- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Janez Krč; Marko Topič; Benjamin Lipovšek;To improve light absorption in organic solar cells, microscale surface-textured light-management (LM) films are applied on top of the front glass substrate. In this study, numerical simulations are employed to determine the optimal texture of the LM films that would result in the highest short-circuit current density of the solar cells in perpendicular, as well as oblique, illumination conditions. Different types of 2-D periodic surface textures are analyzed (pyramidal, parabolic, sinusoidal), and the effects of the period and groove height sizes are investigated. Numerical simulations are based on a model that combines geometric optics and wave optics and, thus, enables simulation of light propagation through the thick microtextured LM film and glass, as well as thin layers of the device, respectively. Results show that parabolic textures are the most advantageous for the solar cells to achieve high performance operating in changing illumination conditions. When properly optimized, they enable over 14% boost of the short-circuit current density in a broad range of illumination incident angles, with the maximum of 22% for perpendicular incidence, with respect to that of the nontextured cell.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2293875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2293875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2019 Belgium, Slovenia, NetherlandsPublisher:Elsevier BV Funded by:EC | ARCIGS-MEC| ARCIGS-MKovacic, M.; Krc, J.; Lipovsek, B.; Chen, W.-C.; Edoff, M.; Bolt, P.J.; van Deelen, J.; Zhukova, M.; Lontchi, J.; Flandre, D.; Salomé, P.; Topic, M.;handle: 2078.1/216342 , 20.500.12556/RUL-109094
In ultra-thin chalcopyrite solar cells and photovoltaic modules, efficient light management is required to increase the photocurrent and to gain in conversion efficiency. In this work we employ optical modelling to investigate different optical approaches and quantify their potential improvements in the short-circuit current density of Cu(In, Ga)Se 2 (CIGS)devices. For structures with an ultra-thin (500 nm)CIGS absorber, we study the improvements related to the introduction of (i)highly reflective metal back reflectors, (ii)internal nano-textures applied to the substrate and (iii)external micro-textures by using a light management foil. In the analysis we use CIGS devices in a PV module configuration, thus, solar cell structure including encapsulation and front glass. A thin Al 2 O 3 layer was considered in the structure at the rear side of CIGS for passivation and diffusion barrier for metal reflectors. We show that not any individual aforementioned approach is sufficient to compensate for the short circuit drop related to ultra-thin absorber, but a combination of a highly reflective back contact and textures (internal or external)is needed to obtain and also exceed the short-circuit current density of a thick (1800 nm)CIGS absorber.
Solar Energy Materia... arrow_drop_down Repository of the University of LjubljanaArticle . 2019Data sources: Repository of the University of LjubljanaSolar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2019Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.109933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 3 Powered bymore_vert Solar Energy Materia... arrow_drop_down Repository of the University of LjubljanaArticle . 2019Data sources: Repository of the University of LjubljanaSolar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2019Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.109933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SloveniaPublisher:MDPI AG Funded by:EC | SOLAR-TRAINEC| SOLAR-TRAINJulián Ascencio-Vásquez; Jakob Bevc; Kristjan Reba; Kristijan Brecl; Marko Jankovec; Marko Topič;doi: 10.3390/en13092166
handle: 20.500.12556/RUL-115985
In photovoltaic (PV) systems, energy yield is one of the essential pieces of information to the stakeholders (grid operators, maintenance operators, financial units, etc.). The amount of energy produced by a photovoltaic system in a specific time period depends on the weather conditions, including snow and dust, the actual PV modules’ and inverters’ efficiency and balance-of-system losses. The energy yield can be estimated by using empirical models with accurate input data. However, most of the PV systems do not include on-site high-class measurement devices for irradiance and other weather conditions. For this reason, the use of reanalysis-based or satellite-based data is currently of significant interest in the PV community and combining the data with decomposition and transposition irradiance models, the actual Plane-of-Array operating conditions can be determined. In this paper, we are proposing an efficient and accurate approach for PV output energy modelling by combining a new data filtering procedure and fast machine learning algorithm Light Gradient Boosting Machine (LightGBM). The applicability of the procedure is presented on three levels of irradiance data accuracy (low, medium, and high) depending on the source or modelling used. A new filtering algorithm is proposed to exclude erroneous data due to system failures or unreal weather conditions (i.e., shading, partial snow coverage, reflections, soiling deposition, etc.). The cleaned data is then used to train three empirical models and three machine learning approaches, where we emphasize the advantages of the LightGBM. The experiments are carried out on a 17 kW roof-top PV system installed in Ljubljana, Slovenia, in a temperate climate zone.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2166/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/13/9/2166/pdfData sources: SygmaRepository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2166/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/13/9/2166/pdfData sources: SygmaRepository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: Franc Smole; Marko Topič; Janez Krč;The role of a reflecting interlayer in micromorph silicon thin-film solar cells is investigated from the optical point of view. Detailed optical modelling and simulation are used to study the effects of different interlayers on quantum efficiency and short-circuit current of the top, amorphous silicon, and bottom, microcrystalline silicon, solar cell. The role of refractive index of interlayers on quantum efficiency of the top and bottom cell is analysed. Critical issues, such as enhanced total reflection from the solar cell and decreased quantum efficiency of the bottom cell due to interlayer are studied. Besides the single interlayer concept, double and triple interlayer stacks are investigated and improvements in comparison to the single ZnO interlayer are demonstrated. Potential thickness reductions of the top amorphous silicon cell related to different interlayers are presented.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2004.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2004.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Marko Topič; Kristijan Brecl;The energy yield of a photovoltaic (PV) system with fixed free-standing PV arrays is affected also by the self-shading effects. The rows of PV modules in arrays may partially shade the PV modules in the rows behind. In this paper the effects of the row distance on the PV system’s energy yield are evaluated. The estimation of the self-shading losses by the irradiation losses simply overestimates the losses; therefore we developed a simulation model to simulate the real energy loss due to shading of the preceding row in a PV system. The model demonstrates that the self-shading energy losses are at commonly used distances between rows from 20 to 40% lower than the irradiation losses at the modules’ bottom considering the shading conditions. The self-shading energy loss is studied in the case of Ljubljana, Slovenia which may refer to the whole Central Europe. To estimate the self-shading losses a technology-and with parameter modifications also location-independent empirical equation based on module-to-cell width ratio was derived and validated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Camden Kasik; Marko Jošt; Ishwor Khatri; Marko Topič; James Sites;IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2025.3533883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2025.3533883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SloveniaPublisher:Elsevier BV Funded by:EC | HighLiteEC| HighLiteAuthors: Brecl, Kristijan; Bokalič, Matevž; Topič, Marko;handle: 20.500.12556/RUL-124062
Abstract To further improve the efficiency of the wafer-based silicon photovoltaic (PV) module, producers are introducing new module designs with cut-cells. Since smaller solar cells might be affected by partial shading even more and earlier than full-size cells, the energy performance simulations of partially shaded modules are crucial. A detailed shading analyses of partially shaded modules with different cut cell designs are presented not only on a single case scenario but on annual energy yield simulations using Spice, where a shading scenario over the whole module by the use of a new 3D shading horizon profile of selected shading objects is calculated. The annual simulations reveal that regardless the module design almost all cells in the module are confronted by reverse bias, which can deteriorate the module performance significantly. Simulation results with three different shading objects on five different module topologies at five locations showed that the best cut-cell module design depends strongly by the micro location and shading objects; however, in general the string of solar cells connected in series should be aligned with the shading shape around noontime as much as possible. A comprehensive annual energy performance evaluation of partially shaded cut-cell modules revealed; that with a correct cell layout of cut-cells in a PV module, the shading losses can be reduced by 30–50% if comparing to the standard PV module design.
Renewable Energy arrow_drop_down dCOBISS.SI Digital RepositoryArticle . 2020License: CC BYData sources: dCOBISS.SI Digital RepositoryRepository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down dCOBISS.SI Digital RepositoryArticle . 2020License: CC BYData sources: dCOBISS.SI Digital RepositoryRepository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SloveniaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Kristijan Brecl; Chiara Barretta; Gernot Oreski; Barbara Malic; Marko Topic;handle: 20.500.12556/RUL-107085
The influence of the ethylene-vinyl acetate (EVA) film quality on potential induced degradation was studied on in-house developed mini modules with p -type monocrystalline silicon solar cells. The modules were assembled with EVA films of equivalent qualities, but different ages and exposed to an accelerated test (relative humidity = 85%, T = 60 °C, Vbias = +1000 V). The age of the EVA film was determined from the time we received the EVA film, and opened the sealed enclosure and the time of lamination. After the EVA film was removed from the sealed enclosure, it was kept in a dark place at room temperature. The storage times of the “fresh,” “aged,” and “expired” films were: less than 14 d, around 5 mo, and more than 5 years, respectively. While modules with a “fresh” EVA film exhibit almost no degradation, the modules with the “aged” EVA film degrade very rapidly and severely. Their degradation rate was around 0.2%/d during the 2000 h of damp heat test. We also observed a strong silver line corrosion, which occurs because of the peroxide leftovers in the “aged” EVA films.
IEEE Journal of Phot... arrow_drop_down Repository of the University of LjubljanaArticleData sources: Repository of the University of LjubljanaIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2875196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down Repository of the University of LjubljanaArticleData sources: Repository of the University of LjubljanaIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2875196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Rok Kimovec; Henning Helmers; Andreas W. Bett; Marko Topic;This paper describes the influence of an irradiance-dependent photo-induced leakage current through a semi-insulating GaAs substrate on the performance of photovoltaic monolithically series-interconnected multisegment laser power converters. A reciprocal relation between the resistivity of a semi-insulating GaAs substrate and irradiance of monochromatic light is experimentally observed. A reduced resistivity of the substrate with an increasing irradiation results in a substantial increase of a leakage current through the semi-insulating GaAs substrate between adjacent segments. For a multisegment laser power converter, this photo-induced leakage current is identified as a major shunting mechanism between adjacent segments that arises under high irradiances. Open-circuit voltage $V_{{\rm{oc}}}$ , fill factor (FF), and consequently conversion efficiency of a multisegment laser power converters are highly affected by the shunting mechanism. Based on a shading experiment, we observed that $V_{{\rm{oc}}}$ drops up to 21.5 mV per segment at a short-circuit current density $J_{{\rm{sc}}}= 47.3{\rm{\,A/ cm}}^{2}$ for the studied six-segment MIM specimen. For the same device, FF drops by 4.1% absolute at $J_{{\rm{sc}}}= 40.5{\rm{\,A/ cm}}^{2}$ . For the two-segment specimen, 5.8 mV drop of $V_{{\rm{oc}}}$ per segment and 1.5% absolute drop in FF is reported at $J_{{\rm{sc}}}= 47.3$ and $43.7{\rm{\,A/ cm}}^{2}$ , respectively.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2783844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2783844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Funded by:EC | FAST TRACKEC| FAST TRACKAuthors: Martin Sever; Marko Topič; Janez Krč;AbstractRigorous optical simulations based on finite element method (Comsol simulator) were carried out in order to analyse the effect of different periodic substrate textures on short-circuit current density of a tandem micromorph solar cell. In our modelling an important aspect of non-conformal growth of the layers comprising the solar cell was considered. Optimisation shows that introducing 2-D textures into the substrate surface results in higher photocurrents than in the case of 1-D textures. The shape of initial sinusoidal textures was additionally altered to enable growth of layers of greater quality, thus improving electrical properties of the cell. Such textures were found to further improve optical properties as well, peaking at 98% increase (ref. flat cell) of photocurrent of bottom cell, surpassing the photocurrent generated when introducing random textures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Janez Krč; Marko Topič; Benjamin Lipovšek;To improve light absorption in organic solar cells, microscale surface-textured light-management (LM) films are applied on top of the front glass substrate. In this study, numerical simulations are employed to determine the optimal texture of the LM films that would result in the highest short-circuit current density of the solar cells in perpendicular, as well as oblique, illumination conditions. Different types of 2-D periodic surface textures are analyzed (pyramidal, parabolic, sinusoidal), and the effects of the period and groove height sizes are investigated. Numerical simulations are based on a model that combines geometric optics and wave optics and, thus, enables simulation of light propagation through the thick microtextured LM film and glass, as well as thin layers of the device, respectively. Results show that parabolic textures are the most advantageous for the solar cells to achieve high performance operating in changing illumination conditions. When properly optimized, they enable over 14% boost of the short-circuit current density in a broad range of illumination incident angles, with the maximum of 22% for perpendicular incidence, with respect to that of the nontextured cell.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2293875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2293875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2019 Belgium, Slovenia, NetherlandsPublisher:Elsevier BV Funded by:EC | ARCIGS-MEC| ARCIGS-MKovacic, M.; Krc, J.; Lipovsek, B.; Chen, W.-C.; Edoff, M.; Bolt, P.J.; van Deelen, J.; Zhukova, M.; Lontchi, J.; Flandre, D.; Salomé, P.; Topic, M.;handle: 2078.1/216342 , 20.500.12556/RUL-109094
In ultra-thin chalcopyrite solar cells and photovoltaic modules, efficient light management is required to increase the photocurrent and to gain in conversion efficiency. In this work we employ optical modelling to investigate different optical approaches and quantify their potential improvements in the short-circuit current density of Cu(In, Ga)Se 2 (CIGS)devices. For structures with an ultra-thin (500 nm)CIGS absorber, we study the improvements related to the introduction of (i)highly reflective metal back reflectors, (ii)internal nano-textures applied to the substrate and (iii)external micro-textures by using a light management foil. In the analysis we use CIGS devices in a PV module configuration, thus, solar cell structure including encapsulation and front glass. A thin Al 2 O 3 layer was considered in the structure at the rear side of CIGS for passivation and diffusion barrier for metal reflectors. We show that not any individual aforementioned approach is sufficient to compensate for the short circuit drop related to ultra-thin absorber, but a combination of a highly reflective back contact and textures (internal or external)is needed to obtain and also exceed the short-circuit current density of a thick (1800 nm)CIGS absorber.
Solar Energy Materia... arrow_drop_down Repository of the University of LjubljanaArticle . 2019Data sources: Repository of the University of LjubljanaSolar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2019Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.109933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 3 Powered bymore_vert Solar Energy Materia... arrow_drop_down Repository of the University of LjubljanaArticle . 2019Data sources: Repository of the University of LjubljanaSolar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2019Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2019.109933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SloveniaPublisher:MDPI AG Funded by:EC | SOLAR-TRAINEC| SOLAR-TRAINJulián Ascencio-Vásquez; Jakob Bevc; Kristjan Reba; Kristijan Brecl; Marko Jankovec; Marko Topič;doi: 10.3390/en13092166
handle: 20.500.12556/RUL-115985
In photovoltaic (PV) systems, energy yield is one of the essential pieces of information to the stakeholders (grid operators, maintenance operators, financial units, etc.). The amount of energy produced by a photovoltaic system in a specific time period depends on the weather conditions, including snow and dust, the actual PV modules’ and inverters’ efficiency and balance-of-system losses. The energy yield can be estimated by using empirical models with accurate input data. However, most of the PV systems do not include on-site high-class measurement devices for irradiance and other weather conditions. For this reason, the use of reanalysis-based or satellite-based data is currently of significant interest in the PV community and combining the data with decomposition and transposition irradiance models, the actual Plane-of-Array operating conditions can be determined. In this paper, we are proposing an efficient and accurate approach for PV output energy modelling by combining a new data filtering procedure and fast machine learning algorithm Light Gradient Boosting Machine (LightGBM). The applicability of the procedure is presented on three levels of irradiance data accuracy (low, medium, and high) depending on the source or modelling used. A new filtering algorithm is proposed to exclude erroneous data due to system failures or unreal weather conditions (i.e., shading, partial snow coverage, reflections, soiling deposition, etc.). The cleaned data is then used to train three empirical models and three machine learning approaches, where we emphasize the advantages of the LightGBM. The experiments are carried out on a 17 kW roof-top PV system installed in Ljubljana, Slovenia, in a temperate climate zone.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2166/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/13/9/2166/pdfData sources: SygmaRepository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2166/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/13/9/2166/pdfData sources: SygmaRepository of the University of LjubljanaArticle . 2020Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13092166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: Franc Smole; Marko Topič; Janez Krč;The role of a reflecting interlayer in micromorph silicon thin-film solar cells is investigated from the optical point of view. Detailed optical modelling and simulation are used to study the effects of different interlayers on quantum efficiency and short-circuit current of the top, amorphous silicon, and bottom, microcrystalline silicon, solar cell. The role of refractive index of interlayers on quantum efficiency of the top and bottom cell is analysed. Critical issues, such as enhanced total reflection from the solar cell and decreased quantum efficiency of the bottom cell due to interlayer are studied. Besides the single interlayer concept, double and triple interlayer stacks are investigated and improvements in comparison to the single ZnO interlayer are demonstrated. Potential thickness reductions of the top amorphous silicon cell related to different interlayers are presented.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2004.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2004.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Marko Topič; Kristijan Brecl;The energy yield of a photovoltaic (PV) system with fixed free-standing PV arrays is affected also by the self-shading effects. The rows of PV modules in arrays may partially shade the PV modules in the rows behind. In this paper the effects of the row distance on the PV system’s energy yield are evaluated. The estimation of the self-shading losses by the irradiation losses simply overestimates the losses; therefore we developed a simulation model to simulate the real energy loss due to shading of the preceding row in a PV system. The model demonstrates that the self-shading energy losses are at commonly used distances between rows from 20 to 40% lower than the irradiation losses at the modules’ bottom considering the shading conditions. The self-shading energy loss is studied in the case of Ljubljana, Slovenia which may refer to the whole Central Europe. To estimate the self-shading losses a technology-and with parameter modifications also location-independent empirical equation based on module-to-cell width ratio was derived and validated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Camden Kasik; Marko Jošt; Ishwor Khatri; Marko Topič; James Sites;IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2025.3533883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2025.3533883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SloveniaPublisher:Elsevier BV Funded by:EC | HighLiteEC| HighLiteAuthors: Brecl, Kristijan; Bokalič, Matevž; Topič, Marko;handle: 20.500.12556/RUL-124062
Abstract To further improve the efficiency of the wafer-based silicon photovoltaic (PV) module, producers are introducing new module designs with cut-cells. Since smaller solar cells might be affected by partial shading even more and earlier than full-size cells, the energy performance simulations of partially shaded modules are crucial. A detailed shading analyses of partially shaded modules with different cut cell designs are presented not only on a single case scenario but on annual energy yield simulations using Spice, where a shading scenario over the whole module by the use of a new 3D shading horizon profile of selected shading objects is calculated. The annual simulations reveal that regardless the module design almost all cells in the module are confronted by reverse bias, which can deteriorate the module performance significantly. Simulation results with three different shading objects on five different module topologies at five locations showed that the best cut-cell module design depends strongly by the micro location and shading objects; however, in general the string of solar cells connected in series should be aligned with the shading shape around noontime as much as possible. A comprehensive annual energy performance evaluation of partially shaded cut-cell modules revealed; that with a correct cell layout of cut-cells in a PV module, the shading losses can be reduced by 30–50% if comparing to the standard PV module design.
Renewable Energy arrow_drop_down dCOBISS.SI Digital RepositoryArticle . 2020License: CC BYData sources: dCOBISS.SI Digital RepositoryRepository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down dCOBISS.SI Digital RepositoryArticle . 2020License: CC BYData sources: dCOBISS.SI Digital RepositoryRepository of the University of LjubljanaArticle . 2021Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.12.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SloveniaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Kristijan Brecl; Chiara Barretta; Gernot Oreski; Barbara Malic; Marko Topic;handle: 20.500.12556/RUL-107085
The influence of the ethylene-vinyl acetate (EVA) film quality on potential induced degradation was studied on in-house developed mini modules with p -type monocrystalline silicon solar cells. The modules were assembled with EVA films of equivalent qualities, but different ages and exposed to an accelerated test (relative humidity = 85%, T = 60 °C, Vbias = +1000 V). The age of the EVA film was determined from the time we received the EVA film, and opened the sealed enclosure and the time of lamination. After the EVA film was removed from the sealed enclosure, it was kept in a dark place at room temperature. The storage times of the “fresh,” “aged,” and “expired” films were: less than 14 d, around 5 mo, and more than 5 years, respectively. While modules with a “fresh” EVA film exhibit almost no degradation, the modules with the “aged” EVA film degrade very rapidly and severely. Their degradation rate was around 0.2%/d during the 2000 h of damp heat test. We also observed a strong silver line corrosion, which occurs because of the peroxide leftovers in the “aged” EVA films.
IEEE Journal of Phot... arrow_drop_down Repository of the University of LjubljanaArticleData sources: Repository of the University of LjubljanaIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2875196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down Repository of the University of LjubljanaArticleData sources: Repository of the University of LjubljanaIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2875196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Rok Kimovec; Henning Helmers; Andreas W. Bett; Marko Topic;This paper describes the influence of an irradiance-dependent photo-induced leakage current through a semi-insulating GaAs substrate on the performance of photovoltaic monolithically series-interconnected multisegment laser power converters. A reciprocal relation between the resistivity of a semi-insulating GaAs substrate and irradiance of monochromatic light is experimentally observed. A reduced resistivity of the substrate with an increasing irradiation results in a substantial increase of a leakage current through the semi-insulating GaAs substrate between adjacent segments. For a multisegment laser power converter, this photo-induced leakage current is identified as a major shunting mechanism between adjacent segments that arises under high irradiances. Open-circuit voltage $V_{{\rm{oc}}}$ , fill factor (FF), and consequently conversion efficiency of a multisegment laser power converters are highly affected by the shunting mechanism. Based on a shading experiment, we observed that $V_{{\rm{oc}}}$ drops up to 21.5 mV per segment at a short-circuit current density $J_{{\rm{sc}}}= 47.3{\rm{\,A/ cm}}^{2}$ for the studied six-segment MIM specimen. For the same device, FF drops by 4.1% absolute at $J_{{\rm{sc}}}= 40.5{\rm{\,A/ cm}}^{2}$ . For the two-segment specimen, 5.8 mV drop of $V_{{\rm{oc}}}$ per segment and 1.5% absolute drop in FF is reported at $J_{{\rm{sc}}}= 47.3$ and $43.7{\rm{\,A/ cm}}^{2}$ , respectively.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2783844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2783844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Funded by:EC | FAST TRACKEC| FAST TRACKAuthors: Martin Sever; Marko Topič; Janez Krč;AbstractRigorous optical simulations based on finite element method (Comsol simulator) were carried out in order to analyse the effect of different periodic substrate textures on short-circuit current density of a tandem micromorph solar cell. In our modelling an important aspect of non-conformal growth of the layers comprising the solar cell was considered. Optimisation shows that introducing 2-D textures into the substrate surface results in higher photocurrents than in the case of 1-D textures. The shape of initial sinusoidal textures was additionally altered to enable growth of layers of greater quality, thus improving electrical properties of the cell. Such textures were found to further improve optical properties as well, peaking at 98% increase (ref. flat cell) of photocurrent of bottom cell, surpassing the photocurrent generated when introducing random textures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.12.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu