- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hajera Gul; Waseem Raza; Jechan Lee; Mudassar Azam; Mujtaba Ashraf; Ki-Hyun Kim;pmid: 34023759
The global energy crisis has stimulated the development of various forms of green energy technology such as microbial fuel cells (MFCs) that can be applied synergistically and simultaneously toward wastewater treatment and bioenergy generation. This is because electricigens in wastewater can act as catalysts for destroying organic pollutants to produce bioelectricity through bacterial metabolism. In this review, the factors affecting energy production are discussed to help optimize MFC processes with respect to design (e.g., single, double, stacked, up-flow, sediment, photosynthetic, and microbial electrolysis cells) and operational conditions/parameters (e.g., cell potential, microorganisms, substrate (in wastewater), pH, temperature, salinity, external resistance, and shear stress). The significance of electron transfer mechanisms and microbial metabolism is also described to pursue the maximum generation of power by MFCs. Technically, the generation of power by MFCs is still a significant challenge for real-world applications due to the difficulties in balancing between harvesting efficiency and upscaling of the system. This review summarizes various techniques used for MFC-based energy harvesting systems. This study aims to help narrow such gaps in their practical applications. Further, it is also expected to give insights into the upscaling of MFC technology while assisting environmental scientists to gain a better understanding on this energy harvesting approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2021.130828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu138 citations 138 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2021.130828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hajera Gul; Waseem Raza; Jechan Lee; Mudassar Azam; Mujtaba Ashraf; Ki-Hyun Kim;pmid: 34023759
The global energy crisis has stimulated the development of various forms of green energy technology such as microbial fuel cells (MFCs) that can be applied synergistically and simultaneously toward wastewater treatment and bioenergy generation. This is because electricigens in wastewater can act as catalysts for destroying organic pollutants to produce bioelectricity through bacterial metabolism. In this review, the factors affecting energy production are discussed to help optimize MFC processes with respect to design (e.g., single, double, stacked, up-flow, sediment, photosynthetic, and microbial electrolysis cells) and operational conditions/parameters (e.g., cell potential, microorganisms, substrate (in wastewater), pH, temperature, salinity, external resistance, and shear stress). The significance of electron transfer mechanisms and microbial metabolism is also described to pursue the maximum generation of power by MFCs. Technically, the generation of power by MFCs is still a significant challenge for real-world applications due to the difficulties in balancing between harvesting efficiency and upscaling of the system. This review summarizes various techniques used for MFC-based energy harvesting systems. This study aims to help narrow such gaps in their practical applications. Further, it is also expected to give insights into the upscaling of MFC technology while assisting environmental scientists to gain a better understanding on this energy harvesting approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2021.130828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu138 citations 138 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2021.130828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Abdullah Nawaz; Waseem Raza; Hajera Gul; Abdullah Khan Durrani; Faisal K. Algethami; Christian Sonne; Ki-Hyun Kim;pmid: 32145654
In this research, efforts were put to demonstrate synergistic interactions between bioenergy generation and wastewater treatment. The extent of such synergistic effect was assessed against wastewater effluents released from the beverage industry through the operation of a membrane-less truncated conical (TC) microbial fuel cell (MFC). A graphite-based reactor was operated for five cycles in batch mode using beverage industry wastewater as an organic substrate. Maximum bioelectricity produced on the fifth operating cycle corresponded to a voltage of 338 mV and a power of 1.14 mW at 100 Ω. The MFC recorded a higher substrate degradation rate (0.84 kg of chemical oxygen demand [COD]/m3-day) accompanied by the development of an electroactive biofilm and polarization behavior (e.g., a reduction in internal resistance from 323 Ω to 197 Ω over five operation cycles). Cyclic voltammetry showed a maximum performance of the biofilm during the fifth cycle (through its enrichment) as interpreted by oxidation and reduction currents of 2.48 and -2.21 mA, respectively. The performance of the proposed MFC was superior to other designs reported previously in both effluent treatment and bioenergy generation. A maximum treatment efficiency of 84.4% (in 385 h) was seen at an organic load (COD) of 3500 mg/L with the specific power yield (0.504 W/Kg of substrate (COD) removal) and volumetric power yield (15.03 W/m3). Our experimental studies support that the proposed system could be upscaled to realize the commercial operation.
PURE Aarhus Universi... arrow_drop_down Journal of Colloid and Interface ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcis.2020.02.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Journal of Colloid and Interface ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcis.2020.02.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Abdullah Nawaz; Waseem Raza; Hajera Gul; Abdullah Khan Durrani; Faisal K. Algethami; Christian Sonne; Ki-Hyun Kim;pmid: 32145654
In this research, efforts were put to demonstrate synergistic interactions between bioenergy generation and wastewater treatment. The extent of such synergistic effect was assessed against wastewater effluents released from the beverage industry through the operation of a membrane-less truncated conical (TC) microbial fuel cell (MFC). A graphite-based reactor was operated for five cycles in batch mode using beverage industry wastewater as an organic substrate. Maximum bioelectricity produced on the fifth operating cycle corresponded to a voltage of 338 mV and a power of 1.14 mW at 100 Ω. The MFC recorded a higher substrate degradation rate (0.84 kg of chemical oxygen demand [COD]/m3-day) accompanied by the development of an electroactive biofilm and polarization behavior (e.g., a reduction in internal resistance from 323 Ω to 197 Ω over five operation cycles). Cyclic voltammetry showed a maximum performance of the biofilm during the fifth cycle (through its enrichment) as interpreted by oxidation and reduction currents of 2.48 and -2.21 mA, respectively. The performance of the proposed MFC was superior to other designs reported previously in both effluent treatment and bioenergy generation. A maximum treatment efficiency of 84.4% (in 385 h) was seen at an organic load (COD) of 3500 mg/L with the specific power yield (0.504 W/Kg of substrate (COD) removal) and volumetric power yield (15.03 W/m3). Our experimental studies support that the proposed system could be upscaled to realize the commercial operation.
PURE Aarhus Universi... arrow_drop_down Journal of Colloid and Interface ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcis.2020.02.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Journal of Colloid and Interface ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcis.2020.02.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hajera Gul; Waseem Raza; Jechan Lee; Mudassar Azam; Mujtaba Ashraf; Ki-Hyun Kim;pmid: 34023759
The global energy crisis has stimulated the development of various forms of green energy technology such as microbial fuel cells (MFCs) that can be applied synergistically and simultaneously toward wastewater treatment and bioenergy generation. This is because electricigens in wastewater can act as catalysts for destroying organic pollutants to produce bioelectricity through bacterial metabolism. In this review, the factors affecting energy production are discussed to help optimize MFC processes with respect to design (e.g., single, double, stacked, up-flow, sediment, photosynthetic, and microbial electrolysis cells) and operational conditions/parameters (e.g., cell potential, microorganisms, substrate (in wastewater), pH, temperature, salinity, external resistance, and shear stress). The significance of electron transfer mechanisms and microbial metabolism is also described to pursue the maximum generation of power by MFCs. Technically, the generation of power by MFCs is still a significant challenge for real-world applications due to the difficulties in balancing between harvesting efficiency and upscaling of the system. This review summarizes various techniques used for MFC-based energy harvesting systems. This study aims to help narrow such gaps in their practical applications. Further, it is also expected to give insights into the upscaling of MFC technology while assisting environmental scientists to gain a better understanding on this energy harvesting approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2021.130828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu138 citations 138 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2021.130828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hajera Gul; Waseem Raza; Jechan Lee; Mudassar Azam; Mujtaba Ashraf; Ki-Hyun Kim;pmid: 34023759
The global energy crisis has stimulated the development of various forms of green energy technology such as microbial fuel cells (MFCs) that can be applied synergistically and simultaneously toward wastewater treatment and bioenergy generation. This is because electricigens in wastewater can act as catalysts for destroying organic pollutants to produce bioelectricity through bacterial metabolism. In this review, the factors affecting energy production are discussed to help optimize MFC processes with respect to design (e.g., single, double, stacked, up-flow, sediment, photosynthetic, and microbial electrolysis cells) and operational conditions/parameters (e.g., cell potential, microorganisms, substrate (in wastewater), pH, temperature, salinity, external resistance, and shear stress). The significance of electron transfer mechanisms and microbial metabolism is also described to pursue the maximum generation of power by MFCs. Technically, the generation of power by MFCs is still a significant challenge for real-world applications due to the difficulties in balancing between harvesting efficiency and upscaling of the system. This review summarizes various techniques used for MFC-based energy harvesting systems. This study aims to help narrow such gaps in their practical applications. Further, it is also expected to give insights into the upscaling of MFC technology while assisting environmental scientists to gain a better understanding on this energy harvesting approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2021.130828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu138 citations 138 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2021.130828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Abdullah Nawaz; Waseem Raza; Hajera Gul; Abdullah Khan Durrani; Faisal K. Algethami; Christian Sonne; Ki-Hyun Kim;pmid: 32145654
In this research, efforts were put to demonstrate synergistic interactions between bioenergy generation and wastewater treatment. The extent of such synergistic effect was assessed against wastewater effluents released from the beverage industry through the operation of a membrane-less truncated conical (TC) microbial fuel cell (MFC). A graphite-based reactor was operated for five cycles in batch mode using beverage industry wastewater as an organic substrate. Maximum bioelectricity produced on the fifth operating cycle corresponded to a voltage of 338 mV and a power of 1.14 mW at 100 Ω. The MFC recorded a higher substrate degradation rate (0.84 kg of chemical oxygen demand [COD]/m3-day) accompanied by the development of an electroactive biofilm and polarization behavior (e.g., a reduction in internal resistance from 323 Ω to 197 Ω over five operation cycles). Cyclic voltammetry showed a maximum performance of the biofilm during the fifth cycle (through its enrichment) as interpreted by oxidation and reduction currents of 2.48 and -2.21 mA, respectively. The performance of the proposed MFC was superior to other designs reported previously in both effluent treatment and bioenergy generation. A maximum treatment efficiency of 84.4% (in 385 h) was seen at an organic load (COD) of 3500 mg/L with the specific power yield (0.504 W/Kg of substrate (COD) removal) and volumetric power yield (15.03 W/m3). Our experimental studies support that the proposed system could be upscaled to realize the commercial operation.
PURE Aarhus Universi... arrow_drop_down Journal of Colloid and Interface ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcis.2020.02.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Journal of Colloid and Interface ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcis.2020.02.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Abdullah Nawaz; Waseem Raza; Hajera Gul; Abdullah Khan Durrani; Faisal K. Algethami; Christian Sonne; Ki-Hyun Kim;pmid: 32145654
In this research, efforts were put to demonstrate synergistic interactions between bioenergy generation and wastewater treatment. The extent of such synergistic effect was assessed against wastewater effluents released from the beverage industry through the operation of a membrane-less truncated conical (TC) microbial fuel cell (MFC). A graphite-based reactor was operated for five cycles in batch mode using beverage industry wastewater as an organic substrate. Maximum bioelectricity produced on the fifth operating cycle corresponded to a voltage of 338 mV and a power of 1.14 mW at 100 Ω. The MFC recorded a higher substrate degradation rate (0.84 kg of chemical oxygen demand [COD]/m3-day) accompanied by the development of an electroactive biofilm and polarization behavior (e.g., a reduction in internal resistance from 323 Ω to 197 Ω over five operation cycles). Cyclic voltammetry showed a maximum performance of the biofilm during the fifth cycle (through its enrichment) as interpreted by oxidation and reduction currents of 2.48 and -2.21 mA, respectively. The performance of the proposed MFC was superior to other designs reported previously in both effluent treatment and bioenergy generation. A maximum treatment efficiency of 84.4% (in 385 h) was seen at an organic load (COD) of 3500 mg/L with the specific power yield (0.504 W/Kg of substrate (COD) removal) and volumetric power yield (15.03 W/m3). Our experimental studies support that the proposed system could be upscaled to realize the commercial operation.
PURE Aarhus Universi... arrow_drop_down Journal of Colloid and Interface ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcis.2020.02.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Journal of Colloid and Interface ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcis.2020.02.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu