- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Copernicus GmbH Z. Jin; Z. Jin; X. Tian; X. Tian; Y. Wang; H. Zhang; M. Zhao; T. Wang; J. Ding; S. Piao; S. Piao;Abstract. Accurate assessment of the size and distribution of carbon dioxide (CO2) sources and sinks is important for efforts to understand the carbon cycle and support policy decisions regarding climate mitigation actions. Satellite retrievals of the column-averaged dry-air mole fractions of CO2 (XCO2) have been widely used to infer spatial and temporal variations of carbon fluxes through atmospheric inversion techniques. In this study, we present a global spatially resolved terrestrial and ocean carbon flux dataset for 2015–2022. The dataset was generated by the Global ObservatioN-based system for monitoring Greenhouse GAses (GONGGA) atmospheric inversion system through the assimilation of Orbiting Carbon Observatory 2 (OCO-2) XCO2 retrievals. We describe the carbon budget, interannual variability, and seasonal cycle for the global scale and a set of TransCom regions. The 8-year mean net biosphere exchange and ocean carbon fluxes were −2.22 ± 0.75 PgC yr−1 and –2.32 ± 0.18 PgC yr−1, absorbing approximately 23 % and 24 % of contemporary fossil fuel CO2 emissions, respectively. The annual mean global atmospheric CO2 growth rate was 5.17 ± 0.68 PgC yr−1, which is consistent with the National Oceanic and Atmospheric Administration (NOAA) measurement (5.24 ± 0.59 PgC yr−1). Europe has the largest terrestrial sink among the 11 TransCom land regions, followed by Boreal Asia and Temperate Asia. The dataset was evaluated by comparing posterior CO2 simulations with the observations from Total Carbon Column Observing Network (TCCON) and Observation Package (ObsPack). Compared with CO2 simulations using the unoptimized fluxes, the bias and root mean square error of posterior CO2 simulations were largely reduced across the full range of locations, confirming that the GONGGA system improves the estimates of spatial and temporal variations in carbon fluxes by assimilating OCO-2 XCO2 data. This dataset will improve the broader understanding of global carbon cycle dynamics and their response to climate change. The dataset can be accessed at https://doi.org/10.5281/zenodo.8368846 (Jin et al., 2023a).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2023-449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2023-449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Copernicus GmbH Z. Jin; Z. Jin; X. Tian; X. Tian; Y. Wang; H. Zhang; M. Zhao; T. Wang; J. Ding; S. Piao; S. Piao;Abstract. Accurate assessment of the size and distribution of carbon dioxide (CO2) sources and sinks is important for efforts to understand the carbon cycle and support policy decisions regarding climate mitigation actions. Satellite retrievals of the column-averaged dry-air mole fractions of CO2 (XCO2) have been widely used to infer spatial and temporal variations of carbon fluxes through atmospheric inversion techniques. In this study, we present a global spatially resolved terrestrial and ocean carbon flux dataset for 2015–2022. The dataset was generated by the Global ObservatioN-based system for monitoring Greenhouse GAses (GONGGA) atmospheric inversion system through the assimilation of Orbiting Carbon Observatory 2 (OCO-2) XCO2 retrievals. We describe the carbon budget, interannual variability, and seasonal cycle for the global scale and a set of TransCom regions. The 8-year mean net biosphere exchange and ocean carbon fluxes were −2.22 ± 0.75 PgC yr−1 and –2.32 ± 0.18 PgC yr−1, absorbing approximately 23 % and 24 % of contemporary fossil fuel CO2 emissions, respectively. The annual mean global atmospheric CO2 growth rate was 5.17 ± 0.68 PgC yr−1, which is consistent with the National Oceanic and Atmospheric Administration (NOAA) measurement (5.24 ± 0.59 PgC yr−1). Europe has the largest terrestrial sink among the 11 TransCom land regions, followed by Boreal Asia and Temperate Asia. The dataset was evaluated by comparing posterior CO2 simulations with the observations from Total Carbon Column Observing Network (TCCON) and Observation Package (ObsPack). Compared with CO2 simulations using the unoptimized fluxes, the bias and root mean square error of posterior CO2 simulations were largely reduced across the full range of locations, confirming that the GONGGA system improves the estimates of spatial and temporal variations in carbon fluxes by assimilating OCO-2 XCO2 data. This dataset will improve the broader understanding of global carbon cycle dynamics and their response to climate change. The dataset can be accessed at https://doi.org/10.5281/zenodo.8368846 (Jin et al., 2023a).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2023-449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2023-449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2021Publisher:OpenAlex Zhu Deng; Yilong Wang; Bo Zheng; Oliviér Boucher; Piyu Ke; Guo Gui; Katsumasa Tanaka; Zhu Liu; Philippe Ciais; Steven J. Davis;Carbon Monitor est un ensemble de données en temps quasi réel pour les émissions quotidiennes de CO2 avec une couverture mondiale de 6 secteurs principaux (énergie, industrie, transport terrestre, aviation, transport résidentiel et international).Ici, nous fournissons les données annuelles de 2019 et 2020.Visitez notre site Web pour plus d'informations : https://carbonmonitor.org Carbon Monitor es un conjunto de datos casi en tiempo real para las emisiones diarias de CO2 con cobertura global de 6 sectores principales (energía, industria, transporte terrestre, aviación, transporte residencial e internacional).Aquí, proporcionamos los datos de todo el año de 2019 y 2020.Visite nuestro sitio web para obtener más información: https://carbonmonitor.org Carbon Monitor is a near real-time dataset for daily CO2 emissions with global coverage from 6 main sectors (power, industry, ground transportation, aviation, residential and international shipping).Here, we provide the whole year data of 2019 and 2020.Visit our website for more information: https://carbonmonitor.org كربون مونيتور هي مجموعة بيانات شبه آنية لانبعاثات ثاني أكسيد الكربون اليومية مع تغطية عالمية من 6 قطاعات رئيسية (الطاقة والصناعة والنقل البري والطيران والشحن السكني والدولي). نقدم هنا بيانات العام بأكمله لعامي 2019 و 2020.قم بزيارة موقعنا الإلكتروني لمزيد من المعلومات: https://carbonmonitor.org
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/haj0y-pf855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/haj0y-pf855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2021Publisher:OpenAlex Zhu Deng; Yilong Wang; Bo Zheng; Oliviér Boucher; Piyu Ke; Guo Gui; Katsumasa Tanaka; Zhu Liu; Philippe Ciais; Steven J. Davis;Carbon Monitor est un ensemble de données en temps quasi réel pour les émissions quotidiennes de CO2 avec une couverture mondiale de 6 secteurs principaux (énergie, industrie, transport terrestre, aviation, transport résidentiel et international).Ici, nous fournissons les données annuelles de 2019 et 2020.Visitez notre site Web pour plus d'informations : https://carbonmonitor.org Carbon Monitor es un conjunto de datos casi en tiempo real para las emisiones diarias de CO2 con cobertura global de 6 sectores principales (energía, industria, transporte terrestre, aviación, transporte residencial e internacional).Aquí, proporcionamos los datos de todo el año de 2019 y 2020.Visite nuestro sitio web para obtener más información: https://carbonmonitor.org Carbon Monitor is a near real-time dataset for daily CO2 emissions with global coverage from 6 main sectors (power, industry, ground transportation, aviation, residential and international shipping).Here, we provide the whole year data of 2019 and 2020.Visit our website for more information: https://carbonmonitor.org كربون مونيتور هي مجموعة بيانات شبه آنية لانبعاثات ثاني أكسيد الكربون اليومية مع تغطية عالمية من 6 قطاعات رئيسية (الطاقة والصناعة والنقل البري والطيران والشحن السكني والدولي). نقدم هنا بيانات العام بأكمله لعامي 2019 و 2020.قم بزيارة موقعنا الإلكتروني لمزيد من المعلومات: https://carbonmonitor.org
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/haj0y-pf855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/haj0y-pf855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Wiley Authors: Wang, Xuhui; Ciais, Philippe; Wang, Yilong; Zhu, Dan;doi: 10.1111/gcb.14335
pmid: 29851198
AbstractInterannual variations of photosynthesis in tropical seasonally dry vegetation are one of the dominant drivers to interannual variations of atmosphericCO2growth rate. Yet, the seasonal differences in the response of photosynthesis to climate variations in these ecosystems remain poorly understood. Here using Normalized Difference Vegetation Index (NDVI), we explored the response of photosynthesis of seasonally dry tropical vegetation to climatic variations in the dry and the wet seasons during the past three decades. We found significant (p < 0.01) differences between dry and wet seasons in the interannual response of photosynthesis to temperature (γint) and to precipitation (δint).γintis ~1% °C−1more negative andδintis ~8% 100 mm−1more positive in the dry season than in the wet season. Further analyses show that the seasonal difference inγintcan be explained by background moisture and temperature conditions. Positiveγintoccurred in wet season where mean temperature is lower than 27°C and precipitation is at least 60 mm larger than potential evapotranspiration. Two widely used Gross Primary Productivity (GPP) estimates (empirical modeling by machine‐learning algorithm applied to flux tower measurements, and nine process‐based carbon cycle models) were examined for theGPP–climate relationship over wet and dry seasons. TheGPPderived from empirical modeling can partly reproduce the divergence ofγint, while most process models cannot. The overestimate by process models on negative impacts by warmer temperature during the wet season highlights the shortcomings of current carbon cycle models in representing interactive impacts of temperature and moisture on photosynthesis. Improving representations on soil water uptake, leaf temperature, nitrogen cycling, and soil moisture may help improve modeling skills in reproducing seasonal differences of photosynthesis–climate relationship and thus the projection for impacts of climate change on tropical carbon cycle.
Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Wiley Authors: Wang, Xuhui; Ciais, Philippe; Wang, Yilong; Zhu, Dan;doi: 10.1111/gcb.14335
pmid: 29851198
AbstractInterannual variations of photosynthesis in tropical seasonally dry vegetation are one of the dominant drivers to interannual variations of atmosphericCO2growth rate. Yet, the seasonal differences in the response of photosynthesis to climate variations in these ecosystems remain poorly understood. Here using Normalized Difference Vegetation Index (NDVI), we explored the response of photosynthesis of seasonally dry tropical vegetation to climatic variations in the dry and the wet seasons during the past three decades. We found significant (p < 0.01) differences between dry and wet seasons in the interannual response of photosynthesis to temperature (γint) and to precipitation (δint).γintis ~1% °C−1more negative andδintis ~8% 100 mm−1more positive in the dry season than in the wet season. Further analyses show that the seasonal difference inγintcan be explained by background moisture and temperature conditions. Positiveγintoccurred in wet season where mean temperature is lower than 27°C and precipitation is at least 60 mm larger than potential evapotranspiration. Two widely used Gross Primary Productivity (GPP) estimates (empirical modeling by machine‐learning algorithm applied to flux tower measurements, and nine process‐based carbon cycle models) were examined for theGPP–climate relationship over wet and dry seasons. TheGPPderived from empirical modeling can partly reproduce the divergence ofγint, while most process models cannot. The overestimate by process models on negative impacts by warmer temperature during the wet season highlights the shortcomings of current carbon cycle models in representing interactive impacts of temperature and moisture on photosynthesis. Improving representations on soil water uptake, leaf temperature, nitrogen cycling, and soil moisture may help improve modeling skills in reproducing seasonal differences of photosynthesis–climate relationship and thus the projection for impacts of climate change on tropical carbon cycle.
Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, United Kingdom, Germany, France, Norway, France, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | PARIS REINFORCE, EC | CoCO2, EC | 4C +1 projectsEC| PARIS REINFORCE ,EC| CoCO2 ,EC| 4C ,EC| VERIFYLiu, Zhu; Deng, Zhu; Zhu, Biqing; Ciais, Philippe; Davis, Steven; Tan, Jianguang; Andrew, Robbie; Boucher, Olivier; Arous, Simon; Canadell, Josep; Dou, Xinyu; Friedlingstein, Pierre; Gentine, Pierre; Guo, Rui; Hong, Chaopeng; Jackson, Robert; Kammen, Daniel; Ke, Piyu; Le Quéré, Corinne; Monica, Crippa; Janssens-Maenhout, Greet; Peters, Glen; Tanaka, Katsumasa; Wang, Yilong; Zheng, Bo; Zhong, Haiwang; Sun, Taochun; Schellnhuber, Hans;handle: 11250/3115932
AbstractDay-to-day changes in CO2emissions from human activities, in particular fossil-fuel combustion and cement production, reflect a complex balance of influences from seasonality, working days, weather and, most recently, the COVID-19 pandemic. Here, we provide a daily CO2emissions dataset for the whole year of 2020, calculated from inventory and near-real-time activity data. We find a global reduction of 6.3% (2,232 MtCO2) in CO2emissions compared with 2019. The drop in daily emissions during the first part of the year resulted from reduced global economic activity due to the pandemic lockdowns, including a large decrease in emissions from the transportation sector. However, daily CO2emissions gradually recovered towards 2019 levels from late April with the partial reopening of economic activity. Subsequent waves of lockdowns in late 2020 continued to cause smaller CO2reductions, primarily in western countries. The extraordinary fall in emissions during 2020 is similar in magnitude to the sustained annual emissions reductions necessary to limit global warming at 1.5 °C. This underscores the magnitude and speed at which the energy transition needs to advance.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-022-00965-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-022-00965-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, United Kingdom, Germany, France, Norway, France, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | PARIS REINFORCE, EC | CoCO2, EC | 4C +1 projectsEC| PARIS REINFORCE ,EC| CoCO2 ,EC| 4C ,EC| VERIFYLiu, Zhu; Deng, Zhu; Zhu, Biqing; Ciais, Philippe; Davis, Steven; Tan, Jianguang; Andrew, Robbie; Boucher, Olivier; Arous, Simon; Canadell, Josep; Dou, Xinyu; Friedlingstein, Pierre; Gentine, Pierre; Guo, Rui; Hong, Chaopeng; Jackson, Robert; Kammen, Daniel; Ke, Piyu; Le Quéré, Corinne; Monica, Crippa; Janssens-Maenhout, Greet; Peters, Glen; Tanaka, Katsumasa; Wang, Yilong; Zheng, Bo; Zhong, Haiwang; Sun, Taochun; Schellnhuber, Hans;handle: 11250/3115932
AbstractDay-to-day changes in CO2emissions from human activities, in particular fossil-fuel combustion and cement production, reflect a complex balance of influences from seasonality, working days, weather and, most recently, the COVID-19 pandemic. Here, we provide a daily CO2emissions dataset for the whole year of 2020, calculated from inventory and near-real-time activity data. We find a global reduction of 6.3% (2,232 MtCO2) in CO2emissions compared with 2019. The drop in daily emissions during the first part of the year resulted from reduced global economic activity due to the pandemic lockdowns, including a large decrease in emissions from the transportation sector. However, daily CO2emissions gradually recovered towards 2019 levels from late April with the partial reopening of economic activity. Subsequent waves of lockdowns in late 2020 continued to cause smaller CO2reductions, primarily in western countries. The extraordinary fall in emissions during 2020 is similar in magnitude to the sustained annual emissions reductions necessary to limit global warming at 1.5 °C. This underscores the magnitude and speed at which the energy transition needs to advance.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-022-00965-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-022-00965-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Norway, Norway, Belgium, Russian Federation, Switzerland, France, Netherlands, United States, Netherlands, AustriaPublisher:Oxford University Press (OUP) Funded by:NSF | RoL: FELS: RAISE: Collab..., RSF | Smart technologies to mon..., EC | IMBALANCE-P +4 projectsNSF| RoL: FELS: RAISE: Collaborative Research: Watershed Rules of Life ,RSF| Smart technologies to monitor, model and evaluate ecosystem services provided by urban green infrastructure and soils to support decision making in sustainable city development under global changes ,EC| IMBALANCE-P ,ANR| L-IPSL ,NSF| Collaborative Research: RUI: The Pulse-Shunt Concept: A Conceptual Framework for Quantifying and Forecasting Watershed DOM Fluxes and Transformations at the MacroSystem Scale ,RCN| The Global Carbon Budget and Carbon Atlas ,EC| COCOSAnna Peregon; Anna Peregon; Peter A. Raymond; Grégoire Broquet; Wei Li; Rong Wang; Alessandro Baccini; Jens Hartmann; Julia Pongratz; Julia Pongratz; Alexandra G. Konings; Chunjing Qiu; Ana Bastos; Jinfeng Chang; Anatoly Shvidenko; Fabienne Maignan; Chao Yue; Chao Yue; Yi Yin; Vanessa Haverd; Pierre Regnier; Hui Yang; Ashley-P Ballantyne; Yi Liu; Riccardo Valentini; Shushi Peng; Philippe Ciais; Philippe Ciais; Anthony W. King; Jakob Zscheischler; Thomas Gasser; Bertrand Guenet; Ronny Lauerwald; Ronny Lauerwald; Prabir K. Patra; Prabir K. Patra; Yitong Yao; Yilong Wang; Goulven Gildas Laruelle; Dan Zhu; Sebastiaan Luyssaert; Benjamin Poulter; Daniel S. Goll; Glen P. Peters; Josep G. Canadell; Rob J Andres; A. Johannes Dolman;pmid: 34691569
pmc: PMC8288404
Abstract Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global ‘bottom-up’ NEE for net land anthropogenic CO2 uptake of –2.2 ± 0.6 PgC yr−1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000–2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr−1 with an interquartile of 33–46 PgC yr−1—a much smaller portion of net primary productivity than previously reported.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Norway, Norway, Belgium, Russian Federation, Switzerland, France, Netherlands, United States, Netherlands, AustriaPublisher:Oxford University Press (OUP) Funded by:NSF | RoL: FELS: RAISE: Collab..., RSF | Smart technologies to mon..., EC | IMBALANCE-P +4 projectsNSF| RoL: FELS: RAISE: Collaborative Research: Watershed Rules of Life ,RSF| Smart technologies to monitor, model and evaluate ecosystem services provided by urban green infrastructure and soils to support decision making in sustainable city development under global changes ,EC| IMBALANCE-P ,ANR| L-IPSL ,NSF| Collaborative Research: RUI: The Pulse-Shunt Concept: A Conceptual Framework for Quantifying and Forecasting Watershed DOM Fluxes and Transformations at the MacroSystem Scale ,RCN| The Global Carbon Budget and Carbon Atlas ,EC| COCOSAnna Peregon; Anna Peregon; Peter A. Raymond; Grégoire Broquet; Wei Li; Rong Wang; Alessandro Baccini; Jens Hartmann; Julia Pongratz; Julia Pongratz; Alexandra G. Konings; Chunjing Qiu; Ana Bastos; Jinfeng Chang; Anatoly Shvidenko; Fabienne Maignan; Chao Yue; Chao Yue; Yi Yin; Vanessa Haverd; Pierre Regnier; Hui Yang; Ashley-P Ballantyne; Yi Liu; Riccardo Valentini; Shushi Peng; Philippe Ciais; Philippe Ciais; Anthony W. King; Jakob Zscheischler; Thomas Gasser; Bertrand Guenet; Ronny Lauerwald; Ronny Lauerwald; Prabir K. Patra; Prabir K. Patra; Yitong Yao; Yilong Wang; Goulven Gildas Laruelle; Dan Zhu; Sebastiaan Luyssaert; Benjamin Poulter; Daniel S. Goll; Glen P. Peters; Josep G. Canadell; Rob J Andres; A. Johannes Dolman;pmid: 34691569
pmc: PMC8288404
Abstract Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global ‘bottom-up’ NEE for net land anthropogenic CO2 uptake of –2.2 ± 0.6 PgC yr−1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000–2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr−1 with an interquartile of 33–46 PgC yr−1—a much smaller portion of net primary productivity than previously reported.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, ItalyPublisher:Elsevier BV Su, Yongxian; Wu, Jianping; Ciais, Philippe; Zheng, Bo; Wang, Yilong; Chen, Xiuzhi; Li, Xueyan; Li, Yong; Wang, Yang; Wang, Changjian; Jiang, Lu; Lafortezza, Raffaele;handle: 11586/413430
Although it's well known that the carbon intensity from passenger transport of cities varies widely, few studies assessed the disparities of that in city-level and its underlying factors due to the limited availability of data, and thus developed effective strategies for different types of cities. This study is the first to present a comprehensive inventory of emissions from passenger transport on road for 360 cities in mainland China for 2018, based on the data from 5 transport modes and evaluated by combining distance-based and top-down fuel-based methods. In 2018, passenger transport on road in China emitted 1076 MtC. A large portion of CO2 emissions was identified in the southern and eastern coastal areas and capital cities. GDP, population, and policy were the major factors determining the total CO2 emissions, but not carbon intensity. Clustering analysis of carbon intensity and 9 socio-economic predictors, using a tree-based regression model, clustered the 360 cities into 6 groups and showed that higher carbon intensities occurred in both affluent city groups with a high active population share and less affluent city groups with a low population density but high density of trip destinations. Forward-and-backward stepwise multiple regression analysis indicated that constructing a compact city is more effective for city groups with a high income and high active population share. Enhancing land-use mixed degree is more critical for city groups with a high income and low active population share, while shortening travel distance by intensifying infrastructure construction is more important for the less affluent city groups.
Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11586/413430Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2022.109165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11586/413430Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2022.109165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, ItalyPublisher:Elsevier BV Su, Yongxian; Wu, Jianping; Ciais, Philippe; Zheng, Bo; Wang, Yilong; Chen, Xiuzhi; Li, Xueyan; Li, Yong; Wang, Yang; Wang, Changjian; Jiang, Lu; Lafortezza, Raffaele;handle: 11586/413430
Although it's well known that the carbon intensity from passenger transport of cities varies widely, few studies assessed the disparities of that in city-level and its underlying factors due to the limited availability of data, and thus developed effective strategies for different types of cities. This study is the first to present a comprehensive inventory of emissions from passenger transport on road for 360 cities in mainland China for 2018, based on the data from 5 transport modes and evaluated by combining distance-based and top-down fuel-based methods. In 2018, passenger transport on road in China emitted 1076 MtC. A large portion of CO2 emissions was identified in the southern and eastern coastal areas and capital cities. GDP, population, and policy were the major factors determining the total CO2 emissions, but not carbon intensity. Clustering analysis of carbon intensity and 9 socio-economic predictors, using a tree-based regression model, clustered the 360 cities into 6 groups and showed that higher carbon intensities occurred in both affluent city groups with a high active population share and less affluent city groups with a low population density but high density of trip destinations. Forward-and-backward stepwise multiple regression analysis indicated that constructing a compact city is more effective for city groups with a high income and high active population share. Enhancing land-use mixed degree is more critical for city groups with a high income and low active population share, while shortening travel distance by intensifying infrastructure construction is more important for the less affluent city groups.
Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11586/413430Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2022.109165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11586/413430Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2022.109165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:American Chemical Society (ACS) Ming Hung Wong; Shu Tao; Wenxin Liu; Weihao Zhang; Tongchao Li; Yanyan Zhang; Xilong Wang; Huizhong Shen; Yuanchen Chen; Xiaofu Chen; Chunyu Xue; Ye Huang; Guofeng Shen; Guangqing Liu; Nan Lin; Shu Su; Yibo Huangfu; Yilong Wang;doi: 10.1021/es506343z
pmid: 25938574
Residential solid fuel combustion is a major source of many pollutants, resulting in significant impacts on air quality and human health. Improved stoves, especially some modern gasifier biomass models, are being deployed to alleviate household and ambient air pollution. Pollutant emissions from coal burning in improved metal stoves (n = 11) and wood combustion in modern gasifier stoves (n = 8) were measured in field in Hubei, China. The emissions of CO, TSP, OC, EC, and PAHs from coal burning in the improved iron stoves were generally lower than previously reported results for coal in traditional stoves. For pollutants from wood combustion in the gasifier stoves, the emissions were less than literature-reported values for wood burned in traditional stoves, comparable to those in improved stoves, but appeared to be higher than those for pellets in gasifier stoves in laboratory tests. The limitations of scarce data and large variances result in statistical insignificance. Daily emissions of targeted pollutants per household were found to be higher for wood burners, compared with households relying on coal. The gasifier stove had relatively high thermal efficiencies, but emissions of most air pollutants per delivered energy were not significantly different from those from the coal burning in improved iron stoves. Moreover, higher emissions of OC, EC, and PAHs were observed, indicating that caution and additional testing will be needed while designing future clean cookstove intervention programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es506343z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es506343z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:American Chemical Society (ACS) Ming Hung Wong; Shu Tao; Wenxin Liu; Weihao Zhang; Tongchao Li; Yanyan Zhang; Xilong Wang; Huizhong Shen; Yuanchen Chen; Xiaofu Chen; Chunyu Xue; Ye Huang; Guofeng Shen; Guangqing Liu; Nan Lin; Shu Su; Yibo Huangfu; Yilong Wang;doi: 10.1021/es506343z
pmid: 25938574
Residential solid fuel combustion is a major source of many pollutants, resulting in significant impacts on air quality and human health. Improved stoves, especially some modern gasifier biomass models, are being deployed to alleviate household and ambient air pollution. Pollutant emissions from coal burning in improved metal stoves (n = 11) and wood combustion in modern gasifier stoves (n = 8) were measured in field in Hubei, China. The emissions of CO, TSP, OC, EC, and PAHs from coal burning in the improved iron stoves were generally lower than previously reported results for coal in traditional stoves. For pollutants from wood combustion in the gasifier stoves, the emissions were less than literature-reported values for wood burned in traditional stoves, comparable to those in improved stoves, but appeared to be higher than those for pellets in gasifier stoves in laboratory tests. The limitations of scarce data and large variances result in statistical insignificance. Daily emissions of targeted pollutants per household were found to be higher for wood burners, compared with households relying on coal. The gasifier stove had relatively high thermal efficiencies, but emissions of most air pollutants per delivered energy were not significantly different from those from the coal burning in improved iron stoves. Moreover, higher emissions of OC, EC, and PAHs were observed, indicating that caution and additional testing will be needed while designing future clean cookstove intervention programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es506343z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es506343z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Spain, Belgium, France, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PYongwen Liu; Tao Wang; Yilong Wang; Xu Lian; Shilong Piao; Shilong Piao; Xiaoyi Wang; Shushi Peng; Josep Peñuelas; Yutong Zhao; Dan Liu; Yitong Yao; Yue Li; Hui Yang; Mengtian Huang; John F. Burkhart; Philippe Ciais; Hui Guo; Ivan A. Janssens; Yi Yin;AbstractMost studies of the northern hemisphere carbon cycle based on atmospheric CO2concentration have focused on spring and autumn, but the climate change impact on summer carbon cycle remains unclear. Here we used atmospheric CO2record from Point Barrow (Alaska) to show that summer CO2drawdown between July and August, a proxy of summer carbon uptake, is significantly negatively correlated with terrestrial temperature north of 50°N interannually during 1979–2012. However, a refined analysis at the decadal scale reveals strong differences between the earlier (1979–1995) and later (1996–2012) periods, with the significant negative correlation only in the later period. This emerging negative temperature response is due to the disappearance of the positive temperature response of summer vegetation activities that prevailed in the earlier period. Our finding, together with the reported weakening temperature control on spring carbon uptake, suggests a diminished positive effect of warming on high-latitude carbon uptake.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/10852/72747Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s414...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07813-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/10852/72747Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s414...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07813-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Spain, Belgium, France, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PYongwen Liu; Tao Wang; Yilong Wang; Xu Lian; Shilong Piao; Shilong Piao; Xiaoyi Wang; Shushi Peng; Josep Peñuelas; Yutong Zhao; Dan Liu; Yitong Yao; Yue Li; Hui Yang; Mengtian Huang; John F. Burkhart; Philippe Ciais; Hui Guo; Ivan A. Janssens; Yi Yin;AbstractMost studies of the northern hemisphere carbon cycle based on atmospheric CO2concentration have focused on spring and autumn, but the climate change impact on summer carbon cycle remains unclear. Here we used atmospheric CO2record from Point Barrow (Alaska) to show that summer CO2drawdown between July and August, a proxy of summer carbon uptake, is significantly negatively correlated with terrestrial temperature north of 50°N interannually during 1979–2012. However, a refined analysis at the decadal scale reveals strong differences between the earlier (1979–1995) and later (1996–2012) periods, with the significant negative correlation only in the later period. This emerging negative temperature response is due to the disappearance of the positive temperature response of summer vegetation activities that prevailed in the earlier period. Our finding, together with the reported weakening temperature control on spring carbon uptake, suggests a diminished positive effect of warming on high-latitude carbon uptake.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/10852/72747Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s414...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07813-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/10852/72747Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s414...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07813-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Norway, FrancePublisher:American Geophysical Union (AGU) Funded by:UKRI | NCEO LTS-S, ANR | CLANDUKRI| NCEO LTS-S ,ANR| CLANDXuhui Wang; Yahui Gao; Sujong Jeong; Akihiko Ito; Ana Bastos; Benjamin Poulter; Yilong Wang; Philippe Ciais; Hanqin Tian; Wenping Yuan; Naveen Chandra; Frédéric Chevallier; Lei Fan; Songbai Hong; Ronny Lauerwald; Wei Li; Zhengyang Lin; Naiqing Pan; Prabir K. Patra; Shushi Peng; Lishan Ran; Yuxing Sang; Stephen Sitch; T. Mäki; Rona L. Thompson; Chenzhi Wang; Kai Wang; Tao Wang; Yi Xi; Li Xu; Yanzi Yan; Jeongmin Yun; Yao Zhang; Yuzhong Zhang; Zhen Zhang; Bo Zheng; Feng Zhou; Shu Tao; Josep G. Canadell; Shilong Piao;AbstractEast Asia (China, Japan, Koreas, and Mongolia) has been the world's economic engine over at least the past two decades, exhibiting a rapid increase in fossil fuel emissions of greenhouse gases (GHGs) and has expressed the recent ambition to achieve climate neutrality by mid‐century. However, the GHG balance of its terrestrial ecosystems remains poorly constrained. Here, we present a synthesis of the three most important long‐lived greenhouse gases (CO2, CH4, and N2O) budgets over East Asia during the decades of 2000s and 2010s, following a dual constraint approach. We estimate that terrestrial ecosystems in East Asia is close to neutrality of GHGs, with a magnitude of between −46.3 ± 505.9 Tg CO2eq yr−1(the top‐down approach) and −36.1 ± 207.1 Tg CO2eq yr−1(the bottom‐up approach) during 2000–2019. This net GHG sink includes a large land CO2sink (−1229.3 ± 430.9 Tg CO2 yr−1based on the top‐down approach and −1353.8 ± 158.5 Tg CO2 yr−1based on the bottom‐up approach) being offset by biogenic CH4and N2O emissions, predominantly coming from the agricultural sectors. Emerging data sources and modeling capacities have helped achieve agreement between the top‐down and bottom‐up approaches, but sizable uncertainties remain in several flux terms. For example, the reported CO2flux from land use and land cover change varies from a net source of more than 300 Tg CO2 yr−1to a net sink of ∼−700 Tg CO2 yr−1. Although terrestrial ecosystems over East Asia is close to GHG neutral currently, curbing agricultural GHG emissions and additional afforestation and forest managements have the potential to transform the terrestrial ecosystems into a net GHG sink, which would help in realizing East Asian countries' ambitions to achieve climate neutrality.
NILU Brage arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert NILU Brage arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Norway, FrancePublisher:American Geophysical Union (AGU) Funded by:UKRI | NCEO LTS-S, ANR | CLANDUKRI| NCEO LTS-S ,ANR| CLANDXuhui Wang; Yahui Gao; Sujong Jeong; Akihiko Ito; Ana Bastos; Benjamin Poulter; Yilong Wang; Philippe Ciais; Hanqin Tian; Wenping Yuan; Naveen Chandra; Frédéric Chevallier; Lei Fan; Songbai Hong; Ronny Lauerwald; Wei Li; Zhengyang Lin; Naiqing Pan; Prabir K. Patra; Shushi Peng; Lishan Ran; Yuxing Sang; Stephen Sitch; T. Mäki; Rona L. Thompson; Chenzhi Wang; Kai Wang; Tao Wang; Yi Xi; Li Xu; Yanzi Yan; Jeongmin Yun; Yao Zhang; Yuzhong Zhang; Zhen Zhang; Bo Zheng; Feng Zhou; Shu Tao; Josep G. Canadell; Shilong Piao;AbstractEast Asia (China, Japan, Koreas, and Mongolia) has been the world's economic engine over at least the past two decades, exhibiting a rapid increase in fossil fuel emissions of greenhouse gases (GHGs) and has expressed the recent ambition to achieve climate neutrality by mid‐century. However, the GHG balance of its terrestrial ecosystems remains poorly constrained. Here, we present a synthesis of the three most important long‐lived greenhouse gases (CO2, CH4, and N2O) budgets over East Asia during the decades of 2000s and 2010s, following a dual constraint approach. We estimate that terrestrial ecosystems in East Asia is close to neutrality of GHGs, with a magnitude of between −46.3 ± 505.9 Tg CO2eq yr−1(the top‐down approach) and −36.1 ± 207.1 Tg CO2eq yr−1(the bottom‐up approach) during 2000–2019. This net GHG sink includes a large land CO2sink (−1229.3 ± 430.9 Tg CO2 yr−1based on the top‐down approach and −1353.8 ± 158.5 Tg CO2 yr−1based on the bottom‐up approach) being offset by biogenic CH4and N2O emissions, predominantly coming from the agricultural sectors. Emerging data sources and modeling capacities have helped achieve agreement between the top‐down and bottom‐up approaches, but sizable uncertainties remain in several flux terms. For example, the reported CO2flux from land use and land cover change varies from a net source of more than 300 Tg CO2 yr−1to a net sink of ∼−700 Tg CO2 yr−1. Although terrestrial ecosystems over East Asia is close to GHG neutral currently, curbing agricultural GHG emissions and additional afforestation and forest managements have the potential to transform the terrestrial ecosystems into a net GHG sink, which would help in realizing East Asian countries' ambitions to achieve climate neutrality.
NILU Brage arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert NILU Brage arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 FrancePublisher:Copernicus GmbH Funded by:EC | GEOCARBONEC| GEOCARBONYilong Wang; Rong Wang; Frédéric Chevallier; Grégoire Broquet; Philippe Ciais; Shu Tao; Lin Wu; Lin Wu; Yi Yin; Felix Vogel;Abstract. Combining measurements of atmospheric CO2 and its radiocarbon (14CO2) fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2). In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe) and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75∘ × 2.5∘ resolution. We conduct Observing System Simulation Experiments (OSSEs) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as “posterior uncertainty”, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called “prior uncertainty”). The second one is based on comparisons of prior and posterior estimates of the emission to synthetic “true” emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 %) in high emitting regions, but the performance of the inversion remains limited over low-emitting regions, even assuming a dense observation network covering the whole of Europe. This study also shows that both the theoretical uncertainty reduction (and resulting posterior uncertainty) from the inversion and the posterior estimate of emissions itself, for a given prior and “true” estimate of the emissions, are highly sensitive to the choice between two configurations of the prior uncertainty derived from the general estimate by inventory compilers or computations on existing inventories. In particular, when the configuration of the prior uncertainty statistics in the inversion system does not match the difference between these prior and true estimates, the posterior estimate of emissions deviates significantly from the truth. This highlights the difficulty of filtering the targeted signal in the model–data misfit for this specific inversion framework, the need to strongly rely on the prior uncertainty characterization for this and, consequently, the need for improved estimates of the uncertainties in current emission inventories for real applications with actual data. We apply the posterior uncertainty in annual emissions to the problem of detecting a trend of FFCO2, showing that increasing the monitoring period (e.g., more than 20 years) is more efficient than reducing uncertainty in annual emissions by adding stations. The coarse spatial resolution of the atmospheric transport model used in this OSSE (typical of models used for global inversions of natural CO2 fluxes) leads to large representation errors (related to the inability of the transport model to capture the spatial variability of the actual fluxes and mixing ratios at subgrid scales), which is a key limitation of our OSSE setup to improve the accuracy of the monitoring of FFCO2 emissions in European regions. Using a high-resolution transport model should improve the potential to retrieve FFCO2 emissions, and this needs to be investigated.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-18-4229-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-18-4229-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 FrancePublisher:Copernicus GmbH Funded by:EC | GEOCARBONEC| GEOCARBONYilong Wang; Rong Wang; Frédéric Chevallier; Grégoire Broquet; Philippe Ciais; Shu Tao; Lin Wu; Lin Wu; Yi Yin; Felix Vogel;Abstract. Combining measurements of atmospheric CO2 and its radiocarbon (14CO2) fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2). In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe) and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75∘ × 2.5∘ resolution. We conduct Observing System Simulation Experiments (OSSEs) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as “posterior uncertainty”, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called “prior uncertainty”). The second one is based on comparisons of prior and posterior estimates of the emission to synthetic “true” emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 %) in high emitting regions, but the performance of the inversion remains limited over low-emitting regions, even assuming a dense observation network covering the whole of Europe. This study also shows that both the theoretical uncertainty reduction (and resulting posterior uncertainty) from the inversion and the posterior estimate of emissions itself, for a given prior and “true” estimate of the emissions, are highly sensitive to the choice between two configurations of the prior uncertainty derived from the general estimate by inventory compilers or computations on existing inventories. In particular, when the configuration of the prior uncertainty statistics in the inversion system does not match the difference between these prior and true estimates, the posterior estimate of emissions deviates significantly from the truth. This highlights the difficulty of filtering the targeted signal in the model–data misfit for this specific inversion framework, the need to strongly rely on the prior uncertainty characterization for this and, consequently, the need for improved estimates of the uncertainties in current emission inventories for real applications with actual data. We apply the posterior uncertainty in annual emissions to the problem of detecting a trend of FFCO2, showing that increasing the monitoring period (e.g., more than 20 years) is more efficient than reducing uncertainty in annual emissions by adding stations. The coarse spatial resolution of the atmospheric transport model used in this OSSE (typical of models used for global inversions of natural CO2 fluxes) leads to large representation errors (related to the inability of the transport model to capture the spatial variability of the actual fluxes and mixing ratios at subgrid scales), which is a key limitation of our OSSE setup to improve the accuracy of the monitoring of FFCO2 emissions in European regions. Using a high-resolution transport model should improve the potential to retrieve FFCO2 emissions, and this needs to be investigated.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-18-4229-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-18-4229-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Copernicus GmbH Z. Jin; Z. Jin; X. Tian; X. Tian; Y. Wang; H. Zhang; M. Zhao; T. Wang; J. Ding; S. Piao; S. Piao;Abstract. Accurate assessment of the size and distribution of carbon dioxide (CO2) sources and sinks is important for efforts to understand the carbon cycle and support policy decisions regarding climate mitigation actions. Satellite retrievals of the column-averaged dry-air mole fractions of CO2 (XCO2) have been widely used to infer spatial and temporal variations of carbon fluxes through atmospheric inversion techniques. In this study, we present a global spatially resolved terrestrial and ocean carbon flux dataset for 2015–2022. The dataset was generated by the Global ObservatioN-based system for monitoring Greenhouse GAses (GONGGA) atmospheric inversion system through the assimilation of Orbiting Carbon Observatory 2 (OCO-2) XCO2 retrievals. We describe the carbon budget, interannual variability, and seasonal cycle for the global scale and a set of TransCom regions. The 8-year mean net biosphere exchange and ocean carbon fluxes were −2.22 ± 0.75 PgC yr−1 and –2.32 ± 0.18 PgC yr−1, absorbing approximately 23 % and 24 % of contemporary fossil fuel CO2 emissions, respectively. The annual mean global atmospheric CO2 growth rate was 5.17 ± 0.68 PgC yr−1, which is consistent with the National Oceanic and Atmospheric Administration (NOAA) measurement (5.24 ± 0.59 PgC yr−1). Europe has the largest terrestrial sink among the 11 TransCom land regions, followed by Boreal Asia and Temperate Asia. The dataset was evaluated by comparing posterior CO2 simulations with the observations from Total Carbon Column Observing Network (TCCON) and Observation Package (ObsPack). Compared with CO2 simulations using the unoptimized fluxes, the bias and root mean square error of posterior CO2 simulations were largely reduced across the full range of locations, confirming that the GONGGA system improves the estimates of spatial and temporal variations in carbon fluxes by assimilating OCO-2 XCO2 data. This dataset will improve the broader understanding of global carbon cycle dynamics and their response to climate change. The dataset can be accessed at https://doi.org/10.5281/zenodo.8368846 (Jin et al., 2023a).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2023-449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2023-449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Copernicus GmbH Z. Jin; Z. Jin; X. Tian; X. Tian; Y. Wang; H. Zhang; M. Zhao; T. Wang; J. Ding; S. Piao; S. Piao;Abstract. Accurate assessment of the size and distribution of carbon dioxide (CO2) sources and sinks is important for efforts to understand the carbon cycle and support policy decisions regarding climate mitigation actions. Satellite retrievals of the column-averaged dry-air mole fractions of CO2 (XCO2) have been widely used to infer spatial and temporal variations of carbon fluxes through atmospheric inversion techniques. In this study, we present a global spatially resolved terrestrial and ocean carbon flux dataset for 2015–2022. The dataset was generated by the Global ObservatioN-based system for monitoring Greenhouse GAses (GONGGA) atmospheric inversion system through the assimilation of Orbiting Carbon Observatory 2 (OCO-2) XCO2 retrievals. We describe the carbon budget, interannual variability, and seasonal cycle for the global scale and a set of TransCom regions. The 8-year mean net biosphere exchange and ocean carbon fluxes were −2.22 ± 0.75 PgC yr−1 and –2.32 ± 0.18 PgC yr−1, absorbing approximately 23 % and 24 % of contemporary fossil fuel CO2 emissions, respectively. The annual mean global atmospheric CO2 growth rate was 5.17 ± 0.68 PgC yr−1, which is consistent with the National Oceanic and Atmospheric Administration (NOAA) measurement (5.24 ± 0.59 PgC yr−1). Europe has the largest terrestrial sink among the 11 TransCom land regions, followed by Boreal Asia and Temperate Asia. The dataset was evaluated by comparing posterior CO2 simulations with the observations from Total Carbon Column Observing Network (TCCON) and Observation Package (ObsPack). Compared with CO2 simulations using the unoptimized fluxes, the bias and root mean square error of posterior CO2 simulations were largely reduced across the full range of locations, confirming that the GONGGA system improves the estimates of spatial and temporal variations in carbon fluxes by assimilating OCO-2 XCO2 data. This dataset will improve the broader understanding of global carbon cycle dynamics and their response to climate change. The dataset can be accessed at https://doi.org/10.5281/zenodo.8368846 (Jin et al., 2023a).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2023-449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2023-449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2021Publisher:OpenAlex Zhu Deng; Yilong Wang; Bo Zheng; Oliviér Boucher; Piyu Ke; Guo Gui; Katsumasa Tanaka; Zhu Liu; Philippe Ciais; Steven J. Davis;Carbon Monitor est un ensemble de données en temps quasi réel pour les émissions quotidiennes de CO2 avec une couverture mondiale de 6 secteurs principaux (énergie, industrie, transport terrestre, aviation, transport résidentiel et international).Ici, nous fournissons les données annuelles de 2019 et 2020.Visitez notre site Web pour plus d'informations : https://carbonmonitor.org Carbon Monitor es un conjunto de datos casi en tiempo real para las emisiones diarias de CO2 con cobertura global de 6 sectores principales (energía, industria, transporte terrestre, aviación, transporte residencial e internacional).Aquí, proporcionamos los datos de todo el año de 2019 y 2020.Visite nuestro sitio web para obtener más información: https://carbonmonitor.org Carbon Monitor is a near real-time dataset for daily CO2 emissions with global coverage from 6 main sectors (power, industry, ground transportation, aviation, residential and international shipping).Here, we provide the whole year data of 2019 and 2020.Visit our website for more information: https://carbonmonitor.org كربون مونيتور هي مجموعة بيانات شبه آنية لانبعاثات ثاني أكسيد الكربون اليومية مع تغطية عالمية من 6 قطاعات رئيسية (الطاقة والصناعة والنقل البري والطيران والشحن السكني والدولي). نقدم هنا بيانات العام بأكمله لعامي 2019 و 2020.قم بزيارة موقعنا الإلكتروني لمزيد من المعلومات: https://carbonmonitor.org
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/haj0y-pf855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/haj0y-pf855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2021Publisher:OpenAlex Zhu Deng; Yilong Wang; Bo Zheng; Oliviér Boucher; Piyu Ke; Guo Gui; Katsumasa Tanaka; Zhu Liu; Philippe Ciais; Steven J. Davis;Carbon Monitor est un ensemble de données en temps quasi réel pour les émissions quotidiennes de CO2 avec une couverture mondiale de 6 secteurs principaux (énergie, industrie, transport terrestre, aviation, transport résidentiel et international).Ici, nous fournissons les données annuelles de 2019 et 2020.Visitez notre site Web pour plus d'informations : https://carbonmonitor.org Carbon Monitor es un conjunto de datos casi en tiempo real para las emisiones diarias de CO2 con cobertura global de 6 sectores principales (energía, industria, transporte terrestre, aviación, transporte residencial e internacional).Aquí, proporcionamos los datos de todo el año de 2019 y 2020.Visite nuestro sitio web para obtener más información: https://carbonmonitor.org Carbon Monitor is a near real-time dataset for daily CO2 emissions with global coverage from 6 main sectors (power, industry, ground transportation, aviation, residential and international shipping).Here, we provide the whole year data of 2019 and 2020.Visit our website for more information: https://carbonmonitor.org كربون مونيتور هي مجموعة بيانات شبه آنية لانبعاثات ثاني أكسيد الكربون اليومية مع تغطية عالمية من 6 قطاعات رئيسية (الطاقة والصناعة والنقل البري والطيران والشحن السكني والدولي). نقدم هنا بيانات العام بأكمله لعامي 2019 و 2020.قم بزيارة موقعنا الإلكتروني لمزيد من المعلومات: https://carbonmonitor.org
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/haj0y-pf855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/haj0y-pf855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Wiley Authors: Wang, Xuhui; Ciais, Philippe; Wang, Yilong; Zhu, Dan;doi: 10.1111/gcb.14335
pmid: 29851198
AbstractInterannual variations of photosynthesis in tropical seasonally dry vegetation are one of the dominant drivers to interannual variations of atmosphericCO2growth rate. Yet, the seasonal differences in the response of photosynthesis to climate variations in these ecosystems remain poorly understood. Here using Normalized Difference Vegetation Index (NDVI), we explored the response of photosynthesis of seasonally dry tropical vegetation to climatic variations in the dry and the wet seasons during the past three decades. We found significant (p < 0.01) differences between dry and wet seasons in the interannual response of photosynthesis to temperature (γint) and to precipitation (δint).γintis ~1% °C−1more negative andδintis ~8% 100 mm−1more positive in the dry season than in the wet season. Further analyses show that the seasonal difference inγintcan be explained by background moisture and temperature conditions. Positiveγintoccurred in wet season where mean temperature is lower than 27°C and precipitation is at least 60 mm larger than potential evapotranspiration. Two widely used Gross Primary Productivity (GPP) estimates (empirical modeling by machine‐learning algorithm applied to flux tower measurements, and nine process‐based carbon cycle models) were examined for theGPP–climate relationship over wet and dry seasons. TheGPPderived from empirical modeling can partly reproduce the divergence ofγint, while most process models cannot. The overestimate by process models on negative impacts by warmer temperature during the wet season highlights the shortcomings of current carbon cycle models in representing interactive impacts of temperature and moisture on photosynthesis. Improving representations on soil water uptake, leaf temperature, nitrogen cycling, and soil moisture may help improve modeling skills in reproducing seasonal differences of photosynthesis–climate relationship and thus the projection for impacts of climate change on tropical carbon cycle.
Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Wiley Authors: Wang, Xuhui; Ciais, Philippe; Wang, Yilong; Zhu, Dan;doi: 10.1111/gcb.14335
pmid: 29851198
AbstractInterannual variations of photosynthesis in tropical seasonally dry vegetation are one of the dominant drivers to interannual variations of atmosphericCO2growth rate. Yet, the seasonal differences in the response of photosynthesis to climate variations in these ecosystems remain poorly understood. Here using Normalized Difference Vegetation Index (NDVI), we explored the response of photosynthesis of seasonally dry tropical vegetation to climatic variations in the dry and the wet seasons during the past three decades. We found significant (p < 0.01) differences between dry and wet seasons in the interannual response of photosynthesis to temperature (γint) and to precipitation (δint).γintis ~1% °C−1more negative andδintis ~8% 100 mm−1more positive in the dry season than in the wet season. Further analyses show that the seasonal difference inγintcan be explained by background moisture and temperature conditions. Positiveγintoccurred in wet season where mean temperature is lower than 27°C and precipitation is at least 60 mm larger than potential evapotranspiration. Two widely used Gross Primary Productivity (GPP) estimates (empirical modeling by machine‐learning algorithm applied to flux tower measurements, and nine process‐based carbon cycle models) were examined for theGPP–climate relationship over wet and dry seasons. TheGPPderived from empirical modeling can partly reproduce the divergence ofγint, while most process models cannot. The overestimate by process models on negative impacts by warmer temperature during the wet season highlights the shortcomings of current carbon cycle models in representing interactive impacts of temperature and moisture on photosynthesis. Improving representations on soil water uptake, leaf temperature, nitrogen cycling, and soil moisture may help improve modeling skills in reproducing seasonal differences of photosynthesis–climate relationship and thus the projection for impacts of climate change on tropical carbon cycle.
Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, United Kingdom, Germany, France, Norway, France, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | PARIS REINFORCE, EC | CoCO2, EC | 4C +1 projectsEC| PARIS REINFORCE ,EC| CoCO2 ,EC| 4C ,EC| VERIFYLiu, Zhu; Deng, Zhu; Zhu, Biqing; Ciais, Philippe; Davis, Steven; Tan, Jianguang; Andrew, Robbie; Boucher, Olivier; Arous, Simon; Canadell, Josep; Dou, Xinyu; Friedlingstein, Pierre; Gentine, Pierre; Guo, Rui; Hong, Chaopeng; Jackson, Robert; Kammen, Daniel; Ke, Piyu; Le Quéré, Corinne; Monica, Crippa; Janssens-Maenhout, Greet; Peters, Glen; Tanaka, Katsumasa; Wang, Yilong; Zheng, Bo; Zhong, Haiwang; Sun, Taochun; Schellnhuber, Hans;handle: 11250/3115932
AbstractDay-to-day changes in CO2emissions from human activities, in particular fossil-fuel combustion and cement production, reflect a complex balance of influences from seasonality, working days, weather and, most recently, the COVID-19 pandemic. Here, we provide a daily CO2emissions dataset for the whole year of 2020, calculated from inventory and near-real-time activity data. We find a global reduction of 6.3% (2,232 MtCO2) in CO2emissions compared with 2019. The drop in daily emissions during the first part of the year resulted from reduced global economic activity due to the pandemic lockdowns, including a large decrease in emissions from the transportation sector. However, daily CO2emissions gradually recovered towards 2019 levels from late April with the partial reopening of economic activity. Subsequent waves of lockdowns in late 2020 continued to cause smaller CO2reductions, primarily in western countries. The extraordinary fall in emissions during 2020 is similar in magnitude to the sustained annual emissions reductions necessary to limit global warming at 1.5 °C. This underscores the magnitude and speed at which the energy transition needs to advance.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-022-00965-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-022-00965-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, United Kingdom, Germany, France, Norway, France, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | PARIS REINFORCE, EC | CoCO2, EC | 4C +1 projectsEC| PARIS REINFORCE ,EC| CoCO2 ,EC| 4C ,EC| VERIFYLiu, Zhu; Deng, Zhu; Zhu, Biqing; Ciais, Philippe; Davis, Steven; Tan, Jianguang; Andrew, Robbie; Boucher, Olivier; Arous, Simon; Canadell, Josep; Dou, Xinyu; Friedlingstein, Pierre; Gentine, Pierre; Guo, Rui; Hong, Chaopeng; Jackson, Robert; Kammen, Daniel; Ke, Piyu; Le Quéré, Corinne; Monica, Crippa; Janssens-Maenhout, Greet; Peters, Glen; Tanaka, Katsumasa; Wang, Yilong; Zheng, Bo; Zhong, Haiwang; Sun, Taochun; Schellnhuber, Hans;handle: 11250/3115932
AbstractDay-to-day changes in CO2emissions from human activities, in particular fossil-fuel combustion and cement production, reflect a complex balance of influences from seasonality, working days, weather and, most recently, the COVID-19 pandemic. Here, we provide a daily CO2emissions dataset for the whole year of 2020, calculated from inventory and near-real-time activity data. We find a global reduction of 6.3% (2,232 MtCO2) in CO2emissions compared with 2019. The drop in daily emissions during the first part of the year resulted from reduced global economic activity due to the pandemic lockdowns, including a large decrease in emissions from the transportation sector. However, daily CO2emissions gradually recovered towards 2019 levels from late April with the partial reopening of economic activity. Subsequent waves of lockdowns in late 2020 continued to cause smaller CO2reductions, primarily in western countries. The extraordinary fall in emissions during 2020 is similar in magnitude to the sustained annual emissions reductions necessary to limit global warming at 1.5 °C. This underscores the magnitude and speed at which the energy transition needs to advance.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-022-00965-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03717004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-022-00965-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Norway, Norway, Belgium, Russian Federation, Switzerland, France, Netherlands, United States, Netherlands, AustriaPublisher:Oxford University Press (OUP) Funded by:NSF | RoL: FELS: RAISE: Collab..., RSF | Smart technologies to mon..., EC | IMBALANCE-P +4 projectsNSF| RoL: FELS: RAISE: Collaborative Research: Watershed Rules of Life ,RSF| Smart technologies to monitor, model and evaluate ecosystem services provided by urban green infrastructure and soils to support decision making in sustainable city development under global changes ,EC| IMBALANCE-P ,ANR| L-IPSL ,NSF| Collaborative Research: RUI: The Pulse-Shunt Concept: A Conceptual Framework for Quantifying and Forecasting Watershed DOM Fluxes and Transformations at the MacroSystem Scale ,RCN| The Global Carbon Budget and Carbon Atlas ,EC| COCOSAnna Peregon; Anna Peregon; Peter A. Raymond; Grégoire Broquet; Wei Li; Rong Wang; Alessandro Baccini; Jens Hartmann; Julia Pongratz; Julia Pongratz; Alexandra G. Konings; Chunjing Qiu; Ana Bastos; Jinfeng Chang; Anatoly Shvidenko; Fabienne Maignan; Chao Yue; Chao Yue; Yi Yin; Vanessa Haverd; Pierre Regnier; Hui Yang; Ashley-P Ballantyne; Yi Liu; Riccardo Valentini; Shushi Peng; Philippe Ciais; Philippe Ciais; Anthony W. King; Jakob Zscheischler; Thomas Gasser; Bertrand Guenet; Ronny Lauerwald; Ronny Lauerwald; Prabir K. Patra; Prabir K. Patra; Yitong Yao; Yilong Wang; Goulven Gildas Laruelle; Dan Zhu; Sebastiaan Luyssaert; Benjamin Poulter; Daniel S. Goll; Glen P. Peters; Josep G. Canadell; Rob J Andres; A. Johannes Dolman;pmid: 34691569
pmc: PMC8288404
Abstract Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global ‘bottom-up’ NEE for net land anthropogenic CO2 uptake of –2.2 ± 0.6 PgC yr−1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000–2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr−1 with an interquartile of 33–46 PgC yr−1—a much smaller portion of net primary productivity than previously reported.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Norway, Norway, Belgium, Russian Federation, Switzerland, France, Netherlands, United States, Netherlands, AustriaPublisher:Oxford University Press (OUP) Funded by:NSF | RoL: FELS: RAISE: Collab..., RSF | Smart technologies to mon..., EC | IMBALANCE-P +4 projectsNSF| RoL: FELS: RAISE: Collaborative Research: Watershed Rules of Life ,RSF| Smart technologies to monitor, model and evaluate ecosystem services provided by urban green infrastructure and soils to support decision making in sustainable city development under global changes ,EC| IMBALANCE-P ,ANR| L-IPSL ,NSF| Collaborative Research: RUI: The Pulse-Shunt Concept: A Conceptual Framework for Quantifying and Forecasting Watershed DOM Fluxes and Transformations at the MacroSystem Scale ,RCN| The Global Carbon Budget and Carbon Atlas ,EC| COCOSAnna Peregon; Anna Peregon; Peter A. Raymond; Grégoire Broquet; Wei Li; Rong Wang; Alessandro Baccini; Jens Hartmann; Julia Pongratz; Julia Pongratz; Alexandra G. Konings; Chunjing Qiu; Ana Bastos; Jinfeng Chang; Anatoly Shvidenko; Fabienne Maignan; Chao Yue; Chao Yue; Yi Yin; Vanessa Haverd; Pierre Regnier; Hui Yang; Ashley-P Ballantyne; Yi Liu; Riccardo Valentini; Shushi Peng; Philippe Ciais; Philippe Ciais; Anthony W. King; Jakob Zscheischler; Thomas Gasser; Bertrand Guenet; Ronny Lauerwald; Ronny Lauerwald; Prabir K. Patra; Prabir K. Patra; Yitong Yao; Yilong Wang; Goulven Gildas Laruelle; Dan Zhu; Sebastiaan Luyssaert; Benjamin Poulter; Daniel S. Goll; Glen P. Peters; Josep G. Canadell; Rob J Andres; A. Johannes Dolman;pmid: 34691569
pmc: PMC8288404
Abstract Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global ‘bottom-up’ NEE for net land anthropogenic CO2 uptake of –2.2 ± 0.6 PgC yr−1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000–2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr−1 with an interquartile of 33–46 PgC yr−1—a much smaller portion of net primary productivity than previously reported.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, ItalyPublisher:Elsevier BV Su, Yongxian; Wu, Jianping; Ciais, Philippe; Zheng, Bo; Wang, Yilong; Chen, Xiuzhi; Li, Xueyan; Li, Yong; Wang, Yang; Wang, Changjian; Jiang, Lu; Lafortezza, Raffaele;handle: 11586/413430
Although it's well known that the carbon intensity from passenger transport of cities varies widely, few studies assessed the disparities of that in city-level and its underlying factors due to the limited availability of data, and thus developed effective strategies for different types of cities. This study is the first to present a comprehensive inventory of emissions from passenger transport on road for 360 cities in mainland China for 2018, based on the data from 5 transport modes and evaluated by combining distance-based and top-down fuel-based methods. In 2018, passenger transport on road in China emitted 1076 MtC. A large portion of CO2 emissions was identified in the southern and eastern coastal areas and capital cities. GDP, population, and policy were the major factors determining the total CO2 emissions, but not carbon intensity. Clustering analysis of carbon intensity and 9 socio-economic predictors, using a tree-based regression model, clustered the 360 cities into 6 groups and showed that higher carbon intensities occurred in both affluent city groups with a high active population share and less affluent city groups with a low population density but high density of trip destinations. Forward-and-backward stepwise multiple regression analysis indicated that constructing a compact city is more effective for city groups with a high income and high active population share. Enhancing land-use mixed degree is more critical for city groups with a high income and low active population share, while shortening travel distance by intensifying infrastructure construction is more important for the less affluent city groups.
Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11586/413430Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2022.109165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11586/413430Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2022.109165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, ItalyPublisher:Elsevier BV Su, Yongxian; Wu, Jianping; Ciais, Philippe; Zheng, Bo; Wang, Yilong; Chen, Xiuzhi; Li, Xueyan; Li, Yong; Wang, Yang; Wang, Changjian; Jiang, Lu; Lafortezza, Raffaele;handle: 11586/413430
Although it's well known that the carbon intensity from passenger transport of cities varies widely, few studies assessed the disparities of that in city-level and its underlying factors due to the limited availability of data, and thus developed effective strategies for different types of cities. This study is the first to present a comprehensive inventory of emissions from passenger transport on road for 360 cities in mainland China for 2018, based on the data from 5 transport modes and evaluated by combining distance-based and top-down fuel-based methods. In 2018, passenger transport on road in China emitted 1076 MtC. A large portion of CO2 emissions was identified in the southern and eastern coastal areas and capital cities. GDP, population, and policy were the major factors determining the total CO2 emissions, but not carbon intensity. Clustering analysis of carbon intensity and 9 socio-economic predictors, using a tree-based regression model, clustered the 360 cities into 6 groups and showed that higher carbon intensities occurred in both affluent city groups with a high active population share and less affluent city groups with a low population density but high density of trip destinations. Forward-and-backward stepwise multiple regression analysis indicated that constructing a compact city is more effective for city groups with a high income and high active population share. Enhancing land-use mixed degree is more critical for city groups with a high income and low active population share, while shortening travel distance by intensifying infrastructure construction is more important for the less affluent city groups.
Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11586/413430Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2022.109165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11586/413430Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2022.109165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:American Chemical Society (ACS) Ming Hung Wong; Shu Tao; Wenxin Liu; Weihao Zhang; Tongchao Li; Yanyan Zhang; Xilong Wang; Huizhong Shen; Yuanchen Chen; Xiaofu Chen; Chunyu Xue; Ye Huang; Guofeng Shen; Guangqing Liu; Nan Lin; Shu Su; Yibo Huangfu; Yilong Wang;doi: 10.1021/es506343z
pmid: 25938574
Residential solid fuel combustion is a major source of many pollutants, resulting in significant impacts on air quality and human health. Improved stoves, especially some modern gasifier biomass models, are being deployed to alleviate household and ambient air pollution. Pollutant emissions from coal burning in improved metal stoves (n = 11) and wood combustion in modern gasifier stoves (n = 8) were measured in field in Hubei, China. The emissions of CO, TSP, OC, EC, and PAHs from coal burning in the improved iron stoves were generally lower than previously reported results for coal in traditional stoves. For pollutants from wood combustion in the gasifier stoves, the emissions were less than literature-reported values for wood burned in traditional stoves, comparable to those in improved stoves, but appeared to be higher than those for pellets in gasifier stoves in laboratory tests. The limitations of scarce data and large variances result in statistical insignificance. Daily emissions of targeted pollutants per household were found to be higher for wood burners, compared with households relying on coal. The gasifier stove had relatively high thermal efficiencies, but emissions of most air pollutants per delivered energy were not significantly different from those from the coal burning in improved iron stoves. Moreover, higher emissions of OC, EC, and PAHs were observed, indicating that caution and additional testing will be needed while designing future clean cookstove intervention programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es506343z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es506343z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:American Chemical Society (ACS) Ming Hung Wong; Shu Tao; Wenxin Liu; Weihao Zhang; Tongchao Li; Yanyan Zhang; Xilong Wang; Huizhong Shen; Yuanchen Chen; Xiaofu Chen; Chunyu Xue; Ye Huang; Guofeng Shen; Guangqing Liu; Nan Lin; Shu Su; Yibo Huangfu; Yilong Wang;doi: 10.1021/es506343z
pmid: 25938574
Residential solid fuel combustion is a major source of many pollutants, resulting in significant impacts on air quality and human health. Improved stoves, especially some modern gasifier biomass models, are being deployed to alleviate household and ambient air pollution. Pollutant emissions from coal burning in improved metal stoves (n = 11) and wood combustion in modern gasifier stoves (n = 8) were measured in field in Hubei, China. The emissions of CO, TSP, OC, EC, and PAHs from coal burning in the improved iron stoves were generally lower than previously reported results for coal in traditional stoves. For pollutants from wood combustion in the gasifier stoves, the emissions were less than literature-reported values for wood burned in traditional stoves, comparable to those in improved stoves, but appeared to be higher than those for pellets in gasifier stoves in laboratory tests. The limitations of scarce data and large variances result in statistical insignificance. Daily emissions of targeted pollutants per household were found to be higher for wood burners, compared with households relying on coal. The gasifier stove had relatively high thermal efficiencies, but emissions of most air pollutants per delivered energy were not significantly different from those from the coal burning in improved iron stoves. Moreover, higher emissions of OC, EC, and PAHs were observed, indicating that caution and additional testing will be needed while designing future clean cookstove intervention programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es506343z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es506343z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Spain, Belgium, France, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PYongwen Liu; Tao Wang; Yilong Wang; Xu Lian; Shilong Piao; Shilong Piao; Xiaoyi Wang; Shushi Peng; Josep Peñuelas; Yutong Zhao; Dan Liu; Yitong Yao; Yue Li; Hui Yang; Mengtian Huang; John F. Burkhart; Philippe Ciais; Hui Guo; Ivan A. Janssens; Yi Yin;AbstractMost studies of the northern hemisphere carbon cycle based on atmospheric CO2concentration have focused on spring and autumn, but the climate change impact on summer carbon cycle remains unclear. Here we used atmospheric CO2record from Point Barrow (Alaska) to show that summer CO2drawdown between July and August, a proxy of summer carbon uptake, is significantly negatively correlated with terrestrial temperature north of 50°N interannually during 1979–2012. However, a refined analysis at the decadal scale reveals strong differences between the earlier (1979–1995) and later (1996–2012) periods, with the significant negative correlation only in the later period. This emerging negative temperature response is due to the disappearance of the positive temperature response of summer vegetation activities that prevailed in the earlier period. Our finding, together with the reported weakening temperature control on spring carbon uptake, suggests a diminished positive effect of warming on high-latitude carbon uptake.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/10852/72747Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s414...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07813-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/10852/72747Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s414...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07813-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Spain, Belgium, France, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PYongwen Liu; Tao Wang; Yilong Wang; Xu Lian; Shilong Piao; Shilong Piao; Xiaoyi Wang; Shushi Peng; Josep Peñuelas; Yutong Zhao; Dan Liu; Yitong Yao; Yue Li; Hui Yang; Mengtian Huang; John F. Burkhart; Philippe Ciais; Hui Guo; Ivan A. Janssens; Yi Yin;AbstractMost studies of the northern hemisphere carbon cycle based on atmospheric CO2concentration have focused on spring and autumn, but the climate change impact on summer carbon cycle remains unclear. Here we used atmospheric CO2record from Point Barrow (Alaska) to show that summer CO2drawdown between July and August, a proxy of summer carbon uptake, is significantly negatively correlated with terrestrial temperature north of 50°N interannually during 1979–2012. However, a refined analysis at the decadal scale reveals strong differences between the earlier (1979–1995) and later (1996–2012) periods, with the significant negative correlation only in the later period. This emerging negative temperature response is due to the disappearance of the positive temperature response of summer vegetation activities that prevailed in the earlier period. Our finding, together with the reported weakening temperature control on spring carbon uptake, suggests a diminished positive effect of warming on high-latitude carbon uptake.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/10852/72747Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s414...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07813-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/10852/72747Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02975867Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s414...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07813-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Norway, FrancePublisher:American Geophysical Union (AGU) Funded by:UKRI | NCEO LTS-S, ANR | CLANDUKRI| NCEO LTS-S ,ANR| CLANDXuhui Wang; Yahui Gao; Sujong Jeong; Akihiko Ito; Ana Bastos; Benjamin Poulter; Yilong Wang; Philippe Ciais; Hanqin Tian; Wenping Yuan; Naveen Chandra; Frédéric Chevallier; Lei Fan; Songbai Hong; Ronny Lauerwald; Wei Li; Zhengyang Lin; Naiqing Pan; Prabir K. Patra; Shushi Peng; Lishan Ran; Yuxing Sang; Stephen Sitch; T. Mäki; Rona L. Thompson; Chenzhi Wang; Kai Wang; Tao Wang; Yi Xi; Li Xu; Yanzi Yan; Jeongmin Yun; Yao Zhang; Yuzhong Zhang; Zhen Zhang; Bo Zheng; Feng Zhou; Shu Tao; Josep G. Canadell; Shilong Piao;AbstractEast Asia (China, Japan, Koreas, and Mongolia) has been the world's economic engine over at least the past two decades, exhibiting a rapid increase in fossil fuel emissions of greenhouse gases (GHGs) and has expressed the recent ambition to achieve climate neutrality by mid‐century. However, the GHG balance of its terrestrial ecosystems remains poorly constrained. Here, we present a synthesis of the three most important long‐lived greenhouse gases (CO2, CH4, and N2O) budgets over East Asia during the decades of 2000s and 2010s, following a dual constraint approach. We estimate that terrestrial ecosystems in East Asia is close to neutrality of GHGs, with a magnitude of between −46.3 ± 505.9 Tg CO2eq yr−1(the top‐down approach) and −36.1 ± 207.1 Tg CO2eq yr−1(the bottom‐up approach) during 2000–2019. This net GHG sink includes a large land CO2sink (−1229.3 ± 430.9 Tg CO2 yr−1based on the top‐down approach and −1353.8 ± 158.5 Tg CO2 yr−1based on the bottom‐up approach) being offset by biogenic CH4and N2O emissions, predominantly coming from the agricultural sectors. Emerging data sources and modeling capacities have helped achieve agreement between the top‐down and bottom‐up approaches, but sizable uncertainties remain in several flux terms. For example, the reported CO2flux from land use and land cover change varies from a net source of more than 300 Tg CO2 yr−1to a net sink of ∼−700 Tg CO2 yr−1. Although terrestrial ecosystems over East Asia is close to GHG neutral currently, curbing agricultural GHG emissions and additional afforestation and forest managements have the potential to transform the terrestrial ecosystems into a net GHG sink, which would help in realizing East Asian countries' ambitions to achieve climate neutrality.
NILU Brage arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert NILU Brage arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Norway, FrancePublisher:American Geophysical Union (AGU) Funded by:UKRI | NCEO LTS-S, ANR | CLANDUKRI| NCEO LTS-S ,ANR| CLANDXuhui Wang; Yahui Gao; Sujong Jeong; Akihiko Ito; Ana Bastos; Benjamin Poulter; Yilong Wang; Philippe Ciais; Hanqin Tian; Wenping Yuan; Naveen Chandra; Frédéric Chevallier; Lei Fan; Songbai Hong; Ronny Lauerwald; Wei Li; Zhengyang Lin; Naiqing Pan; Prabir K. Patra; Shushi Peng; Lishan Ran; Yuxing Sang; Stephen Sitch; T. Mäki; Rona L. Thompson; Chenzhi Wang; Kai Wang; Tao Wang; Yi Xi; Li Xu; Yanzi Yan; Jeongmin Yun; Yao Zhang; Yuzhong Zhang; Zhen Zhang; Bo Zheng; Feng Zhou; Shu Tao; Josep G. Canadell; Shilong Piao;AbstractEast Asia (China, Japan, Koreas, and Mongolia) has been the world's economic engine over at least the past two decades, exhibiting a rapid increase in fossil fuel emissions of greenhouse gases (GHGs) and has expressed the recent ambition to achieve climate neutrality by mid‐century. However, the GHG balance of its terrestrial ecosystems remains poorly constrained. Here, we present a synthesis of the three most important long‐lived greenhouse gases (CO2, CH4, and N2O) budgets over East Asia during the decades of 2000s and 2010s, following a dual constraint approach. We estimate that terrestrial ecosystems in East Asia is close to neutrality of GHGs, with a magnitude of between −46.3 ± 505.9 Tg CO2eq yr−1(the top‐down approach) and −36.1 ± 207.1 Tg CO2eq yr−1(the bottom‐up approach) during 2000–2019. This net GHG sink includes a large land CO2sink (−1229.3 ± 430.9 Tg CO2 yr−1based on the top‐down approach and −1353.8 ± 158.5 Tg CO2 yr−1based on the bottom‐up approach) being offset by biogenic CH4and N2O emissions, predominantly coming from the agricultural sectors. Emerging data sources and modeling capacities have helped achieve agreement between the top‐down and bottom‐up approaches, but sizable uncertainties remain in several flux terms. For example, the reported CO2flux from land use and land cover change varies from a net source of more than 300 Tg CO2 yr−1to a net sink of ∼−700 Tg CO2 yr−1. Although terrestrial ecosystems over East Asia is close to GHG neutral currently, curbing agricultural GHG emissions and additional afforestation and forest managements have the potential to transform the terrestrial ecosystems into a net GHG sink, which would help in realizing East Asian countries' ambitions to achieve climate neutrality.
NILU Brage arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert NILU Brage arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 FrancePublisher:Copernicus GmbH Funded by:EC | GEOCARBONEC| GEOCARBONYilong Wang; Rong Wang; Frédéric Chevallier; Grégoire Broquet; Philippe Ciais; Shu Tao; Lin Wu; Lin Wu; Yi Yin; Felix Vogel;Abstract. Combining measurements of atmospheric CO2 and its radiocarbon (14CO2) fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2). In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe) and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75∘ × 2.5∘ resolution. We conduct Observing System Simulation Experiments (OSSEs) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as “posterior uncertainty”, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called “prior uncertainty”). The second one is based on comparisons of prior and posterior estimates of the emission to synthetic “true” emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 %) in high emitting regions, but the performance of the inversion remains limited over low-emitting regions, even assuming a dense observation network covering the whole of Europe. This study also shows that both the theoretical uncertainty reduction (and resulting posterior uncertainty) from the inversion and the posterior estimate of emissions itself, for a given prior and “true” estimate of the emissions, are highly sensitive to the choice between two configurations of the prior uncertainty derived from the general estimate by inventory compilers or computations on existing inventories. In particular, when the configuration of the prior uncertainty statistics in the inversion system does not match the difference between these prior and true estimates, the posterior estimate of emissions deviates significantly from the truth. This highlights the difficulty of filtering the targeted signal in the model–data misfit for this specific inversion framework, the need to strongly rely on the prior uncertainty characterization for this and, consequently, the need for improved estimates of the uncertainties in current emission inventories for real applications with actual data. We apply the posterior uncertainty in annual emissions to the problem of detecting a trend of FFCO2, showing that increasing the monitoring period (e.g., more than 20 years) is more efficient than reducing uncertainty in annual emissions by adding stations. The coarse spatial resolution of the atmospheric transport model used in this OSSE (typical of models used for global inversions of natural CO2 fluxes) leads to large representation errors (related to the inability of the transport model to capture the spatial variability of the actual fluxes and mixing ratios at subgrid scales), which is a key limitation of our OSSE setup to improve the accuracy of the monitoring of FFCO2 emissions in European regions. Using a high-resolution transport model should improve the potential to retrieve FFCO2 emissions, and this needs to be investigated.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-18-4229-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-18-4229-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 FrancePublisher:Copernicus GmbH Funded by:EC | GEOCARBONEC| GEOCARBONYilong Wang; Rong Wang; Frédéric Chevallier; Grégoire Broquet; Philippe Ciais; Shu Tao; Lin Wu; Lin Wu; Yi Yin; Felix Vogel;Abstract. Combining measurements of atmospheric CO2 and its radiocarbon (14CO2) fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2). In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe) and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75∘ × 2.5∘ resolution. We conduct Observing System Simulation Experiments (OSSEs) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as “posterior uncertainty”, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called “prior uncertainty”). The second one is based on comparisons of prior and posterior estimates of the emission to synthetic “true” emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 %) in high emitting regions, but the performance of the inversion remains limited over low-emitting regions, even assuming a dense observation network covering the whole of Europe. This study also shows that both the theoretical uncertainty reduction (and resulting posterior uncertainty) from the inversion and the posterior estimate of emissions itself, for a given prior and “true” estimate of the emissions, are highly sensitive to the choice between two configurations of the prior uncertainty derived from the general estimate by inventory compilers or computations on existing inventories. In particular, when the configuration of the prior uncertainty statistics in the inversion system does not match the difference between these prior and true estimates, the posterior estimate of emissions deviates significantly from the truth. This highlights the difficulty of filtering the targeted signal in the model–data misfit for this specific inversion framework, the need to strongly rely on the prior uncertainty characterization for this and, consequently, the need for improved estimates of the uncertainties in current emission inventories for real applications with actual data. We apply the posterior uncertainty in annual emissions to the problem of detecting a trend of FFCO2, showing that increasing the monitoring period (e.g., more than 20 years) is more efficient than reducing uncertainty in annual emissions by adding stations. The coarse spatial resolution of the atmospheric transport model used in this OSSE (typical of models used for global inversions of natural CO2 fluxes) leads to large representation errors (related to the inability of the transport model to capture the spatial variability of the actual fluxes and mixing ratios at subgrid scales), which is a key limitation of our OSSE setup to improve the accuracy of the monitoring of FFCO2 emissions in European regions. Using a high-resolution transport model should improve the potential to retrieve FFCO2 emissions, and this needs to be investigated.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-18-4229-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02900820Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-18-4229-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu