- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Beven Mafoko; Willis Gwenzi; Nhamo Chaukura;pmid: 37284872
Hydraulic liners are used to restrict hazardous leachates such as acid mine drainage (AMD) from entering the hydrogeological system. In this study, we hypothesized that: (1) a compacted mix ratio of natural clay and coal fly ash with a hydraulic conductivity of at most 1 × 10- 8 ms- 1 can be achieved, and (2) mixing clay and coal fly ash in the right proportion can result in increased contaminant removal efficiency of a liner system. The effects of adding coal fly ash to clay on the mechanical behavior, contaminant removal efficiency, and saturated hydraulic conductivity of the liner were investigated. All clay:coal fly ash specimen liners with less than 30% coal fly ash had significantly (p 0.05) on the results of clay:coal fly ash (7:3) specimen liners and compacted clay liner. The clay:coal fly ash mix ratios of 8:2 and 7:3 significantly (p < 0.05) reduced the leachate concentration of Cu, Ni, and Mn. The pH of AMD increased from an average of 2.14 to 6.80 after permeating through a compacted specimen of mix ratio 7:3. Overall, the 7:3 clay to coal fly ash liner showed superior pollutant removal capacity and its mechanical and hydraulic properties were comparable to compacted clay liners. This laboratory scale investigation emphasizes potential limitations with column scale evaluation of liners and provides new information on the application of dual hydraulic reactive liners for engineered hazardous waste disposal systems.
Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-023-03743-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-023-03743-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Beven Mafoko; Willis Gwenzi; Nhamo Chaukura;pmid: 37284872
Hydraulic liners are used to restrict hazardous leachates such as acid mine drainage (AMD) from entering the hydrogeological system. In this study, we hypothesized that: (1) a compacted mix ratio of natural clay and coal fly ash with a hydraulic conductivity of at most 1 × 10- 8 ms- 1 can be achieved, and (2) mixing clay and coal fly ash in the right proportion can result in increased contaminant removal efficiency of a liner system. The effects of adding coal fly ash to clay on the mechanical behavior, contaminant removal efficiency, and saturated hydraulic conductivity of the liner were investigated. All clay:coal fly ash specimen liners with less than 30% coal fly ash had significantly (p 0.05) on the results of clay:coal fly ash (7:3) specimen liners and compacted clay liner. The clay:coal fly ash mix ratios of 8:2 and 7:3 significantly (p < 0.05) reduced the leachate concentration of Cu, Ni, and Mn. The pH of AMD increased from an average of 2.14 to 6.80 after permeating through a compacted specimen of mix ratio 7:3. Overall, the 7:3 clay to coal fly ash liner showed superior pollutant removal capacity and its mechanical and hydraulic properties were comparable to compacted clay liners. This laboratory scale investigation emphasizes potential limitations with column scale evaluation of liners and provides new information on the application of dual hydraulic reactive liners for engineered hazardous waste disposal systems.
Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-023-03743-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-023-03743-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Beven Mafoko; Willis Gwenzi; Nhamo Chaukura;pmid: 37284872
Hydraulic liners are used to restrict hazardous leachates such as acid mine drainage (AMD) from entering the hydrogeological system. In this study, we hypothesized that: (1) a compacted mix ratio of natural clay and coal fly ash with a hydraulic conductivity of at most 1 × 10- 8 ms- 1 can be achieved, and (2) mixing clay and coal fly ash in the right proportion can result in increased contaminant removal efficiency of a liner system. The effects of adding coal fly ash to clay on the mechanical behavior, contaminant removal efficiency, and saturated hydraulic conductivity of the liner were investigated. All clay:coal fly ash specimen liners with less than 30% coal fly ash had significantly (p 0.05) on the results of clay:coal fly ash (7:3) specimen liners and compacted clay liner. The clay:coal fly ash mix ratios of 8:2 and 7:3 significantly (p < 0.05) reduced the leachate concentration of Cu, Ni, and Mn. The pH of AMD increased from an average of 2.14 to 6.80 after permeating through a compacted specimen of mix ratio 7:3. Overall, the 7:3 clay to coal fly ash liner showed superior pollutant removal capacity and its mechanical and hydraulic properties were comparable to compacted clay liners. This laboratory scale investigation emphasizes potential limitations with column scale evaluation of liners and provides new information on the application of dual hydraulic reactive liners for engineered hazardous waste disposal systems.
Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-023-03743-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-023-03743-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Beven Mafoko; Willis Gwenzi; Nhamo Chaukura;pmid: 37284872
Hydraulic liners are used to restrict hazardous leachates such as acid mine drainage (AMD) from entering the hydrogeological system. In this study, we hypothesized that: (1) a compacted mix ratio of natural clay and coal fly ash with a hydraulic conductivity of at most 1 × 10- 8 ms- 1 can be achieved, and (2) mixing clay and coal fly ash in the right proportion can result in increased contaminant removal efficiency of a liner system. The effects of adding coal fly ash to clay on the mechanical behavior, contaminant removal efficiency, and saturated hydraulic conductivity of the liner were investigated. All clay:coal fly ash specimen liners with less than 30% coal fly ash had significantly (p 0.05) on the results of clay:coal fly ash (7:3) specimen liners and compacted clay liner. The clay:coal fly ash mix ratios of 8:2 and 7:3 significantly (p < 0.05) reduced the leachate concentration of Cu, Ni, and Mn. The pH of AMD increased from an average of 2.14 to 6.80 after permeating through a compacted specimen of mix ratio 7:3. Overall, the 7:3 clay to coal fly ash liner showed superior pollutant removal capacity and its mechanical and hydraulic properties were comparable to compacted clay liners. This laboratory scale investigation emphasizes potential limitations with column scale evaluation of liners and provides new information on the application of dual hydraulic reactive liners for engineered hazardous waste disposal systems.
Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-023-03743-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-023-03743-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu