- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Proceedings of the National Academy of Sciences Ellen A. R. Welti; Karl A. Roeder; Kirsten M. de Beurs; Anthony Joern; Michael Kaspari;Evidence for global insect declines mounts, increasing our need to understand underlying mechanisms. We test the nutrient dilution (ND) hypothesis—the decreasing concentration of essential dietary minerals with increasing plant productivity—that particularly targets insect herbivores. Nutrient dilution can result from increased plant biomass due to climate or CO 2 enrichment. Additionally, when considering long-term trends driven by climate, one must account for large-scale oscillations including El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO). We combine long-term datasets of grasshopper abundance, climate, plant biomass, and end-of-season foliar elemental content to examine potential drivers of abundance cycles and trends of this dominant herbivore. Annual grasshopper abundances in 16- and 22-y time series from a Kansas prairie revealed both 5-y cycles and declines of 2.1–2.7%/y. Climate cycle indices of spring ENSO, summer NAO, and winter or spring PDO accounted for 40–54% of the variation in grasshopper abundance, mediated by effects of weather and host plants. Consistent with ND, grass biomass doubled and foliar concentrations of N, P, K, and Na—nutrients which limit grasshopper abundance—declined over the same period. The decline in plant nutrients accounted for 25% of the variation in grasshopper abundance over two decades. Thus a warming, wetter, more CO 2 -enriched world will likely contribute to declines in insect herbivores by depleting nutrients from their already nutrient-poor diet. Unlike other potential drivers of insect declines—habitat loss, light and chemical pollution—ND may be widespread in remaining natural areas.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1920012117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 117 citations 117 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1920012117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Wiley Funded by:DFG, EC | eLTER PLUSDFG ,EC| eLTER PLUSAuthors: Carlos Cano‐Barbacil; James S. Sinclair; Ellen A. R. Welti; Peter Haase;ABSTRACTFreshwater ecosystems face significant threats, including pollution, habitat loss, invasive species, and climate change. To address these challenges, management strategies and restoration efforts have been broadly implemented. Across Europe, such efforts have resulted in overall improvements in freshwater biodiversity, but recovery has stalled or failed to occur in many localities, which may be partly caused by the limited dispersal capacity of many species. Here, we used a comprehensive dataset comprising 1327 time series of freshwater macroinvertebrate communities ranging from 1968 to 2021 across 23 European countries to investigate whether dispersal capacity changes with the ecological quality of riverine systems. Sites experiencing improvements in ecological quality exhibited a net gain in species and tended to have macroinvertebrate communities containing species with stronger dispersal capacity (e.g., active aquatic and aerial dispersers, species with frequent propensity to drift, and insects with larger wings). In contrast, sites experiencing degradation of ecological quality exhibited a net loss of species and a reduction in the proportion of strong dispersers. However, this response varied extensively among countries and local sites, with some improving sites exhibiting no parallel gains in macroinvertebrates with higher dispersal capacity. Dispersal capacity of the local species pool can affect the success of freshwater ecosystem restoration projects. Management strategies should focus on enhancing landscape connectivity to create accessible “source” areas and refugia for sensitive taxa, especially as climate change reshapes habitat suitability. Additionally, biodiversity initiatives must incorporate adaptive decision‐making approaches that account for the site‐specific responses of macroinvertebrate communities to changes in ecological quality.
Global Change Biolog... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2025Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2025Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 31 Mar 2022 GermanyPublisher:Wiley Funded by:EC | eLTER PLUS, DFGEC| eLTER PLUS ,DFGStefan Stoll; Ronny Richter; Tobias Scharnweber; Johannes Uhler; Jörg Müller; Jörn Buse; Günter Hoenselaar; Stephanie Puffpaff; Tim Bornholdt; Martin Fellendorf; Petr Zajicek; Klaus Mandery; Cristina Ganuza; Mark Frenzel; Sandra Rojas-Botero; Sönke Twietmeyer; Andreas Marten; Sarah Redlich; Cynthia Tobisch; Andrea Kaus-Thiel; Manfred Ayasse; Peter Haase; Peter Haase; Ute Fricke; Ellen A. R. Welti; Alice Classen; Mathias Hippke; Dirk Weis; Wolfgang W. Weisser; Jana Englmeier; Frank Dziock; Rolf A. Engelmann; Carsten Morkel; Daniela Kilian; Sebastian Seibold; Marc I. Förschler; Janika Kerner; Gregor Scheiffarth; Martin Wilmking; Ingolf Steffan-Dewenter; Paul Schmidt Yáñez; Rhena Schumann; Juliane Vogt; Michael T. Monaghan; Michael T. Monaghan;ABSTRACT Among the many concerns for biodiversity in the Anthropocene, recent reports of flying insect loss are particularly alarming, given their importance as pollinators, pest control agents, and as a food source. Few insect monitoring programmes cover the large spatial scales required to provide more generalizable estimates of insect responses to global change drivers. We ask how climate and surrounding habitat affect flying insect biomass using data from the first year of a new monitoring network at 84 locations across Germany comprising a spatial gradient of land cover types from protected to urban and crop areas. Flying insect biomass increased linearly with temperature across Germany. However, the effect of temperature on flying insect biomass flipped to negative in the hot months of June and July when local temperatures most exceeded long‐term averages. Land cover explained little variation in insect biomass, but biomass was lowest in forests. Grasslands, pastures, and orchards harboured the highest insect biomass. The date of peak biomass was primarily driven by surrounding land cover, with grasslands especially having earlier insect biomass phenologies. Standardised, large‐scale monitoring provides key insights into the underlying processes of insect decline and is pivotal for the development of climate‐adapted strategies to promote insect diversity. In a temperate climate region, we find that the positive effects of temperature on flying insect biomass diminish in a German summer at locations where temperatures most exceeded long‐term averages. Our results highlight the importance of local adaptation in climate change‐driven impacts on insect communities.
Insect Conservation ... arrow_drop_down Insect Conservation and DiversityArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://dx.doi.org/10.17169/re...Other literature type . 2022License: CC BY NCData sources: DataciteRefubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BY NCData sources: Refubium - Repositorium der Freien Universität BerlinInsect Conservation and DiversityArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/icad.12555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Insect Conservation ... arrow_drop_down Insect Conservation and DiversityArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://dx.doi.org/10.17169/re...Other literature type . 2022License: CC BY NCData sources: DataciteRefubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BY NCData sources: Refubium - Repositorium der Freien Universität BerlinInsect Conservation and DiversityArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/icad.12555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Wiley Ellen A. R. Welti; Rebecca M. Prather; Nathan J. Sanders; Kirsten M. de Beurs; Michael Kaspari;pmid: 32115723
Abstract We investigate where bottom‐up and top‐down control regulates ecological communities as a mechanism linking ecological gradients to the geography of consumer abundance and biomass. We use standardized surveys of 54 North American grasslands to test alternate hypotheses predicting 100‐fold shifts in the biomass of four common grassland arthropod taxa—Auchenorrhyncha, sucking herbivores, Acrididae, chewing herbivores, Tettigoniidae, omnivores, and Araneae, predators. Bottom‐up models predict that consumer biomass tracks plant quantity (e.g. productivity and standing biomass) and quality (nutrient content) and that ectotherm access to food increases with temperature. Each of the focal trophic groups responded differently to these drivers: the biomass of sucking herbivores and omnivores increased with plant biomass; that of chewing herbivores tracked plant quality; and predator biomass did not depend on plant quality, plant quantity or temperature. The Exploitation Ecosystem Hypothesis is a top‐down hypothesis that predicts a shift from resource limitation of herbivores when plant production is low, to predator limitation when plant production is high. In grasslands where spider biomass was low, herbivore biomass increased with plant biomass, whereas bottom‐up structuring was not evident when spiders were abundant. Furthermore, neither predator biomass nor trophic position (via stable isotope analysis) increased with plant biomass, suggesting predators themselves are top‐down limited. Stable isotope analysis revealed that trophic position of the chewing herbivore and omnivore increased significantly with plant biomass, suggesting these groups increased scavenging and meat consumption in grasslands with higher carbohydrate availability. Taken together, our snapshot sampling documents gradients of food web structure across 54 grasslands, consistent with multiple hypotheses of bottom‐up and top‐down regulation.
Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallJournal of Animal EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallJournal of Animal EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Ellen A. R. Welti; Ellen A. R. Welti; Anthony Joern; Lindsey A. Bruckerhoff; James P. Guinnip; Alixandra Godar; R. Kent Connell; Keith B. Gido; Elina Adhikari; Andrew G. Hope; Alice W. Boyle;doi: 10.1002/ecy.2986
pmid: 31961449
AbstractHuman induced climate and land‐use change are severely impacting global biodiversity, but how community composition and richness of multiple taxonomic groups change in response to local drivers and whether these responses are synchronous remains unclear. We used long‐term community‐level data from an experimentally manipulated grassland to assess the relative influence of climate and land use as drivers of community structure of four taxonomic groups: birds, mammals, grasshoppers, and plants. We also quantified the synchrony of responses among taxonomic groups across land‐use gradients and compared climatic drivers of community structure across groups. All four taxonomic groups responded strongly to land use (fire frequency and grazing), while responses to climate variability were more pronounced in grasshoppers and small mammals. Animal groups exhibited asynchronous responses across all land‐use treatments, but plant and animal groups, especially birds, exhibited synchronous responses in composition. Asynchrony was attributed to taxonomic groups responding to different components of climate variability, including both current climate conditions and lagged effects from the previous year. Data‐driven land management strategies are crucial for sustaining native biodiversity in grassland systems, but asynchronous responses of taxonomic groups to climate variability across land‐use gradients highlight a need to incorporate response heterogeneity into management planning.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Rebecca M. Prather; Karen Castillioni; Ellen A.R. Welti; Michael Kaspari; Lara Souza;doi: 10.1002/ecy.3033
pmid: 32112407
AbstractArthropod abundance and diversity often track plant biomass and diversity at the local scale. However, under altered precipitation regimes and anthropogenic disturbances, plant–arthropod relationships are expected to be increasingly controlled by abiotic, rather than biotic, factors. We used an experimental precipitation gradient combined with human management in a temperate mixed‐grass prairie to examine (1) how two drivers, altered precipitation and biomass removal, can synergistically affect abiotic factors and plant communities and (2) how these effects can cascade upward, impacting the arthropod food web. Both drought and hay harvest increased soil surface temperature, and drought decreased soil moisture. Arthropod abundance decreased with low soil moisture and, contrary to our predictions, decreased with increased plant biomass. Arthropod diversity increased with soil moisture, decreased with high surface temperatures, and tracked arthropod abundance but was unaffected by plant diversity or quality. Our experiment demonstrates that arthropod abundance is directly constrained by abiotic factors and plant biomass, in turn constraining local arthropod diversity. If robust, this result suggests climate change in the southern Great Plains may directly reduce arthropod diversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:EC | eLTER PLUS, DFGEC| eLTER PLUS ,DFGNguyen, Hanh H.; Peters, Kristin; Kiesel, Jens; Welti, Ellen A.R.; Gillmann, Svenja M.; Lorenz, Armin W.; Jähnig, Sonja C.; Haase, Peter;pmid: 38657809
Identifying which environmental drivers underlie degradation and improvements of ecological communities is a fundamental goal of ecology. Achieving this goal is a challenge due to diverse trends in both environmental conditions and ecological communities across regions, and it is constrained by the lack of long-term parallel monitoring of environmental and community data needed to study causal relationships. Here, we identify key environmental drivers using a high-resolution environmental - ecological dataset, an ensemble of the Soil and Water Assessment Tool (SWAT+) model, and ecological models to investigate effects of climate, land-use, and runoff on the decadal trend (2012-2021) of stream macroinvertebrate communities in a restored urban catchment and an impacted catchment with mixed land-uses in Germany. The decadal trends showed decreased precipitation, increased temperature, and reduced anthropogenic land-uses, which led to opposing runoff trends - with decreased runoff in the restored catchment and increased runoff in the impacted catchment. The two catchments also varied in decadal trends of taxonomic and trait composition and metrics. The most significant improvements over time were recorded in communities of the restored catchment sites, which have become wastewater free since 2007 to 2009. Within the restored catchment sites, community metric trends were primarily explained by land-use and evaporation trends, while community composition trends were mostly associated with precipitation and runoff trends. Meanwhile, the communities in the impacted catchment did not undergo significant changes between 2012 and 2021, likely influenced by the effects of prolonged droughts following floods after 2018. The results of our study confirm the significance of restoration and land-use management in fostering long-term improvements in stream communities, while climate change remains a prodigious threat. The coupling of long-term biodiversity monitoring with concurrent sampling of relevant environmental drivers is critical for preventative and restorative management in ecology.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Science of The Total EnvironmentArticle . 2024 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2024Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.172659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Science of The Total EnvironmentArticle . 2024 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2024Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.172659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Ellen Ar, Welti; Michael, Kaspari;pmid: 39182720
Declining insect populations are concerning, given the numerous ecosystem services provided by insects. Here, we examine yet another threat to global insect populations - nutrient dilution, the reduction in noncarbon essential nutrients in plant tissues. The rise of atmospheric CO2, and subsequent 'global greening', is a major driver of nutrient dilution. As plant nutrient concentrations are already low compared to animal tissues, further reductions can be detrimental to herbivore fitness, resulting in increased development times, smaller intraspecific body sizes, reduced reproduction, and reduced population sizes. By altering herbivore populations and traits, nutrient dilution can ramify up trophic levels. Conservation of Earth's biodiversity will require not just protection of habitat, but reductions in anthropogenic alterations to biogeochemical cycles, including the carbon cycle.
Current Opinion in I... arrow_drop_down Current Opinion in Insect ScienceArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cois.2024.101255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Current Opinion in I... arrow_drop_down Current Opinion in Insect ScienceArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cois.2024.101255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 LithuaniaPublisher:Springer Science and Business Media LLC Funded by:EC | eLTER PLUS, EC | REFORMEC| eLTER PLUS ,EC| REFORMEllen A. R. Welti; Kathrin Januschke; Petr Zajicek; Nathan Jay Baker; Peter Haase; Peter Haase; Oliver Brauner;AbstractWhile much of global biodiversity is undoubtedly under threat, the responses of ecological communities to changing climate, land use intensification, and long-term changes in both taxonomic and functional diversity over time, has still not been fully explored for many taxonomic groups, especially invertebrates. We compiled time series of ground beetles covering the past two decades from 40 sites located in five regions across Germany. We calculated site-based trends for 21 community metrics representing taxonomic and functional diversity of ground beetles, activity density (a proxy for abundance), and activity densities of functional groups. We assessed both overall and regional temporal trends and the influence of the global change drivers of temperature, precipitation, and land use on ground beetle communities. While we did not detect overall temporal changes in ground beetle taxonomic and functional diversity, taxonomic turnover changed within two regions, illustrating that community change at the local scale does not always correspond to patterns at broader spatial scales. Additionally, ground beetle activity density had a unimodal response to both annual precipitation and land use. Limited temporal change in ground beetle communities may indicate a shifting baseline, where community degradation was reached prior to the start of our observation in 1999. In addition, nonlinear responses of animal communities to environmental change present a challenge when quantifying temporal trends.
Scientific Reports arrow_drop_down Institutional Repository of Nature Research CentreArticle . 2021License: CC BYData sources: Institutional Repository of Nature Research CentreUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-96910-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down Institutional Repository of Nature Research CentreArticle . 2021License: CC BYData sources: Institutional Repository of Nature Research CentreUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-96910-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Proceedings of the National Academy of Sciences Ellen A. R. Welti; Karl A. Roeder; Kirsten M. de Beurs; Anthony Joern; Michael Kaspari;Evidence for global insect declines mounts, increasing our need to understand underlying mechanisms. We test the nutrient dilution (ND) hypothesis—the decreasing concentration of essential dietary minerals with increasing plant productivity—that particularly targets insect herbivores. Nutrient dilution can result from increased plant biomass due to climate or CO 2 enrichment. Additionally, when considering long-term trends driven by climate, one must account for large-scale oscillations including El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO). We combine long-term datasets of grasshopper abundance, climate, plant biomass, and end-of-season foliar elemental content to examine potential drivers of abundance cycles and trends of this dominant herbivore. Annual grasshopper abundances in 16- and 22-y time series from a Kansas prairie revealed both 5-y cycles and declines of 2.1–2.7%/y. Climate cycle indices of spring ENSO, summer NAO, and winter or spring PDO accounted for 40–54% of the variation in grasshopper abundance, mediated by effects of weather and host plants. Consistent with ND, grass biomass doubled and foliar concentrations of N, P, K, and Na—nutrients which limit grasshopper abundance—declined over the same period. The decline in plant nutrients accounted for 25% of the variation in grasshopper abundance over two decades. Thus a warming, wetter, more CO 2 -enriched world will likely contribute to declines in insect herbivores by depleting nutrients from their already nutrient-poor diet. Unlike other potential drivers of insect declines—habitat loss, light and chemical pollution—ND may be widespread in remaining natural areas.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1920012117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 117 citations 117 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1920012117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Wiley Funded by:DFG, EC | eLTER PLUSDFG ,EC| eLTER PLUSAuthors: Carlos Cano‐Barbacil; James S. Sinclair; Ellen A. R. Welti; Peter Haase;ABSTRACTFreshwater ecosystems face significant threats, including pollution, habitat loss, invasive species, and climate change. To address these challenges, management strategies and restoration efforts have been broadly implemented. Across Europe, such efforts have resulted in overall improvements in freshwater biodiversity, but recovery has stalled or failed to occur in many localities, which may be partly caused by the limited dispersal capacity of many species. Here, we used a comprehensive dataset comprising 1327 time series of freshwater macroinvertebrate communities ranging from 1968 to 2021 across 23 European countries to investigate whether dispersal capacity changes with the ecological quality of riverine systems. Sites experiencing improvements in ecological quality exhibited a net gain in species and tended to have macroinvertebrate communities containing species with stronger dispersal capacity (e.g., active aquatic and aerial dispersers, species with frequent propensity to drift, and insects with larger wings). In contrast, sites experiencing degradation of ecological quality exhibited a net loss of species and a reduction in the proportion of strong dispersers. However, this response varied extensively among countries and local sites, with some improving sites exhibiting no parallel gains in macroinvertebrates with higher dispersal capacity. Dispersal capacity of the local species pool can affect the success of freshwater ecosystem restoration projects. Management strategies should focus on enhancing landscape connectivity to create accessible “source” areas and refugia for sensitive taxa, especially as climate change reshapes habitat suitability. Additionally, biodiversity initiatives must incorporate adaptive decision‐making approaches that account for the site‐specific responses of macroinvertebrate communities to changes in ecological quality.
Global Change Biolog... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2025Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2025Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 31 Mar 2022 GermanyPublisher:Wiley Funded by:EC | eLTER PLUS, DFGEC| eLTER PLUS ,DFGStefan Stoll; Ronny Richter; Tobias Scharnweber; Johannes Uhler; Jörg Müller; Jörn Buse; Günter Hoenselaar; Stephanie Puffpaff; Tim Bornholdt; Martin Fellendorf; Petr Zajicek; Klaus Mandery; Cristina Ganuza; Mark Frenzel; Sandra Rojas-Botero; Sönke Twietmeyer; Andreas Marten; Sarah Redlich; Cynthia Tobisch; Andrea Kaus-Thiel; Manfred Ayasse; Peter Haase; Peter Haase; Ute Fricke; Ellen A. R. Welti; Alice Classen; Mathias Hippke; Dirk Weis; Wolfgang W. Weisser; Jana Englmeier; Frank Dziock; Rolf A. Engelmann; Carsten Morkel; Daniela Kilian; Sebastian Seibold; Marc I. Förschler; Janika Kerner; Gregor Scheiffarth; Martin Wilmking; Ingolf Steffan-Dewenter; Paul Schmidt Yáñez; Rhena Schumann; Juliane Vogt; Michael T. Monaghan; Michael T. Monaghan;ABSTRACT Among the many concerns for biodiversity in the Anthropocene, recent reports of flying insect loss are particularly alarming, given their importance as pollinators, pest control agents, and as a food source. Few insect monitoring programmes cover the large spatial scales required to provide more generalizable estimates of insect responses to global change drivers. We ask how climate and surrounding habitat affect flying insect biomass using data from the first year of a new monitoring network at 84 locations across Germany comprising a spatial gradient of land cover types from protected to urban and crop areas. Flying insect biomass increased linearly with temperature across Germany. However, the effect of temperature on flying insect biomass flipped to negative in the hot months of June and July when local temperatures most exceeded long‐term averages. Land cover explained little variation in insect biomass, but biomass was lowest in forests. Grasslands, pastures, and orchards harboured the highest insect biomass. The date of peak biomass was primarily driven by surrounding land cover, with grasslands especially having earlier insect biomass phenologies. Standardised, large‐scale monitoring provides key insights into the underlying processes of insect decline and is pivotal for the development of climate‐adapted strategies to promote insect diversity. In a temperate climate region, we find that the positive effects of temperature on flying insect biomass diminish in a German summer at locations where temperatures most exceeded long‐term averages. Our results highlight the importance of local adaptation in climate change‐driven impacts on insect communities.
Insect Conservation ... arrow_drop_down Insect Conservation and DiversityArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://dx.doi.org/10.17169/re...Other literature type . 2022License: CC BY NCData sources: DataciteRefubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BY NCData sources: Refubium - Repositorium der Freien Universität BerlinInsect Conservation and DiversityArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/icad.12555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Insect Conservation ... arrow_drop_down Insect Conservation and DiversityArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://dx.doi.org/10.17169/re...Other literature type . 2022License: CC BY NCData sources: DataciteRefubium - Repositorium der Freien Universität BerlinArticle . 2022License: CC BY NCData sources: Refubium - Repositorium der Freien Universität BerlinInsect Conservation and DiversityArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/icad.12555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Wiley Ellen A. R. Welti; Rebecca M. Prather; Nathan J. Sanders; Kirsten M. de Beurs; Michael Kaspari;pmid: 32115723
Abstract We investigate where bottom‐up and top‐down control regulates ecological communities as a mechanism linking ecological gradients to the geography of consumer abundance and biomass. We use standardized surveys of 54 North American grasslands to test alternate hypotheses predicting 100‐fold shifts in the biomass of four common grassland arthropod taxa—Auchenorrhyncha, sucking herbivores, Acrididae, chewing herbivores, Tettigoniidae, omnivores, and Araneae, predators. Bottom‐up models predict that consumer biomass tracks plant quantity (e.g. productivity and standing biomass) and quality (nutrient content) and that ectotherm access to food increases with temperature. Each of the focal trophic groups responded differently to these drivers: the biomass of sucking herbivores and omnivores increased with plant biomass; that of chewing herbivores tracked plant quality; and predator biomass did not depend on plant quality, plant quantity or temperature. The Exploitation Ecosystem Hypothesis is a top‐down hypothesis that predicts a shift from resource limitation of herbivores when plant production is low, to predator limitation when plant production is high. In grasslands where spider biomass was low, herbivore biomass increased with plant biomass, whereas bottom‐up structuring was not evident when spiders were abundant. Furthermore, neither predator biomass nor trophic position (via stable isotope analysis) increased with plant biomass, suggesting predators themselves are top‐down limited. Stable isotope analysis revealed that trophic position of the chewing herbivore and omnivore increased significantly with plant biomass, suggesting these groups increased scavenging and meat consumption in grasslands with higher carbohydrate availability. Taken together, our snapshot sampling documents gradients of food web structure across 54 grasslands, consistent with multiple hypotheses of bottom‐up and top‐down regulation.
Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallJournal of Animal EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallJournal of Animal EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Ellen A. R. Welti; Ellen A. R. Welti; Anthony Joern; Lindsey A. Bruckerhoff; James P. Guinnip; Alixandra Godar; R. Kent Connell; Keith B. Gido; Elina Adhikari; Andrew G. Hope; Alice W. Boyle;doi: 10.1002/ecy.2986
pmid: 31961449
AbstractHuman induced climate and land‐use change are severely impacting global biodiversity, but how community composition and richness of multiple taxonomic groups change in response to local drivers and whether these responses are synchronous remains unclear. We used long‐term community‐level data from an experimentally manipulated grassland to assess the relative influence of climate and land use as drivers of community structure of four taxonomic groups: birds, mammals, grasshoppers, and plants. We also quantified the synchrony of responses among taxonomic groups across land‐use gradients and compared climatic drivers of community structure across groups. All four taxonomic groups responded strongly to land use (fire frequency and grazing), while responses to climate variability were more pronounced in grasshoppers and small mammals. Animal groups exhibited asynchronous responses across all land‐use treatments, but plant and animal groups, especially birds, exhibited synchronous responses in composition. Asynchrony was attributed to taxonomic groups responding to different components of climate variability, including both current climate conditions and lagged effects from the previous year. Data‐driven land management strategies are crucial for sustaining native biodiversity in grassland systems, but asynchronous responses of taxonomic groups to climate variability across land‐use gradients highlight a need to incorporate response heterogeneity into management planning.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Rebecca M. Prather; Karen Castillioni; Ellen A.R. Welti; Michael Kaspari; Lara Souza;doi: 10.1002/ecy.3033
pmid: 32112407
AbstractArthropod abundance and diversity often track plant biomass and diversity at the local scale. However, under altered precipitation regimes and anthropogenic disturbances, plant–arthropod relationships are expected to be increasingly controlled by abiotic, rather than biotic, factors. We used an experimental precipitation gradient combined with human management in a temperate mixed‐grass prairie to examine (1) how two drivers, altered precipitation and biomass removal, can synergistically affect abiotic factors and plant communities and (2) how these effects can cascade upward, impacting the arthropod food web. Both drought and hay harvest increased soil surface temperature, and drought decreased soil moisture. Arthropod abundance decreased with low soil moisture and, contrary to our predictions, decreased with increased plant biomass. Arthropod diversity increased with soil moisture, decreased with high surface temperatures, and tracked arthropod abundance but was unaffected by plant diversity or quality. Our experiment demonstrates that arthropod abundance is directly constrained by abiotic factors and plant biomass, in turn constraining local arthropod diversity. If robust, this result suggests climate change in the southern Great Plains may directly reduce arthropod diversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:EC | eLTER PLUS, DFGEC| eLTER PLUS ,DFGNguyen, Hanh H.; Peters, Kristin; Kiesel, Jens; Welti, Ellen A.R.; Gillmann, Svenja M.; Lorenz, Armin W.; Jähnig, Sonja C.; Haase, Peter;pmid: 38657809
Identifying which environmental drivers underlie degradation and improvements of ecological communities is a fundamental goal of ecology. Achieving this goal is a challenge due to diverse trends in both environmental conditions and ecological communities across regions, and it is constrained by the lack of long-term parallel monitoring of environmental and community data needed to study causal relationships. Here, we identify key environmental drivers using a high-resolution environmental - ecological dataset, an ensemble of the Soil and Water Assessment Tool (SWAT+) model, and ecological models to investigate effects of climate, land-use, and runoff on the decadal trend (2012-2021) of stream macroinvertebrate communities in a restored urban catchment and an impacted catchment with mixed land-uses in Germany. The decadal trends showed decreased precipitation, increased temperature, and reduced anthropogenic land-uses, which led to opposing runoff trends - with decreased runoff in the restored catchment and increased runoff in the impacted catchment. The two catchments also varied in decadal trends of taxonomic and trait composition and metrics. The most significant improvements over time were recorded in communities of the restored catchment sites, which have become wastewater free since 2007 to 2009. Within the restored catchment sites, community metric trends were primarily explained by land-use and evaporation trends, while community composition trends were mostly associated with precipitation and runoff trends. Meanwhile, the communities in the impacted catchment did not undergo significant changes between 2012 and 2021, likely influenced by the effects of prolonged droughts following floods after 2018. The results of our study confirm the significance of restoration and land-use management in fostering long-term improvements in stream communities, while climate change remains a prodigious threat. The coupling of long-term biodiversity monitoring with concurrent sampling of relevant environmental drivers is critical for preventative and restorative management in ecology.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Science of The Total EnvironmentArticle . 2024 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2024Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.172659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefThe Science of The Total EnvironmentArticle . 2024 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2024Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.172659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Ellen Ar, Welti; Michael, Kaspari;pmid: 39182720
Declining insect populations are concerning, given the numerous ecosystem services provided by insects. Here, we examine yet another threat to global insect populations - nutrient dilution, the reduction in noncarbon essential nutrients in plant tissues. The rise of atmospheric CO2, and subsequent 'global greening', is a major driver of nutrient dilution. As plant nutrient concentrations are already low compared to animal tissues, further reductions can be detrimental to herbivore fitness, resulting in increased development times, smaller intraspecific body sizes, reduced reproduction, and reduced population sizes. By altering herbivore populations and traits, nutrient dilution can ramify up trophic levels. Conservation of Earth's biodiversity will require not just protection of habitat, but reductions in anthropogenic alterations to biogeochemical cycles, including the carbon cycle.
Current Opinion in I... arrow_drop_down Current Opinion in Insect ScienceArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cois.2024.101255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Current Opinion in I... arrow_drop_down Current Opinion in Insect ScienceArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cois.2024.101255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 LithuaniaPublisher:Springer Science and Business Media LLC Funded by:EC | eLTER PLUS, EC | REFORMEC| eLTER PLUS ,EC| REFORMEllen A. R. Welti; Kathrin Januschke; Petr Zajicek; Nathan Jay Baker; Peter Haase; Peter Haase; Oliver Brauner;AbstractWhile much of global biodiversity is undoubtedly under threat, the responses of ecological communities to changing climate, land use intensification, and long-term changes in both taxonomic and functional diversity over time, has still not been fully explored for many taxonomic groups, especially invertebrates. We compiled time series of ground beetles covering the past two decades from 40 sites located in five regions across Germany. We calculated site-based trends for 21 community metrics representing taxonomic and functional diversity of ground beetles, activity density (a proxy for abundance), and activity densities of functional groups. We assessed both overall and regional temporal trends and the influence of the global change drivers of temperature, precipitation, and land use on ground beetle communities. While we did not detect overall temporal changes in ground beetle taxonomic and functional diversity, taxonomic turnover changed within two regions, illustrating that community change at the local scale does not always correspond to patterns at broader spatial scales. Additionally, ground beetle activity density had a unimodal response to both annual precipitation and land use. Limited temporal change in ground beetle communities may indicate a shifting baseline, where community degradation was reached prior to the start of our observation in 1999. In addition, nonlinear responses of animal communities to environmental change present a challenge when quantifying temporal trends.
Scientific Reports arrow_drop_down Institutional Repository of Nature Research CentreArticle . 2021License: CC BYData sources: Institutional Repository of Nature Research CentreUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-96910-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down Institutional Repository of Nature Research CentreArticle . 2021License: CC BYData sources: Institutional Repository of Nature Research CentreUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-021-96910-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu