer is synthesized by the radical polymerization of vinyl benzene chloride followed by amination with 1,4-diazabicyclo[2.2.2]octane (DABCO). The energy delivered, energy efficiency and fuel consumption efficiency of DFFCs fed with 4 M KCOOH are doubled with the use of the ionomer.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/369/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2018License: CC BYData sources: Archivio della Ricerca - Università di Pisaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/369/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2018License: CC BYData sources: Archivio della Ricerca - Università di Pisaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Wiley Samuel P. Annen; Andrea Marchionni; Werner Oberhauser; Francesco Vizza; Hansjörg Grützmacher; Hansjörg Grützmacher; Jonathan Filippi; Manuela Bevilacqua; Hamish A. Miller; Alessandro Lavacchi; Marco Bellini;pmid: 25082272
handle: 20.500.14243/227918 , 2158/910130
AbstractInvited for this month’s cover are the groups of Hansjörg Grützmacher at ETH in Zürich and Francesco Vizza at ICCOM‐CNR in Florence. The image shows in an allegoric form an organometallic fuel cell releasing energy and fine chemicals produced through the electrooxidation of renewable diols. The Communication itself is available at 10.1002/cssc.201402316
ChemSusChem arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2014Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2014Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Wiley Samuel P. Annen; Andrea Marchionni; Werner Oberhauser; Francesco Vizza; Hansjörg Grützmacher; Hansjörg Grützmacher; Jonathan Filippi; Manuela Bevilacqua; Hamish A. Miller; Alessandro Lavacchi; Marco Bellini;pmid: 25082272
handle: 20.500.14243/227918 , 2158/910130
AbstractInvited for this month’s cover are the groups of Hansjörg Grützmacher at ETH in Zürich and Francesco Vizza at ICCOM‐CNR in Florence. The image shows in an allegoric form an organometallic fuel cell releasing energy and fine chemicals produced through the electrooxidation of renewable diols. The Communication itself is available at 10.1002/cssc.201402316
ChemSusChem arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2014Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemSusChemArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2014Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201402750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Wiley Wang Lianqin; Lavacchi Alessandro; Bevilacqua Manuela; Bellini Marco; Fornasiero Paolo; Filippi Jonathan; Innocenti Massimo; Innocenti Massimo; Marchionni Andrea; Miller Hamish Andrew; Vizza Francesco;handle: 11368/2858935 , 20.500.14243/299976 , 2158/1009811
AbstractCarbon supported nanostructured palladium or palladium alloys are considered the best performing anode electrocatalysts currently employed in alkaline electrolyte membrane direct ethanol fuel cells (AEM‐DEFCs). High initial peak power densities are generally obtained as Pd preferentially favors the selective oxidation of ethanol forming acetate thus avoiding strongly poisoning intermediates such as CO. However, few studies exist that investigate DEFC performance in terms of both energy efficiency and discharge energy density, as well as power density depending on the concentration of fuel. In this paper we have determined such parameters for room temperature air breathing AEM‐DEFCs equipped with Pd based anodes, anion exchange membranes and FeCo/C cathode electrocatalysts. Combined with the optimization of the fuel composition a maximum energy efficiency of ≈7 % was obtained for this AEM‐DEFC. Such a performance suggests that devices of this type are suitable for supplying low power applications such as small portable electronic devices.
Archivio istituziona... arrow_drop_down ChemCatChemArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cctc.201500189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ChemCatChemArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cctc.201500189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Wiley Wang Lianqin; Lavacchi Alessandro; Bevilacqua Manuela; Bellini Marco; Fornasiero Paolo; Filippi Jonathan; Innocenti Massimo; Innocenti Massimo; Marchionni Andrea; Miller Hamish Andrew; Vizza Francesco;handle: 11368/2858935 , 20.500.14243/299976 , 2158/1009811
AbstractCarbon supported nanostructured palladium or palladium alloys are considered the best performing anode electrocatalysts currently employed in alkaline electrolyte membrane direct ethanol fuel cells (AEM‐DEFCs). High initial peak power densities are generally obtained as Pd preferentially favors the selective oxidation of ethanol forming acetate thus avoiding strongly poisoning intermediates such as CO. However, few studies exist that investigate DEFC performance in terms of both energy efficiency and discharge energy density, as well as power density depending on the concentration of fuel. In this paper we have determined such parameters for room temperature air breathing AEM‐DEFCs equipped with Pd based anodes, anion exchange membranes and FeCo/C cathode electrocatalysts. Combined with the optimization of the fuel composition a maximum energy efficiency of ≈7 % was obtained for this AEM‐DEFC. Such a performance suggests that devices of this type are suitable for supplying low power applications such as small portable electronic devices.
Archivio istituziona... arrow_drop_down ChemCatChemArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cctc.201500189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ChemCatChemArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cctc.201500189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2017 ItalyAuthors: Marco Bellini;handle: 20.500.14243/387312
The production of hydrogen by the electrolysis of water is a well-established technology. However, it does not have a significant commercial impact due to its high-energy cost. A traditional Proton Exchange Membrane (PEM) electrolyzer needs more than 45 kWhkgH2-1 to achieve a significant rate of hydrogen production. This is the main reason why water electrolysis accounts for only a small proportion of the world's hydrogen production (circa 4%). Since the thermodynamic barrier of water electrolysis consumes 68% of the whole energy input of the device, our strategy for reducing the energy cost is the replacement of the unfavorable anodic oxygen evolution reaction with a more suitable reaction: the partial oxidation of a bioalcohol to a carboxylate. This process needs only 20 kWh for the evolution of one kilogram of hydrogen at the same working conditions of traditional PEM electrolyzers, with a net energy saving of about 44%. Such electrolytic processes that lead to the concomitant generation of hydrogen and industrially relevant chemicals, like acetate and lactate, are often indicated as "electrochemical reforming", or "electroreforming". In order to obtain selective oxidation of alcohols to carboxylic compounds of interest to the fine chemical industry, several anodic catalysts have been investigated, ranging from nanostructured palladium catalysts to rhodium organometallic compounds.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::b3f695b5ae7709f4461275fd246c4d69&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::b3f695b5ae7709f4461275fd246c4d69&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2017 ItalyAuthors: Marco Bellini;handle: 20.500.14243/387312
The production of hydrogen by the electrolysis of water is a well-established technology. However, it does not have a significant commercial impact due to its high-energy cost. A traditional Proton Exchange Membrane (PEM) electrolyzer needs more than 45 kWhkgH2-1 to achieve a significant rate of hydrogen production. This is the main reason why water electrolysis accounts for only a small proportion of the world's hydrogen production (circa 4%). Since the thermodynamic barrier of water electrolysis consumes 68% of the whole energy input of the device, our strategy for reducing the energy cost is the replacement of the unfavorable anodic oxygen evolution reaction with a more suitable reaction: the partial oxidation of a bioalcohol to a carboxylate. This process needs only 20 kWh for the evolution of one kilogram of hydrogen at the same working conditions of traditional PEM electrolyzers, with a net energy saving of about 44%. Such electrolytic processes that lead to the concomitant generation of hydrogen and industrially relevant chemicals, like acetate and lactate, are often indicated as "electrochemical reforming", or "electroreforming". In order to obtain selective oxidation of alcohols to carboxylic compounds of interest to the fine chemical industry, several anodic catalysts have been investigated, ranging from nanostructured palladium catalysts to rhodium organometallic compounds.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::b3f695b5ae7709f4461275fd246c4d69&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_____10978::b3f695b5ae7709f4461275fd246c4d69&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Wang, Lianqin; LAVACCHI, ALESSANDRO; BELLINI, MARCO; D’Acapito, Francesco; DI BENEDETTO, FRANCESCO; INNOCENTI, MASSIMO; Miller, Hamish A.; Montegrossi, Giordano; ZAFFERONI, CLAUDIO; VIZZA, FRANCESCO;handle: 20.500.14243/295201 , 11392/2455392 , 2158/1009192
Deactivation is one the main causes still preventing the full exploitation of palladium electrocatalysts in alkaline direct alcohol fuel cells and the electrochemical reforming of alcohols. While often attributed to the adsorption of poisoning species generated in the alcohols oxidation, in the present work we demonstrate that deactivation is provoked by the formation of palladium oxides. A combined approach including i) fuel cell runs, ii) cyclic voltammetry and iii) near edge X-ray absorption spectroscopy has enabled us to draw the conclusions reported in the paper.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2015.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2015.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Wang, Lianqin; LAVACCHI, ALESSANDRO; BELLINI, MARCO; D’Acapito, Francesco; DI BENEDETTO, FRANCESCO; INNOCENTI, MASSIMO; Miller, Hamish A.; Montegrossi, Giordano; ZAFFERONI, CLAUDIO; VIZZA, FRANCESCO;handle: 20.500.14243/295201 , 11392/2455392 , 2158/1009192
Deactivation is one the main causes still preventing the full exploitation of palladium electrocatalysts in alkaline direct alcohol fuel cells and the electrochemical reforming of alcohols. While often attributed to the adsorption of poisoning species generated in the alcohols oxidation, in the present work we demonstrate that deactivation is provoked by the formation of palladium oxides. A combined approach including i) fuel cell runs, ii) cyclic voltammetry and iii) near edge X-ray absorption spectroscopy has enabled us to draw the conclusions reported in the paper.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2015.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2015Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2015.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 France, Italy, Italy, Italy, Italy, United KingdomPublisher:American Chemical Society (ACS) Funded by:EC | CREATE, UKRI | FUEL CELL TECHNOLOGIES FO...EC| CREATE ,UKRI| FUEL CELL TECHNOLOGIES FOR AN AMMONIA ECONOMYMarco Bellini; Maria V. Pagliaro; Anna Lenarda; Paolo Fornasiero; Marcello Marelli; Claudio Evangelisti; Massimo Innocenti; Qingying Jia; Sanjeev Mukerjee; Jasna Jankovic; Lianqin Wang; John R. Varcoe; Chethana B. Krishnamurthy; Ilya Grinberg; Elena Davydova; Dario R. Dekel; Hamish A. Miller; Francesco Vizza;handle: 11368/2954376 , 20.500.14243/386759 , 2158/1208112
Anion exchange membrane fuel cells (AEMFCs) offer several important advantages with respect to proton exchange membrane fuel cells, including the possibility of avoiding the use of platinum catalysts to help overcome the high cost of fuel cell systems. Despite such potential benefits, the slow kinetics of the hydrogen oxidation reaction (HOR) in alkaline media and limitations in performance stability (because of the degradation of the anion conducting polymer electrolyte components) have generally impeded AEMFC development. Replacing Pt with an active but more sustainable HOR catalyst is a key objective. Herein, we report the synthesis of a Pd-CeO2/C catalyst with engineered Pd-to-CeO2 interfacial contact. The optimized Pd-CeO2 interfacial contact affords an increased HOR activity leading to >1.4 W cm-2 peak power densities in AEMFC tests. This is the only Pt-free HOR catalyst yet reported that matches state-of-the-art AEMFC power performances (>1 W cm-2). Density functional theory calculations suggest that the exceptional HOR activity is attributable to a weakening of the hydrogen binding energy through the interaction of Pd atoms with the oxygen atoms of CeO2. This interaction is facilitated by a structure that consists of oxidized Pd atoms coordinated by four CeO2 oxygen atoms, confirmed by X-ray absorption spectroscopy.
ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.9b00657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.9b00657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 France, Italy, Italy, Italy, Italy, United KingdomPublisher:American Chemical Society (ACS) Funded by:EC | CREATE, UKRI | FUEL CELL TECHNOLOGIES FO...EC| CREATE ,UKRI| FUEL CELL TECHNOLOGIES FOR AN AMMONIA ECONOMYMarco Bellini; Maria V. Pagliaro; Anna Lenarda; Paolo Fornasiero; Marcello Marelli; Claudio Evangelisti; Massimo Innocenti; Qingying Jia; Sanjeev Mukerjee; Jasna Jankovic; Lianqin Wang; John R. Varcoe; Chethana B. Krishnamurthy; Ilya Grinberg; Elena Davydova; Dario R. Dekel; Hamish A. Miller; Francesco Vizza;handle: 11368/2954376 , 20.500.14243/386759 , 2158/1208112
Anion exchange membrane fuel cells (AEMFCs) offer several important advantages with respect to proton exchange membrane fuel cells, including the possibility of avoiding the use of platinum catalysts to help overcome the high cost of fuel cell systems. Despite such potential benefits, the slow kinetics of the hydrogen oxidation reaction (HOR) in alkaline media and limitations in performance stability (because of the degradation of the anion conducting polymer electrolyte components) have generally impeded AEMFC development. Replacing Pt with an active but more sustainable HOR catalyst is a key objective. Herein, we report the synthesis of a Pd-CeO2/C catalyst with engineered Pd-to-CeO2 interfacial contact. The optimized Pd-CeO2 interfacial contact affords an increased HOR activity leading to >1.4 W cm-2 peak power densities in AEMFC tests. This is the only Pt-free HOR catalyst yet reported that matches state-of-the-art AEMFC power performances (>1 W cm-2). Density functional theory calculations suggest that the exceptional HOR activity is attributable to a weakening of the hydrogen binding energy through the interaction of Pd atoms with the oxygen atoms of CeO2. This interaction is facilitated by a structure that consists of oxidized Pd atoms coordinated by four CeO2 oxygen atoms, confirmed by X-ray absorption spectroscopy.
ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.9b00657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert ACS Applied Energy M... arrow_drop_down ACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Applied Energy MaterialsArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Surrey Open Research repositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.9b00657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, GermanyPublisher:Wiley Funded by:EC | DECOREEC| DECOREMaria G. Folliero; Maria G. Folliero; Maria V. Pagliaro; Hamish A. Miller; Alessandro Lavacchi; Marco Bellini; Andrea Marchionni; Francesco Vizza; Jonathan Filippi; Lianqin Wang;handle: 11365/1028180
AbstractDirect fuel cells such as those fed with ethanol (DEFCs) that employ anion exchange membranes can use non‐platinum catalysts, which greatly reduces their system costs. In this study, we describe a passive air‐breathing monoplanar alkaline DEFC equipped with a nanostructured carbon‐supported anode (Pd) and cathode (FeCo) electrocatalysts. This DEFC was able to supply up to 30 mW cm−2 of peak electrical power density and was able to provide an almost constant amount of power at 1 mA cm−2 load for 3 months at room temperature. After such long periods of functioning at constant load, no degradation (physical or electrochemical) of the Pd‐based anode catalyst was observed.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, GermanyPublisher:Wiley Funded by:EC | DECOREEC| DECOREMaria G. Folliero; Maria G. Folliero; Maria V. Pagliaro; Hamish A. Miller; Alessandro Lavacchi; Marco Bellini; Andrea Marchionni; Francesco Vizza; Jonathan Filippi; Lianqin Wang;handle: 11365/1028180
AbstractDirect fuel cells such as those fed with ethanol (DEFCs) that employ anion exchange membranes can use non‐platinum catalysts, which greatly reduces their system costs. In this study, we describe a passive air‐breathing monoplanar alkaline DEFC equipped with a nanostructured carbon‐supported anode (Pd) and cathode (FeCo) electrocatalysts. This DEFC was able to supply up to 30 mW cm−2 of peak electrical power density and was able to provide an almost constant amount of power at 1 mA cm−2 load for 3 months at room temperature. After such long periods of functioning at constant load, no degradation (physical or electrochemical) of the Pd‐based anode catalyst was observed.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:American Chemical Society (ACS) Funded by:MIURMIURWerner Oberhauser; Lorenzo Poggini; Laura Capozzoli; Marco Bellini; Jonathan Filippi; Francesco Vizza;Diamine-capped PtCu nanoparticles have been synthesized by the simultaneous reduction of the corresponding bis-imine metal complexes with hydrogen and supported onto a high-surface-area carbon. The obtained heterogeneous catalyst was tested in thermally conducted aerobic oxidation of ethanol to acetic acid in water as well as in the electrochemical oxidation of ethanol. Both types of catalyses mediated by the PtCu alloy confirmed a notable increase in catalytic activity compared to the pure Pt- and Cu-based counterparts due to a clear bimetallic effect.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.inorgchem.2c04202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.inorgchem.2c04202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:American Chemical Society (ACS) Funded by:MIURMIURWerner Oberhauser; Lorenzo Poggini; Laura Capozzoli; Marco Bellini; Jonathan Filippi; Francesco Vizza;Diamine-capped PtCu nanoparticles have been synthesized by the simultaneous reduction of the corresponding bis-imine metal complexes with hydrogen and supported onto a high-surface-area carbon. The obtained heterogeneous catalyst was tested in thermally conducted aerobic oxidation of ethanol to acetic acid in water as well as in the electrochemical oxidation of ethanol. Both types of catalyses mediated by the PtCu alloy confirmed a notable increase in catalytic activity compared to the pure Pt- and Cu-based counterparts due to a clear bimetallic effect.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.inorgchem.2c04202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.inorgchem.2c04202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu