- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Frontiers Media SA Yin-Ying Ting; Yin-Ying Ting; Yin-Ying Ting; Ruijie Ye; Enkhtsetseg Dashjav; Qianli Ma; Sou Taminato; Daisuke Mori; Nobuyuki Imanishi; Martin Finsterbusch; Michael H. Eikerling; Michael H. Eikerling; Michael H. Eikerling; Olivier Guillon; Payam Kaghazchi; Piotr M. Kowalski; Piotr M. Kowalski;This study explores multi-component garnet-based materials as solid electrolytes for all-solid-state lithium batteries. Through a combination of computational and experimental approaches, we investigate the thermodynamic and structural properties of lithium lanthanum zirconium oxide garnets doped with various elements. Applying density functional theory, the influence of dopants on the thermodynamic stability of these garnets was studied. Probable atomic configurations and their impact on materials’ properties were investigated with the focus on understanding the influence of these configurations on structural stability, phase preference, and ionic conductivity. In addition to the computational study, series of cubic-phase garnet compounds were synthesized and their electrochemical performance was evaluated experimentally. Our findings reveal that the stability of cubic phase in doped Li-garnets is primarily governed by enthalpy, with configurational entropy playing a secondary role. Moreover, we establish that the increased number of doping elements significantly enhances the cubic phase’s stability. This in-depth understanding of materials’ properties at atomic level establishes the basis for optimizing high-entropy ceramics, contributing significantly to the advancement of solid-state lithium batteries and other applications requiring innovative material solutions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2024.1393914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2024.1393914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Funded by:FCT | EMC2, FCT | EMC2, FCT | EMC2FCT| EMC2 ,FCT| EMC2 ,FCT| EMC2Sören Möller; Hyunsang Joo; Marcin Rasinski; Markus Mann; Egbert Figgemeier; Martin Finsterbusch;The localisation and quantitative analysis of lithium (Li) in battery materials, components, and full cells are scientifically highly relevant, yet challenging tasks. The methodical developments of MeV ion beam analysis (IBA) presented here open up new possibilities for simultaneous elemental quantification and localisation of light and heavy elements in Li and other batteries. It describes the technical prerequisites and limitations of using IBA to analyse and solve current challenges with the example of Li-ion and solid-state battery-related research and development. Here, nuclear reaction analysis and Rutherford backscattering spectrometry can provide spatial resolutions down to 70 nm and 1% accuracy. To demonstrate the new insights to be gained by IBA, SiOx-containing graphite anodes are lithiated to six states-of-charge (SoC) between 0–50%. The quantitative Li depth profiling of the anodes shows a linear increase of the Li concentration with SoC and a match of injected and detected Li-ions. This unambiguously proofs the electrochemical activity of Si. Already at 50% SoC, we derive C/Li = 5.4 (< LiC6) when neglecting Si, proving a relevant uptake of Li by the 8 atom % Si (C/Si ≈ 9) in the anode with Li/Si ≤ 1.8 in this case. Extrapolations to full lithiation show a maximum of Li/Si = 1.04 ± 0.05. The analysis reveals all element concentrations are constant over the anode thickness of 44 µm, except for a ~6-µm-thick separator-side surface layer. Here, the Li and Si concentrations are a factor 1.23 higher compared to the bulk for all SoC, indicating preferential Li binding to SiOx. These insights are so far not accessible with conventional analysis methods and are a first important step towards in-depth knowledge of quantitative Li distributions on the component level and a further application of IBA in the battery community.
Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/2/14/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2022Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8020014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/2/14/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2022Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8020014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Authors: Scheld, Walter Sebastian; Hoff, Linda Charlotte; Vedder, Christian; Stollenwerk, Jochen; +9 AuthorsScheld, Walter Sebastian; Hoff, Linda Charlotte; Vedder, Christian; Stollenwerk, Jochen; Grüner, Daniel; Rosen, Melanie; Lobe, Sandra; Ihrig, Martin; Seok, Ah-Ram; Finsterbusch, Martin; Uhlenbruck, Sven; Guillon, Olivier; Fattakhova-Rohlfing, Dina;Applied energy 345, 121335 - (2023). doi:10.1016/j.apenergy.2023.121335 Published by Elsevier Science, Amsterdam [u.a.]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Sven Uhlenbruck; Peter Stenzel; Hans-Gregor Gehrke; Martin Finsterbusch; Andrea Schreiber; Thorsten Reppert; Stefanie Troy;Abstract In this investigation the environmental impacts of the manufacturing processes of a new all-solid-state battery (SSB) concept in a pouch bag housing were assessed using the Life Cycle Assessment (LCA) methodology for the first time. To do so, the different production steps were investigated in detail, based on actual laboratory scale production processes. All in- and outputs regarding material and energy flows were collected and assessed. As LCA investigations of products in an early state of research and development usually result in comparatively higher results than those of mature technologies in most impact categories, potential future improvements of production processes and efficiency were considered by adding two concepts to the investigation. Apart from the laboratory production which depicts the current workflow, an idealized laboratory production and a possible industrial production were portrayed as well. The results indicate that electricity consumption plays a big role due to a lot of high temperature production steps. It needs to be improved for future industrial production. Also enhanced battery performance can strongly influence the results. Overall the laboratory scale results indeed improve strongly when assuming a careful use of resources, which will likely be a predominant target for industrial production. These findings therefore highlight hotspots and give improvement targets for future developments. It can also be deducted, that a comparison to the results of competing technologies that have already reached a commercial stage is not recommended for early LCAs. To round things off a resource analysis was also conducted. It identifies the usage of lanthanum, lithium and zirconium oxide as critical, especially when taking laboratory production as a base. When looking at the scale up to industrial production parameters, lanthanum and lithium remain critical, zirconium oxide not.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Frontiers Media SA Ruijie Ye; Yin-Ying Ting; Yin-Ying Ting; Enkhtsetseg Dashjav; Qianli Ma; Sou Taminato; Daisuke Mori; Nobuyuki Imanishi; Piotr M. Kowalski; Piotr M. Kowalski; Michael H. Eikerling; Michael H. Eikerling; Payam Kaghazchi; Martin Finsterbusch; Martin Finsterbusch; Olivier Guillon; Olivier Guillon;Garnet-type solid electrolytes stand out as promising Li-ion conductors for the next-generation batteries. It has been demonstrated that the inherent properties of garnets can be tailored by introducing various dopants into their crystal structures. Recently, there has been a growing interest in the concept of high entropy stabilization for materials design. In this study, we synthesized high-entropy garnets denoted as Li6La3Zr0.7Ti0.3Ta0.5Sb0.5O12 (LLZTTSO), wherein Ti, Sb, and Ta occupy the Zr site. The formation of the cubic garnet phase in LLZTTSO was confirmed through X-ray diffraction (XRD), and the resulting lattice parameter agreed with predictions made using computational methods. Despite the substantial porosity (relative density 80.6%) attributed to the low sintering temperature, LLZTTSO exhibits a bulk ionic conductivity of 0.099 mS cm−1 at 25°C, and a total ionic conductivity of 0.088 mS cm−1, accompanied by an activation energy of 0.497 eV. Furthermore, LLZTTSO demonstrates a critical current density of 0.275 mA cm−2 at 25°C, showcasing its potential even without any interfacial modification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2024.1379576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2024.1379576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Funded by:EC | DESTINYEC| DESTINYAuthors: Kevin Vattappara; Martin Finsterbusch; Dina Fattakhova-Rohlfing; Idoia Urdampilleta; +1 AuthorsKevin Vattappara; Martin Finsterbusch; Dina Fattakhova-Rohlfing; Idoia Urdampilleta; Andriy Kvasha;Composite solid electrolytes are gaining interest regarding their use in Li-metal solid-state batteries. Although high ceramic content improves the electrochemical stability of ceramic-rich composite separators (C-SCE), the polymeric matrix also plays a vital role. In the first generation of C-SCE separators with a PEO-based matrix, the addition of 90–95 wt% of Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO) does not make C-SCE stable for cell cycling with high-voltage (HV) cathodes. For the next iteration, the objective was to find an HV-stable polymeric matrix for C-SCEs. Herein, we report results on optimizing C-SCE separators with different ceramics and polymers which can craft the system towards better stability with NMC622-based composite cathodes. Both LLZO and Li1.3Al0.3Ti1.7(PO4)3 (LATP) were utilized as ceramic components in C-SCE separators. Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) were used as polymers in the “polymer/LiTFSI/plasticizer”-based matrix. The initial phase of the selection criteria for the separator matrix involved assessing mechanical stability and ionic conductivity. Two optimized separator formulations were then tested for their electrochemical stability with both Li metal and HV composite cathodes. The results showed that Li/NMC622 cells with LP70_PVDF_HFP and LZ70_PDDA-TFSI separators exhibited more stable cycling performance compared to those with LZ90_PEO300k-based separators.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries11020042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries11020042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Germany, Germany, NorwayPublisher:MDPI AG Funded by:DFGDFGFu, Shuo; Arinicheva, Yulia; Hüter, Claas; Finsterbusch, Martin; Spatschek, Robert;handle: 11250/3062844
The influence of different processing routes and grain size distributions on the character of the grain boundaries in Li7La3Zr2O12 (LLZO) and the potential influence on failure through formation of percolating lithium metal networks in the solid electrolyte are investigated. Therefore, high quality hot-pressed Li7La3Zr2O12 pellets are synthesised with two different grain size distributions. Based on the electron backscatter diffraction measurements, the grain boundary network including the grain boundary distribution and its connectivity via triple junctions are analysed concerning potential Li plating along certain susceptible grain boundary clusters in the hot-pressed LLZO pellets. Additionally, the study investigates the possibility to interpret short-circuiting caused by Li metal plating or penetration in all-solid-state batteries through percolation mechanisms in the solid electrolyte microstructure, in analogy to grain boundary failure processes in metallic systems.
Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/4/222/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9040222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/4/222/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9040222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Frontiers Media SA Yin-Ying Ting; Yin-Ying Ting; Yin-Ying Ting; Ruijie Ye; Enkhtsetseg Dashjav; Qianli Ma; Sou Taminato; Daisuke Mori; Nobuyuki Imanishi; Martin Finsterbusch; Michael H. Eikerling; Michael H. Eikerling; Michael H. Eikerling; Olivier Guillon; Payam Kaghazchi; Piotr M. Kowalski; Piotr M. Kowalski;This study explores multi-component garnet-based materials as solid electrolytes for all-solid-state lithium batteries. Through a combination of computational and experimental approaches, we investigate the thermodynamic and structural properties of lithium lanthanum zirconium oxide garnets doped with various elements. Applying density functional theory, the influence of dopants on the thermodynamic stability of these garnets was studied. Probable atomic configurations and their impact on materials’ properties were investigated with the focus on understanding the influence of these configurations on structural stability, phase preference, and ionic conductivity. In addition to the computational study, series of cubic-phase garnet compounds were synthesized and their electrochemical performance was evaluated experimentally. Our findings reveal that the stability of cubic phase in doped Li-garnets is primarily governed by enthalpy, with configurational entropy playing a secondary role. Moreover, we establish that the increased number of doping elements significantly enhances the cubic phase’s stability. This in-depth understanding of materials’ properties at atomic level establishes the basis for optimizing high-entropy ceramics, contributing significantly to the advancement of solid-state lithium batteries and other applications requiring innovative material solutions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2024.1393914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2024.1393914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 GermanyPublisher:MDPI AG Funded by:FCT | EMC2, FCT | EMC2, FCT | EMC2FCT| EMC2 ,FCT| EMC2 ,FCT| EMC2Sören Möller; Hyunsang Joo; Marcin Rasinski; Markus Mann; Egbert Figgemeier; Martin Finsterbusch;The localisation and quantitative analysis of lithium (Li) in battery materials, components, and full cells are scientifically highly relevant, yet challenging tasks. The methodical developments of MeV ion beam analysis (IBA) presented here open up new possibilities for simultaneous elemental quantification and localisation of light and heavy elements in Li and other batteries. It describes the technical prerequisites and limitations of using IBA to analyse and solve current challenges with the example of Li-ion and solid-state battery-related research and development. Here, nuclear reaction analysis and Rutherford backscattering spectrometry can provide spatial resolutions down to 70 nm and 1% accuracy. To demonstrate the new insights to be gained by IBA, SiOx-containing graphite anodes are lithiated to six states-of-charge (SoC) between 0–50%. The quantitative Li depth profiling of the anodes shows a linear increase of the Li concentration with SoC and a match of injected and detected Li-ions. This unambiguously proofs the electrochemical activity of Si. Already at 50% SoC, we derive C/Li = 5.4 (< LiC6) when neglecting Si, proving a relevant uptake of Li by the 8 atom % Si (C/Si ≈ 9) in the anode with Li/Si ≤ 1.8 in this case. Extrapolations to full lithiation show a maximum of Li/Si = 1.04 ± 0.05. The analysis reveals all element concentrations are constant over the anode thickness of 44 µm, except for a ~6-µm-thick separator-side surface layer. Here, the Li and Si concentrations are a factor 1.23 higher compared to the bulk for all SoC, indicating preferential Li binding to SiOx. These insights are so far not accessible with conventional analysis methods and are a first important step towards in-depth knowledge of quantitative Li distributions on the component level and a further application of IBA in the battery community.
Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/2/14/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2022Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8020014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/2/14/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2022Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8020014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Authors: Scheld, Walter Sebastian; Hoff, Linda Charlotte; Vedder, Christian; Stollenwerk, Jochen; +9 AuthorsScheld, Walter Sebastian; Hoff, Linda Charlotte; Vedder, Christian; Stollenwerk, Jochen; Grüner, Daniel; Rosen, Melanie; Lobe, Sandra; Ihrig, Martin; Seok, Ah-Ram; Finsterbusch, Martin; Uhlenbruck, Sven; Guillon, Olivier; Fattakhova-Rohlfing, Dina;Applied energy 345, 121335 - (2023). doi:10.1016/j.apenergy.2023.121335 Published by Elsevier Science, Amsterdam [u.a.]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Sven Uhlenbruck; Peter Stenzel; Hans-Gregor Gehrke; Martin Finsterbusch; Andrea Schreiber; Thorsten Reppert; Stefanie Troy;Abstract In this investigation the environmental impacts of the manufacturing processes of a new all-solid-state battery (SSB) concept in a pouch bag housing were assessed using the Life Cycle Assessment (LCA) methodology for the first time. To do so, the different production steps were investigated in detail, based on actual laboratory scale production processes. All in- and outputs regarding material and energy flows were collected and assessed. As LCA investigations of products in an early state of research and development usually result in comparatively higher results than those of mature technologies in most impact categories, potential future improvements of production processes and efficiency were considered by adding two concepts to the investigation. Apart from the laboratory production which depicts the current workflow, an idealized laboratory production and a possible industrial production were portrayed as well. The results indicate that electricity consumption plays a big role due to a lot of high temperature production steps. It needs to be improved for future industrial production. Also enhanced battery performance can strongly influence the results. Overall the laboratory scale results indeed improve strongly when assuming a careful use of resources, which will likely be a predominant target for industrial production. These findings therefore highlight hotspots and give improvement targets for future developments. It can also be deducted, that a comparison to the results of competing technologies that have already reached a commercial stage is not recommended for early LCAs. To round things off a resource analysis was also conducted. It identifies the usage of lanthanum, lithium and zirconium oxide as critical, especially when taking laboratory production as a base. When looking at the scale up to industrial production parameters, lanthanum and lithium remain critical, zirconium oxide not.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Frontiers Media SA Ruijie Ye; Yin-Ying Ting; Yin-Ying Ting; Enkhtsetseg Dashjav; Qianli Ma; Sou Taminato; Daisuke Mori; Nobuyuki Imanishi; Piotr M. Kowalski; Piotr M. Kowalski; Michael H. Eikerling; Michael H. Eikerling; Payam Kaghazchi; Martin Finsterbusch; Martin Finsterbusch; Olivier Guillon; Olivier Guillon;Garnet-type solid electrolytes stand out as promising Li-ion conductors for the next-generation batteries. It has been demonstrated that the inherent properties of garnets can be tailored by introducing various dopants into their crystal structures. Recently, there has been a growing interest in the concept of high entropy stabilization for materials design. In this study, we synthesized high-entropy garnets denoted as Li6La3Zr0.7Ti0.3Ta0.5Sb0.5O12 (LLZTTSO), wherein Ti, Sb, and Ta occupy the Zr site. The formation of the cubic garnet phase in LLZTTSO was confirmed through X-ray diffraction (XRD), and the resulting lattice parameter agreed with predictions made using computational methods. Despite the substantial porosity (relative density 80.6%) attributed to the low sintering temperature, LLZTTSO exhibits a bulk ionic conductivity of 0.099 mS cm−1 at 25°C, and a total ionic conductivity of 0.088 mS cm−1, accompanied by an activation energy of 0.497 eV. Furthermore, LLZTTSO demonstrates a critical current density of 0.275 mA cm−2 at 25°C, showcasing its potential even without any interfacial modification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2024.1379576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2024.1379576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Funded by:EC | DESTINYEC| DESTINYAuthors: Kevin Vattappara; Martin Finsterbusch; Dina Fattakhova-Rohlfing; Idoia Urdampilleta; +1 AuthorsKevin Vattappara; Martin Finsterbusch; Dina Fattakhova-Rohlfing; Idoia Urdampilleta; Andriy Kvasha;Composite solid electrolytes are gaining interest regarding their use in Li-metal solid-state batteries. Although high ceramic content improves the electrochemical stability of ceramic-rich composite separators (C-SCE), the polymeric matrix also plays a vital role. In the first generation of C-SCE separators with a PEO-based matrix, the addition of 90–95 wt% of Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO) does not make C-SCE stable for cell cycling with high-voltage (HV) cathodes. For the next iteration, the objective was to find an HV-stable polymeric matrix for C-SCEs. Herein, we report results on optimizing C-SCE separators with different ceramics and polymers which can craft the system towards better stability with NMC622-based composite cathodes. Both LLZO and Li1.3Al0.3Ti1.7(PO4)3 (LATP) were utilized as ceramic components in C-SCE separators. Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) were used as polymers in the “polymer/LiTFSI/plasticizer”-based matrix. The initial phase of the selection criteria for the separator matrix involved assessing mechanical stability and ionic conductivity. Two optimized separator formulations were then tested for their electrochemical stability with both Li metal and HV composite cathodes. The results showed that Li/NMC622 cells with LP70_PVDF_HFP and LZ70_PDDA-TFSI separators exhibited more stable cycling performance compared to those with LZ90_PEO300k-based separators.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries11020042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries11020042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Germany, Germany, NorwayPublisher:MDPI AG Funded by:DFGDFGFu, Shuo; Arinicheva, Yulia; Hüter, Claas; Finsterbusch, Martin; Spatschek, Robert;handle: 11250/3062844
The influence of different processing routes and grain size distributions on the character of the grain boundaries in Li7La3Zr2O12 (LLZO) and the potential influence on failure through formation of percolating lithium metal networks in the solid electrolyte are investigated. Therefore, high quality hot-pressed Li7La3Zr2O12 pellets are synthesised with two different grain size distributions. Based on the electron backscatter diffraction measurements, the grain boundary network including the grain boundary distribution and its connectivity via triple junctions are analysed concerning potential Li plating along certain susceptible grain boundary clusters in the hot-pressed LLZO pellets. Additionally, the study investigates the possibility to interpret short-circuiting caused by Li metal plating or penetration in all-solid-state batteries through percolation mechanisms in the solid electrolyte microstructure, in analogy to grain boundary failure processes in metallic systems.
Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/4/222/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9040222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2313-0105/9/4/222/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9040222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu