- home
- Advanced Search
- Energy Research
- Embargo
- Energy Research
- Embargo
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors:Giovanni Tumminia;
Giovanni Tumminia
Giovanni Tumminia in OpenAIREFrancesco Sergi;
Francesco Sergi
Francesco Sergi in OpenAIREDavide Aloisio;
Sonia Longo; +4 AuthorsDavide Aloisio
Davide Aloisio in OpenAIREGiovanni Tumminia;
Giovanni Tumminia
Giovanni Tumminia in OpenAIREFrancesco Sergi;
Francesco Sergi
Francesco Sergi in OpenAIREDavide Aloisio;
Sonia Longo;Davide Aloisio
Davide Aloisio in OpenAIREMaria Anna Cusenza;
Maria Anna Cusenza
Maria Anna Cusenza in OpenAIREFrancesco Guarino;
Salvatore Cellura;Francesco Guarino
Francesco Guarino in OpenAIREMarco Ferraro;
Marco Ferraro
Marco Ferraro in OpenAIREhandle: 20.500.14243/397564 , 11583/2971229
Although nearly zero energy buildings have attracted growing research attention, literature analysis shows that only a limited number of researches try to couple load match/grid interaction issues and environmental impacts in early design stages. The study proposes a novel multidisciplinary design approach that allows to integrate these two conflicting aspects aiming to find trade-offs. The proposed approach has been applied to a building case study, equipped with a photovoltaics system without energy storage. The results show that even though on yearly basis the energy use (5,290 kWhe) is largely overcome by the on-site energy generation (8069 kWhe), an oversized PV system alone may not be the best solution for reducing the environmental impact of the building sector, besides not being very efficient in improving load match. Afterwards, a parametric analysis was carry out analysing three redesign scenarios, obtained varying the sizes of the PV system and installing different sizes of the storage systems. The results show that the use of storage systems, in addition to decrease the grid dependency, can increase the environmental benefits arising from the renewable energy sources (e.g. there is a decrease of global warming potential of 48%, compared to the base case, with 5.28 kWp PV system and 10 kWh storage system). Conflicting results are found according to specific impact categories and this suggests the need for a holistic approach, including different domains and indicators. In this context, the proposed approach can contribute to the transition toward low-carbon energy technologies, by supporting researches and designers to take environmentally sound considerations.
CNR ExploRA arrow_drop_down Journal of Building EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2021.103288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Journal of Building EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2021.103288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors:Giovanni Tumminia;
Giovanni Tumminia
Giovanni Tumminia in OpenAIREFrancesco Sergi;
Francesco Sergi
Francesco Sergi in OpenAIREDavide Aloisio;
Sonia Longo; +4 AuthorsDavide Aloisio
Davide Aloisio in OpenAIREGiovanni Tumminia;
Giovanni Tumminia
Giovanni Tumminia in OpenAIREFrancesco Sergi;
Francesco Sergi
Francesco Sergi in OpenAIREDavide Aloisio;
Sonia Longo;Davide Aloisio
Davide Aloisio in OpenAIREMaria Anna Cusenza;
Maria Anna Cusenza
Maria Anna Cusenza in OpenAIREFrancesco Guarino;
Salvatore Cellura;Francesco Guarino
Francesco Guarino in OpenAIREMarco Ferraro;
Marco Ferraro
Marco Ferraro in OpenAIREhandle: 20.500.14243/397564 , 11583/2971229
Although nearly zero energy buildings have attracted growing research attention, literature analysis shows that only a limited number of researches try to couple load match/grid interaction issues and environmental impacts in early design stages. The study proposes a novel multidisciplinary design approach that allows to integrate these two conflicting aspects aiming to find trade-offs. The proposed approach has been applied to a building case study, equipped with a photovoltaics system without energy storage. The results show that even though on yearly basis the energy use (5,290 kWhe) is largely overcome by the on-site energy generation (8069 kWhe), an oversized PV system alone may not be the best solution for reducing the environmental impact of the building sector, besides not being very efficient in improving load match. Afterwards, a parametric analysis was carry out analysing three redesign scenarios, obtained varying the sizes of the PV system and installing different sizes of the storage systems. The results show that the use of storage systems, in addition to decrease the grid dependency, can increase the environmental benefits arising from the renewable energy sources (e.g. there is a decrease of global warming potential of 48%, compared to the base case, with 5.28 kWp PV system and 10 kWh storage system). Conflicting results are found according to specific impact categories and this suggests the need for a holistic approach, including different domains and indicators. In this context, the proposed approach can contribute to the transition toward low-carbon energy technologies, by supporting researches and designers to take environmentally sound considerations.
CNR ExploRA arrow_drop_down Journal of Building EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2021.103288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Journal of Building EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2021.103288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu