- home
- Advanced Search
- Energy Research
- Closed Access
- Energy Research
- Closed Access
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: E. Caamaño-Martín; Louise-Nour Sassenou; Lorenzo Olivieri; Francesca Olivieri;Abstract Solar energy, as main energy supply that sustains life on Earth, is also an unavoidable component of the complex strategy in achieving a clean and fair energy transition and goals for sustainable development by 2030. The present work studies the potential of installing Photovoltaic Distributed Generation at Universidad Politecnica de Madrid – Ciudad Universitaria campus. To this end, the study focuses on the electricity generation, carbon reduction and economic feasibility of solar photovoltaic systems installation using and comparing two different approaches based on data input with different time resolution, simulation software and level of details. Results show that the optimal photovoltaic power that maximizes emissions savings also ensures the best economic return, and in addition coincides with the maximum solar potential of the Campus, which is about 3.3 MW. At campus level, approximately 77% of the photovoltaic electricity production would be consumed locally, which would suppose a coverage of about 40% of the total electricity consumption. Emissions savings could reach 30% and an in-depth economic analysis indicates that the project is highly profitable. These results and methodology could be used to assess the feasibility of photovoltaic systems at other universities and help entities study the solar potential of their buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.09.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.09.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: E. Caamaño-Martín; Louise-Nour Sassenou; Lorenzo Olivieri; Francesca Olivieri;Abstract Solar energy, as main energy supply that sustains life on Earth, is also an unavoidable component of the complex strategy in achieving a clean and fair energy transition and goals for sustainable development by 2030. The present work studies the potential of installing Photovoltaic Distributed Generation at Universidad Politecnica de Madrid – Ciudad Universitaria campus. To this end, the study focuses on the electricity generation, carbon reduction and economic feasibility of solar photovoltaic systems installation using and comparing two different approaches based on data input with different time resolution, simulation software and level of details. Results show that the optimal photovoltaic power that maximizes emissions savings also ensures the best economic return, and in addition coincides with the maximum solar potential of the Campus, which is about 3.3 MW. At campus level, approximately 77% of the photovoltaic electricity production would be consumed locally, which would suppose a coverage of about 40% of the total electricity consumption. Emissions savings could reach 30% and an in-depth economic analysis indicates that the project is highly profitable. These results and methodology could be used to assess the feasibility of photovoltaic systems at other universities and help entities study the solar potential of their buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.09.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.09.120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu