- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Wiley Authors: Tara G. Martin; Tara G. Martin; Chrystal Mantyka-Pringle; Chrystal Mantyka-Pringle; +1 AuthorsTara G. Martin; Tara G. Martin; Chrystal Mantyka-Pringle; Chrystal Mantyka-Pringle; Jonathan R. Rhodes;AbstractClimate change and habitat loss are both key threatening processes driving the global loss in biodiversity. Yet little is known about their synergistic effects on biological populations due to the complexity underlying both processes. If the combined effects of habitat loss and climate change are greater than the effects of each threat individually, current conservation management strategies may be inefficient and at worst ineffective. Therefore, there is a pressing need to identify whether interacting effects between climate change and habitat loss exist and, if so, quantify the magnitude of their impact. In this article, we present a meta‐analysis of studies that quantify the effect of habitat loss on biological populations and examine whether the magnitude of these effects depends on current climatic conditions and historical rates of climate change. We examined 1319 papers on habitat loss and fragmentation, identified from the past 20 years, representing a range of taxa, landscapes, land‐uses, geographic locations and climatic conditions. We find that current climate and climate change are important factors determining the negative effects of habitat loss on species density and/or diversity. The most important determinant of habitat loss and fragmentation effects, averaged across species and geographic regions, was current maximum temperature, with mean precipitation change over the last 100 years of secondary importance. Habitat loss and fragmentation effects were greatest in areas with high maximum temperatures. Conversely, they were lowest in areas where average rainfall has increased over time. To our knowledge, this is the first study to conduct a global terrestrial analysis of existing data to quantify and test for interacting effects between current climate, climatic change and habitat loss on biological populations. Understanding the synergistic effects between climate change and other threatening processes has critical implications for our ability to support and incorporate climate change adaptation measures into policy development and management response.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Change BiologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 596 citations 596 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Change BiologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Wiley Tara G. Martin; Tara G. Martin; Ramona Maggini; Belinda Walters; Jennifer Firn; Jennifer Firn; Josie Carwardine; Josie Carwardine; Rocio Ponce-Reyes; Sam Nicol; Sam Nicol; Iadine Chadès; Iadine Chadès; Jean-Baptiste Pichancourt; Andrew Reeson; Hugh P. Possingham;doi: 10.1111/gcb.13034
pmid: 26179346
AbstractClimate change is a major threat to global biodiversity, and its impacts can act synergistically to heighten the severity of other threats. Most research on projecting species range shifts under climate change has not been translated to informing priority management strategies on the ground. We develop a prioritization framework to assess strategies for managing threats to biodiversity under climate change and apply it to the management of invasive animal species across one‐sixth of the Australian continent, the Lake Eyre Basin. We collected information from key stakeholders and experts on the impacts of invasive animals on 148 of the region's most threatened species and 11 potential strategies. Assisted by models of current distributions of threatened species and their projected distributions, experts estimated the cost, feasibility, and potential benefits of each strategy for improving the persistence of threatened species with and without climate change. We discover that the relative cost‐effectiveness of invasive animal control strategies is robust to climate change, with the management of feral pigs being the highest priority for conserving threatened species overall. Complementary sets of strategies to protect as many threatened species as possible under limited budgets change when climate change is considered, with additional strategies required to avoid impending extinctions from the region. Overall, we find that the ranking of strategies by cost‐effectiveness was relatively unaffected by including climate change into decision‐making, even though the benefits of the strategies were lower. Future climate conditions and impacts on range shifts become most important to consider when designing comprehensive management plans for the control of invasive animals under limited budgets to maximize the number of threatened species that can be protected.
Queensland Universit... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 AustraliaPublisher:Public Library of Science (PLoS) Joern Fischer; Brad Law; Tara G. Martin; Jan Hanspach; Pia E. Lentini; Pia E. Lentini; Philip Gibbons;(Uploaded by Plazi for the Bat Literature Project) Schemes designed to make farming landscapes less hostile to wildlife have been questioned because target taxa do not always respond in the expected manner. Microbats are often overlooked in this process, yet persist in agricultural landscapes and exert top-down control of crop pests. We investigated the relationship between microbats and measures commonly incorporated into agri-environment schemes, to derive management recommendations for their ongoing conservation. We used acoustic detectors to quantify bat species richness, activity, and feeding in 32 linear remnants and adjacent fields across an agricultural region of New South Wales, Australia. Nocturnal arthropods were simultaneously trapped using black-light traps. We recorded 91,969 bat calls, 17,277 of which could be attributed to one of the 13 taxa recorded, and 491 calls contained feeding buzzes. The linear remnants supported higher bat activity than the fields, but species richness and feeding activity did not significantly differ. We trapped a mean 87.6 g (617.6 g SE) of arthropods per night, but found no differences in biomass between land uses. Wider linear remnants with intact native vegetation supported more bat species, as did those adjacent to unsealed, as opposed to sealed roads. Fields of unimproved native pastures, with more retained scattered trees and associated hollows and logs, supported the greatest bat species richness and activity. We conclude that the juxtaposition of linear remnants of intact vegetation and scattered trees in fields, coupled with less-intensive land uses such as unimproved pastures will benefit bat communities in agricultural landscapes, and should be incorporated into agri-environment schemes. In contrast, sealed roads may act as a deterrent. The ''wildlife friendly farming'' vs ''land sparing'' debate has so far primarily focussed on birds, but here we have found evidence that the integration of both approaches could particularly benefit bats.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2012License: CC BYFull-Text: http://hdl.handle.net/11343/264491Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/16856Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0048201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2012License: CC BYFull-Text: http://hdl.handle.net/11343/264491Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/16856Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0048201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: Tara G. Martin; Mark W. Schwartz;doi: 10.1111/nyas.12050
pmid: 23574620
Conservation translocation of species varies from restoring historic populations to managing the relocation of imperiled species to new locations. We review the literature in three areas—translocation, managed relocation, and conservation decision making—to inform conservation translocation under changing climates. First, climate change increases the potential for conflict over both the efficacy and the acceptability of conservation translocation. The emerging literature on managed relocation highlights this discourse. Second, conservation translocation works in concert with other strategies. The emerging literature in structured decision making provides a framework for prioritizing conservation actions—considering many possible alternatives that are evaluated based on expected benefit, risk, and social–political feasibility. Finally, the translocation literature has historically been primarily concerned with risks associated with the target species. In contrast, the managed relocation literature raises concerns about the ecological risk to the recipient ecosystem. Engaging in a structured decision process that explicitly focuses on stakeholder engagement, problem definition and specification of goals from the outset will allow creative solutions to be developed and evaluated based on their expected effectiveness.
Annals of the New Yo... arrow_drop_down Annals of the New York Academy of SciencesArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.12050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Annals of the New Yo... arrow_drop_down Annals of the New York Academy of SciencesArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.12050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, ItalyPublisher:Elsevier BV Tara G. Martin; Tara G. Martin; Chrystal Mantyka-Pringle; Moreno Di Marco; Piero Visconti; Piero Visconti; Carlo Rondinini; Jonathan R. Rhodes;handle: 11573/893762
Climate change and land-cover change will have major impacts on biodiversity persistence worldwide. These two stressors are likely to interact, but how climate change will mediate the effects of land-cover change remains poorly understood. Here we use an empirically-derived model of the interaction between habitat loss and climate to predict the implications of this for biodiversity loss and conservation priorities at a global scale. Risk analysis was used to estimate the risk of biodiversity loss due to alternative future land-cover change scenarios and to quantify how climate change mediates this risk. We demonstrate that the interaction of climate change with land-cover change could increase the impact of land-cover change on birds and mammals by up to 43% and 24% respectively and alter the spatial distribution of threats. Additionally, we show that the ranking of global biodiversity hotspots by threat depends critically on the interaction between climate change and habitat loss. Our study suggests that the investment of conservation resources will likely change once the interaction between climate change and land-cover change is taken into account. We argue that global conservation efforts must take this into account if we are to develop cost-effective conservation policies and strategies under global change.
Biological Conservat... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2015.04.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 224 citations 224 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biological Conservat... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2015.04.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 AustraliaPublisher:Public Library of Science (PLoS) Doug P. Armstrong; Doug P. Armstrong; Nicola J. Mitchell; Tara G. Martin; Tara G. Martin; Hugh P. Possingham; Tracy M. Rout; Tracy M. Rout; Eve McDonald-Madden; Eve McDonald-Madden;Introducing species to areas outside their historical range to secure their future under climate change is a controversial strategy for preventing extinction. While the debate over the wisdom of this strategy continues, such introductions are already taking place. Previous frameworks for analysing the decision to introduce have lacked a quantifiable management objective and mathematically rigorous problem formulation. Here we develop the first rigorous quantitative framework for deciding whether or not a particular introduction should go ahead, which species to prioritize for introduction, and where and how to introduce them. It can also be used to compare introduction with alternative management actions, and to prioritise questions for future research. We apply the framework to a case study of tuatara (Sphenodon punctatus) in New Zealand. While simple and accessible, this framework can accommodate uncertainty in predictions and values. It provides essential support for the existing IUCN guidelines by presenting a quantitative process for better decision-making about conservation introductions.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/11343/261431Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/11343/261431Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Mantyka-Pringle, Chrystal S.; Martin, Tara G.; Moffatt, David B.; Udy, James; Olley, Jon; Saxton, Nina; Sheldon, Fran.; Bunn, Stuart E.; Rhodes, Jonathan R.;handle: 10072/99830
Freshwater ecosystems are declining under climate change and land-use change. To maximize the return on investment in freshwater conservation with limited financial resources, managers must prioritize management actions that are most cost-effective. However, little is known about what these priorities may be under the combined effects of climate and land-cover change. We present a novel decision-making framework for prioritizing conservation resources to different management actions for the conservation of freshwater biodiversity. The approach is novel in that it has the ability to model interactions, rank management options for dealing with conservation threats from climate and land-cover change, and integrate empirical data with expert knowledge. We illustrate the approach using a case study in South East Queensland (SEQ), Australia under climate change, land-cover change and their combined effects. Our results show that the explicit inclusion of multiple threats and costs results in quite different priorities than when costs and interactions are ignored. When costs are not considered, stream and riparian restoration, as a single management strategy, provides the greatest overall protection of macroinvertebrate and fish richness in rural and urban areas of SEQ in response to climate change and/or urban growth. Whereas, when costs are considered, farm/land management with stream and riparian restoration are the most cost-effective strategies for macroinvertebrate and fish conservation. Our findings support riparian restoration as the most effective adaptation strategy to climate change and urban development, but because it is expensive it may often not be the most cost-efficient strategy. Our approach allows for these decisions to be evaluated explicitly.
Biological Conservat... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2016.02.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biological Conservat... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2016.02.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 China (People's Republic of), Australia, Australia, Italy, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Wendy Foden; Michela Pacifici; Tara G. Martin; John M. Pandolfi; Carlo Rondinini; Stuart H. M. Butchart; Stuart H. M. Butchart; Camilo Mora; Tom C. L. Bridge; Tom C. L. Bridge; Ary A. Hoffmann; James E. M. Watson; James E. M. Watson; Brett R. Scheffers; David Dudgeon; Luc De Meester; Richard T. Corlett; David Bickford; Kit M. Kovacs; Paul Pearce-Kelly;Accumulating impacts Anthropogenic climate change is now in full swing, our global average temperature already having increased by 1°C from preindustrial levels. Many studies have documented individual impacts of the changing climate that are particular to species or regions, but individual impacts are accumulating and being amplified more broadly. Scheffers et al. review the set of impacts that have been observed across genes, species, and ecosystems to reveal a world already undergoing substantial change. Understanding the causes, consequences, and potential mitigation of these changes will be essential as we move forward into a warming world. Science , this issue p. 10.1126/science.aaf7671
Archivio della ricer... arrow_drop_down University of Hong Kong: HKU Scholars HubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaf7671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu992 citations 992 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down University of Hong Kong: HKU Scholars HubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaf7671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Wiley Authors: Tara G. Martin; Tara G. Martin; Chrystal Mantyka-Pringle; Chrystal Mantyka-Pringle; +1 AuthorsTara G. Martin; Tara G. Martin; Chrystal Mantyka-Pringle; Chrystal Mantyka-Pringle; Jonathan R. Rhodes;AbstractClimate change and habitat loss are both key threatening processes driving the global loss in biodiversity. Yet little is known about their synergistic effects on biological populations due to the complexity underlying both processes. If the combined effects of habitat loss and climate change are greater than the effects of each threat individually, current conservation management strategies may be inefficient and at worst ineffective. Therefore, there is a pressing need to identify whether interacting effects between climate change and habitat loss exist and, if so, quantify the magnitude of their impact. In this article, we present a meta‐analysis of studies that quantify the effect of habitat loss on biological populations and examine whether the magnitude of these effects depends on current climatic conditions and historical rates of climate change. We examined 1319 papers on habitat loss and fragmentation, identified from the past 20 years, representing a range of taxa, landscapes, land‐uses, geographic locations and climatic conditions. We find that current climate and climate change are important factors determining the negative effects of habitat loss on species density and/or diversity. The most important determinant of habitat loss and fragmentation effects, averaged across species and geographic regions, was current maximum temperature, with mean precipitation change over the last 100 years of secondary importance. Habitat loss and fragmentation effects were greatest in areas with high maximum temperatures. Conversely, they were lowest in areas where average rainfall has increased over time. To our knowledge, this is the first study to conduct a global terrestrial analysis of existing data to quantify and test for interacting effects between current climate, climatic change and habitat loss on biological populations. Understanding the synergistic effects between climate change and other threatening processes has critical implications for our ability to support and incorporate climate change adaptation measures into policy development and management response.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Change BiologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 596 citations 596 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Change BiologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Wiley Tara G. Martin; Tara G. Martin; Ramona Maggini; Belinda Walters; Jennifer Firn; Jennifer Firn; Josie Carwardine; Josie Carwardine; Rocio Ponce-Reyes; Sam Nicol; Sam Nicol; Iadine Chadès; Iadine Chadès; Jean-Baptiste Pichancourt; Andrew Reeson; Hugh P. Possingham;doi: 10.1111/gcb.13034
pmid: 26179346
AbstractClimate change is a major threat to global biodiversity, and its impacts can act synergistically to heighten the severity of other threats. Most research on projecting species range shifts under climate change has not been translated to informing priority management strategies on the ground. We develop a prioritization framework to assess strategies for managing threats to biodiversity under climate change and apply it to the management of invasive animal species across one‐sixth of the Australian continent, the Lake Eyre Basin. We collected information from key stakeholders and experts on the impacts of invasive animals on 148 of the region's most threatened species and 11 potential strategies. Assisted by models of current distributions of threatened species and their projected distributions, experts estimated the cost, feasibility, and potential benefits of each strategy for improving the persistence of threatened species with and without climate change. We discover that the relative cost‐effectiveness of invasive animal control strategies is robust to climate change, with the management of feral pigs being the highest priority for conserving threatened species overall. Complementary sets of strategies to protect as many threatened species as possible under limited budgets change when climate change is considered, with additional strategies required to avoid impending extinctions from the region. Overall, we find that the ranking of strategies by cost‐effectiveness was relatively unaffected by including climate change into decision‐making, even though the benefits of the strategies were lower. Future climate conditions and impacts on range shifts become most important to consider when designing comprehensive management plans for the control of invasive animals under limited budgets to maximize the number of threatened species that can be protected.
Queensland Universit... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 AustraliaPublisher:Public Library of Science (PLoS) Joern Fischer; Brad Law; Tara G. Martin; Jan Hanspach; Pia E. Lentini; Pia E. Lentini; Philip Gibbons;(Uploaded by Plazi for the Bat Literature Project) Schemes designed to make farming landscapes less hostile to wildlife have been questioned because target taxa do not always respond in the expected manner. Microbats are often overlooked in this process, yet persist in agricultural landscapes and exert top-down control of crop pests. We investigated the relationship between microbats and measures commonly incorporated into agri-environment schemes, to derive management recommendations for their ongoing conservation. We used acoustic detectors to quantify bat species richness, activity, and feeding in 32 linear remnants and adjacent fields across an agricultural region of New South Wales, Australia. Nocturnal arthropods were simultaneously trapped using black-light traps. We recorded 91,969 bat calls, 17,277 of which could be attributed to one of the 13 taxa recorded, and 491 calls contained feeding buzzes. The linear remnants supported higher bat activity than the fields, but species richness and feeding activity did not significantly differ. We trapped a mean 87.6 g (617.6 g SE) of arthropods per night, but found no differences in biomass between land uses. Wider linear remnants with intact native vegetation supported more bat species, as did those adjacent to unsealed, as opposed to sealed roads. Fields of unimproved native pastures, with more retained scattered trees and associated hollows and logs, supported the greatest bat species richness and activity. We conclude that the juxtaposition of linear remnants of intact vegetation and scattered trees in fields, coupled with less-intensive land uses such as unimproved pastures will benefit bat communities in agricultural landscapes, and should be incorporated into agri-environment schemes. In contrast, sealed roads may act as a deterrent. The ''wildlife friendly farming'' vs ''land sparing'' debate has so far primarily focussed on birds, but here we have found evidence that the integration of both approaches could particularly benefit bats.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2012License: CC BYFull-Text: http://hdl.handle.net/11343/264491Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/16856Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0048201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2012License: CC BYFull-Text: http://hdl.handle.net/11343/264491Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/16856Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0048201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: Tara G. Martin; Mark W. Schwartz;doi: 10.1111/nyas.12050
pmid: 23574620
Conservation translocation of species varies from restoring historic populations to managing the relocation of imperiled species to new locations. We review the literature in three areas—translocation, managed relocation, and conservation decision making—to inform conservation translocation under changing climates. First, climate change increases the potential for conflict over both the efficacy and the acceptability of conservation translocation. The emerging literature on managed relocation highlights this discourse. Second, conservation translocation works in concert with other strategies. The emerging literature in structured decision making provides a framework for prioritizing conservation actions—considering many possible alternatives that are evaluated based on expected benefit, risk, and social–political feasibility. Finally, the translocation literature has historically been primarily concerned with risks associated with the target species. In contrast, the managed relocation literature raises concerns about the ecological risk to the recipient ecosystem. Engaging in a structured decision process that explicitly focuses on stakeholder engagement, problem definition and specification of goals from the outset will allow creative solutions to be developed and evaluated based on their expected effectiveness.
Annals of the New Yo... arrow_drop_down Annals of the New York Academy of SciencesArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.12050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Annals of the New Yo... arrow_drop_down Annals of the New York Academy of SciencesArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.12050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, ItalyPublisher:Elsevier BV Tara G. Martin; Tara G. Martin; Chrystal Mantyka-Pringle; Moreno Di Marco; Piero Visconti; Piero Visconti; Carlo Rondinini; Jonathan R. Rhodes;handle: 11573/893762
Climate change and land-cover change will have major impacts on biodiversity persistence worldwide. These two stressors are likely to interact, but how climate change will mediate the effects of land-cover change remains poorly understood. Here we use an empirically-derived model of the interaction between habitat loss and climate to predict the implications of this for biodiversity loss and conservation priorities at a global scale. Risk analysis was used to estimate the risk of biodiversity loss due to alternative future land-cover change scenarios and to quantify how climate change mediates this risk. We demonstrate that the interaction of climate change with land-cover change could increase the impact of land-cover change on birds and mammals by up to 43% and 24% respectively and alter the spatial distribution of threats. Additionally, we show that the ranking of global biodiversity hotspots by threat depends critically on the interaction between climate change and habitat loss. Our study suggests that the investment of conservation resources will likely change once the interaction between climate change and land-cover change is taken into account. We argue that global conservation efforts must take this into account if we are to develop cost-effective conservation policies and strategies under global change.
Biological Conservat... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2015.04.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 224 citations 224 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Biological Conservat... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2015.04.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 AustraliaPublisher:Public Library of Science (PLoS) Doug P. Armstrong; Doug P. Armstrong; Nicola J. Mitchell; Tara G. Martin; Tara G. Martin; Hugh P. Possingham; Tracy M. Rout; Tracy M. Rout; Eve McDonald-Madden; Eve McDonald-Madden;Introducing species to areas outside their historical range to secure their future under climate change is a controversial strategy for preventing extinction. While the debate over the wisdom of this strategy continues, such introductions are already taking place. Previous frameworks for analysing the decision to introduce have lacked a quantifiable management objective and mathematically rigorous problem formulation. Here we develop the first rigorous quantitative framework for deciding whether or not a particular introduction should go ahead, which species to prioritize for introduction, and where and how to introduce them. It can also be used to compare introduction with alternative management actions, and to prioritise questions for future research. We apply the framework to a case study of tuatara (Sphenodon punctatus) in New Zealand. While simple and accessible, this framework can accommodate uncertainty in predictions and values. It provides essential support for the existing IUCN guidelines by presenting a quantitative process for better decision-making about conservation introductions.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/11343/261431Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/11343/261431Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Mantyka-Pringle, Chrystal S.; Martin, Tara G.; Moffatt, David B.; Udy, James; Olley, Jon; Saxton, Nina; Sheldon, Fran.; Bunn, Stuart E.; Rhodes, Jonathan R.;handle: 10072/99830
Freshwater ecosystems are declining under climate change and land-use change. To maximize the return on investment in freshwater conservation with limited financial resources, managers must prioritize management actions that are most cost-effective. However, little is known about what these priorities may be under the combined effects of climate and land-cover change. We present a novel decision-making framework for prioritizing conservation resources to different management actions for the conservation of freshwater biodiversity. The approach is novel in that it has the ability to model interactions, rank management options for dealing with conservation threats from climate and land-cover change, and integrate empirical data with expert knowledge. We illustrate the approach using a case study in South East Queensland (SEQ), Australia under climate change, land-cover change and their combined effects. Our results show that the explicit inclusion of multiple threats and costs results in quite different priorities than when costs and interactions are ignored. When costs are not considered, stream and riparian restoration, as a single management strategy, provides the greatest overall protection of macroinvertebrate and fish richness in rural and urban areas of SEQ in response to climate change and/or urban growth. Whereas, when costs are considered, farm/land management with stream and riparian restoration are the most cost-effective strategies for macroinvertebrate and fish conservation. Our findings support riparian restoration as the most effective adaptation strategy to climate change and urban development, but because it is expensive it may often not be the most cost-efficient strategy. Our approach allows for these decisions to be evaluated explicitly.
Biological Conservat... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2016.02.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biological Conservat... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2016.02.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 China (People's Republic of), Australia, Australia, Italy, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Wendy Foden; Michela Pacifici; Tara G. Martin; John M. Pandolfi; Carlo Rondinini; Stuart H. M. Butchart; Stuart H. M. Butchart; Camilo Mora; Tom C. L. Bridge; Tom C. L. Bridge; Ary A. Hoffmann; James E. M. Watson; James E. M. Watson; Brett R. Scheffers; David Dudgeon; Luc De Meester; Richard T. Corlett; David Bickford; Kit M. Kovacs; Paul Pearce-Kelly;Accumulating impacts Anthropogenic climate change is now in full swing, our global average temperature already having increased by 1°C from preindustrial levels. Many studies have documented individual impacts of the changing climate that are particular to species or regions, but individual impacts are accumulating and being amplified more broadly. Scheffers et al. review the set of impacts that have been observed across genes, species, and ecosystems to reveal a world already undergoing substantial change. Understanding the causes, consequences, and potential mitigation of these changes will be essential as we move forward into a warming world. Science , this issue p. 10.1126/science.aaf7671
Archivio della ricer... arrow_drop_down University of Hong Kong: HKU Scholars HubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaf7671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu992 citations 992 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down University of Hong Kong: HKU Scholars HubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaf7671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu