- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Ying Su; Bingfeng Guo; Ursel Hornung; Nicolaus Dahmen;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 GermanyPublisher:Springer Science and Business Media LLC Authors: Forchheim, D.; Hornung, U.; Kruse, A.; Sutter, T.;Although lignin is one of the most abundant renewable organic materials in the world, it is principally a waste product of the paper industry which is used for the production of heat and power. Hydrothermal lignin depolymerisation aids in facilitating the valorization of lignin in aqueous solutions or suspensions. For the recovery of valuable phenolic products from lignin it is crucial to understand the main reaction pathways of lignin degradation and the reaction kinetics. Batch experiments were carried out for studying the depolymerisation of an enzymatic hydrolysis lignin from spruce wood in near critical water. Phenolic products were extracted from the aqueous phase and quantified via gas chromatography. The main reaction products were grouped (lumped), the main reaction pathways of hydrothermal lignin depolymerisation were discovered and formal kinetic rate coefficients were determined. Optimization of these formal kinetic parameters yielded a satisfying approximation of the experimental yields of phenolic products and describes the most important tendencies over temperature and residence time of solid residue and gas. The model is validated by the comparison with other kinetic studies of the degradation of lignin as well as the decomposition of intermediate phenolics, such as catechols and methoxyphenols.
Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-014-9307-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-014-9307-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, GermanyPublisher:Elsevier BV Skye R. Thomas-Hall; Thuy Chu Van; Thuy Chu Van; Ursel Hornung; Evan Stephens; Richard J. C. Brown; Thomas J. Rainey; Jerome A. Ramirez; Bingfeng Guo; Ben Hankamer; Farah Obeid; Nic C. Surawski;Abstract The removal of nitrogen (N) and sulphur (S) from biocrude oil produced using hydrothermal liquefaction (HTL), is important for the production of high quality renewable fuels. Here the effect of co-liquefaction of bagasse and algae was analysed. Algae (Chlorella vulgaris and Cyanobacteria) were mixed with bagasse (1:1) subjected to HTL at 250–350 °C for 10–60 min. Higher HTL temperatures had a positive effect in increasing the biocrude yield and slightly reduced N content; S did not show a consistent trend. Most of the nitrogen (~66%) and sulphur (~80%) were recovered in the aqueous phase rather than in the biocrude phase, opening the opportunity to recycle these nutrients for algae cultivation. Co-liquefying bagasse with algae improved the biocrude yield (54 wt%) compared to pure Cyanobacteria (47.5 wt%). It also reduced N content from 7 wt% (Cyanobacteria biocrude) to 4.2 wt% (Cyanobacteria: Bagasse) and S from 0.7 wt% to 0.4 wt%. Principal Component Analysis (PCA) analysis identified that biocrude yield is positively correlated with the initial lipid content and anti-correlated with the carbohydrates fraction. Biocrude N content is closely related to the initial amount of proteins in the algae. The Preference Ranking Organization METHod for Enrichment of Evaluations and its descriptive complement Geometrical Analysis for Interactive Aid (PROMETHEE and GAIA) analysis ranked the co-liquefaction of Chlorella vulgaris and bagasse (1:1) at 350 °C and 60 min as one of the best overall combination in terms of biocrude yield, N and S content.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.106119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.106119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Yujie Fan; Yujie Fan; Claudia Prestigiacomo; Miao Gong; Thomas Tietz; Ursel Hornung; Nicolaus Dahmen;Hydrothermal liquefaction (HTL) can be considered a promising route for the energy valorisation of waste sewage sludge (SS). However, not much information is available on continuous flow processing. In this study, the mixed SS was subjected to HTL at 350°C for 8 min in a continuous reactor with loadings of 10 wt% in the feed flow. The results show that the mass recovery reached 88%, with a biocrude yield of 30.8 wt% (3.9 wt% N content). The recovered biocrude yields are highly dependent on the selection of the recovery solvent for extraction, and dichloromethane can contribute an additional 3.1 wt% biocrude from aqueous phase, acetone can extract some pyrrole derivatives into the trapped phases. Comparable results were also achieved by performing batch reactions under the same conditions: a slightly higher biocrude yield (33.1 wt%) with an N content of 4.3 wt%. The higher N content observed in the biocrude from the batch process indicates that interactions and chelation between intermediates are enhanced during heating up and cooling period, which lead to more N-containing compounds.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.996353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.996353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 GermanyPublisher:Elsevier BV Lopez Barreiro, D.; Samori, C.; Terranella, G.; Hornung, U.; Kruse, A.; Prins, W.;pmid: 25463806
The interest in third generation biofuels from microalgae has been rising during the past years. Meanwhile, it seems not economically feasible to grow algae just for biofuels. Co-products with a higher value should be produced by extracting a particular algae fraction to improve the economics of an algae biorefinery. The present study aims at analyzing the influence of two main microalgae components (lipids and proteins) on the composition and quantity of biocrude oil obtained via hydrothermal liquefaction of two strains (Nannochloropsis gaditana and Scenedesmus almeriensis). The algae were liquefied as raw biomass, after extracting lipids and after extracting proteins in microautoclave experiments at different temperatures (300-375°C) for 5 and 15min. The results indicate that extracting the proteins from the microalgae prior to HTL may be interesting to improve the economics of the process while at the same time reducing the nitrogen content of the biocrude oil.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 96 citations 96 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:American Chemical Society (ACS) Boda Yang; Shicheng Zhang; Ying Su; Ursel Hornung; Nicolaus Dahmen; Bingfeng Guo; Bingfeng Guo;In the past decade, microalgae biomass has been attracting considerable interest in valuable biocomponents and biofuel production. Meanwhile, plastic waste handling has become one of the most pressing global environmental concerns. Coprocessing of plastic waste and biomass has previously been reported to produce good quality fuel oil and high-value chemicals. In this study, we examined a coliquefaction process (co-HTL) of 2 microalgae, Chlorella vulgaris (Cv) and Nannochloropsis gaditana (Ng), with nine types of common plastics. In a first step, the co-HTL process was conducted in microautoclave reactors with a fixed algae/plastic mass ratio (50:50) at a temperature of 350 °C and a pressure of 16 MPa for a holding time of 15 min. Among the different types of plastics, positive synergistic effects between polycarbonate (PC), polystyrene (PS), and microalgae have been observed: (1) Plastics showed greater decomposition. (2) HTL crude oil yields were increased. Ng algae exhibits a higher interaction ability with plastics. Then, PC and PS were coprocessed with Ng algae using the response surface methodology to optimize the effects of temperature (300–400 °C), algae/plastic mass ratio (20:80–80:20), and holding time (5–45 min) on HTL crude oil yield. Software-based data analysis of the co-HTL experiments were conducted, and the optimal parameters were proposed, which were verified by the experiment results; Ng+PC (20:80 wt %) exhibits the highest crude oil yield of 67.2% at 300 °C with a 5 min holding time, while Ng+PS (80:20 wt %) generates 51.4 wt % crude oil yield at 400 °C and a 25 min holding time. Finally, the analytical results of elemental analysis, FTIR, 1H NMR, GPC, GC-MS, and TGA on the crude oil produced from pure microalgae HTL and co-HTL were compared, indicating that Ng+PC crude oil is more suitable for aromatic chemicals production and Ng+PS crude oil could be more favorable for biofuel applications.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Fan, Yujie; Meyer, Leif; Gong, Miao; Krause, Bärbel; Hornung, Ursel; Dahmen, Nicolaus;In this study, the fate of nitrogen during catalytic hydrothermal liquefaction (HTL) of sewage sludge (SS) is investigated using three different catalysts (CuNi/SiO$_2$, HCOOH, CuSO$_4$) with 5 wt% loading. The bio-crude yields obtained from HTL experiments catalyzed with CuNi/SiO$_2$ are similar to those obtained through non-catalyzed experiments. HCOOH slightly increases the bio-crude yields, while maximum yields of 24.5 wt% is obtained in the presence of CuSO$_4$, which also reduces the nitrogen content by 15 % and enhances the hydrocarbons compared to the non-catalyzed HTL. Mechanistic investigations regarding the interaction of amino acids and carbohydrates by Maillard reactions are carried out using model compounds, namely lysine and lactose. CuSO$_4$ effectively increases the yield with 50 % and reduces the nitrogen content by 24 % in the bio-crude during HTL of lysine alone. In the case of the model mixtures, bio-crude yields, nitrogen content, and Maillard reactions products behaved similarly both for catalytic and non-catalytic HTL, a slight reduction of amines was found in the presence of CuSO$_4$. Hydro-char and some organic compounds are assumed to act highly reductant during catalytic HTL. Coke deposition and adsorbed poisoning by Maillard reaction products are proposed as the main reasons for the deactivation of catalysts.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, GermanyPublisher:Elsevier BV Alireza Taghipour; Ursel Hornung; Jerome A. Ramirez; Richard J. Brown; Thomas J. Rainey;Abstract Hydrothermal liquefaction (HTL) biocrude is a promising source of energy with potential for co-processing with conventional fuels or as a drop-in fuel. However, it needs upgrading to reduce heteroatoms (e.g., N, S, O), improve physical properties, stability, and miscibility with hydrocarbons. Distillation is a conventional physical upgrading method that has not been studied extensively for biocrude using an industry-accepted procedure on a large scale. In this study, an algae-based biocrude was distilled into four fractions using ASTM D2892 standard method: Fraction 1 (
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Review , Journal 2020 Finland, GermanyPublisher:MDPI AG Funded by:EC | BL2FEC| BL2FLappalainen, Jukka; Baudouin, David; Hornung, Ursel; Schuler, Julia; Melin, Kristian; Bjelić, Saša; Vogel, Frédéric; Konttinen, Jukka; Joronen; Tero;To mitigate global warming, humankind has been forced to develop new efficient energy solutions based on renewable energy sources. Hydrothermal liquefaction (HTL) is a promising technology that can efficiently produce bio-oil from several biomass sources. The HTL process uses sub- or supercritical water for producing bio-oil, water-soluble organics, gaseous products and char. Black liquor mainly contains cooking chemicals (mainly alkali salts) lignin and the hemicellulose parts of the wood chips used for cellulose digestion. This review explores the effects of different process parameters, solvents and catalysts for the HTL of black liquor or black liquor-derived lignin. Using short residence times under near- or supercritical water conditions may improve both the quality and the quantity of the bio-oil yield. The quality and yield of bio-oil can be further improved by using solvents (e.g., phenol) and catalysts (e.g., alkali salts, zirconia). However, the solubility of alkali salts present in black liquor can lead to clogging problem in the HTL reactor and process tubes when approaching supercritical water conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Tampere University: TrepoReview . 2020License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/127496Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Tampere University: TrepoReview . 2020License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/127496Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Elsevier BV Ursel Hornung; Mario Beck; Andrea Kruse; Andrea Kruse; Frederik Ronsse; Wolter Prins; Diego López Barreiro;Abstract The brown algae Fucus vesiculosus, Laminaria saccharina and Alaria esculenta were subjected to hydrothermal liquefaction (HTL) for 15 min at 350 °C in batch microautoclaves. Further optimization was carried out in view of optimizing the biocrude oil yield, varying the temperature from 330 to 370 °C. The maximum conversion to biocrude was 29.4 ± 1.1 wt.% at 360 °C for A. esculenta. The reaction pathways for macroalgae HTL and its capability for recycling nutrients were also investigated. The aqueous phase showed potential for a partial recovery of the nitrogen (21.2–28.6 wt.%) and sulfur (25.8–34.6 wt.%) from the initial biomass, and an almost total recovery of potassium and sodium. Results indicate that HTL as a sole conversion method to produce biofuel as single product is not recommended for macroalgae due to the low conversion to biocrude oil. At such conditions, its use as post-treatment for the remaining biomass after extracting valuable compounds (especially from the carbohydrate fraction) might be more interesting, and is suggested as the future direction for research.
Algal Research arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.algal.2015.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Algal Research arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.algal.2015.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Ying Su; Bingfeng Guo; Ursel Hornung; Nicolaus Dahmen;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 GermanyPublisher:Springer Science and Business Media LLC Authors: Forchheim, D.; Hornung, U.; Kruse, A.; Sutter, T.;Although lignin is one of the most abundant renewable organic materials in the world, it is principally a waste product of the paper industry which is used for the production of heat and power. Hydrothermal lignin depolymerisation aids in facilitating the valorization of lignin in aqueous solutions or suspensions. For the recovery of valuable phenolic products from lignin it is crucial to understand the main reaction pathways of lignin degradation and the reaction kinetics. Batch experiments were carried out for studying the depolymerisation of an enzymatic hydrolysis lignin from spruce wood in near critical water. Phenolic products were extracted from the aqueous phase and quantified via gas chromatography. The main reaction products were grouped (lumped), the main reaction pathways of hydrothermal lignin depolymerisation were discovered and formal kinetic rate coefficients were determined. Optimization of these formal kinetic parameters yielded a satisfying approximation of the experimental yields of phenolic products and describes the most important tendencies over temperature and residence time of solid residue and gas. The model is validated by the comparison with other kinetic studies of the degradation of lignin as well as the decomposition of intermediate phenolics, such as catechols and methoxyphenols.
Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-014-9307-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-014-9307-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, GermanyPublisher:Elsevier BV Skye R. Thomas-Hall; Thuy Chu Van; Thuy Chu Van; Ursel Hornung; Evan Stephens; Richard J. C. Brown; Thomas J. Rainey; Jerome A. Ramirez; Bingfeng Guo; Ben Hankamer; Farah Obeid; Nic C. Surawski;Abstract The removal of nitrogen (N) and sulphur (S) from biocrude oil produced using hydrothermal liquefaction (HTL), is important for the production of high quality renewable fuels. Here the effect of co-liquefaction of bagasse and algae was analysed. Algae (Chlorella vulgaris and Cyanobacteria) were mixed with bagasse (1:1) subjected to HTL at 250–350 °C for 10–60 min. Higher HTL temperatures had a positive effect in increasing the biocrude yield and slightly reduced N content; S did not show a consistent trend. Most of the nitrogen (~66%) and sulphur (~80%) were recovered in the aqueous phase rather than in the biocrude phase, opening the opportunity to recycle these nutrients for algae cultivation. Co-liquefying bagasse with algae improved the biocrude yield (54 wt%) compared to pure Cyanobacteria (47.5 wt%). It also reduced N content from 7 wt% (Cyanobacteria biocrude) to 4.2 wt% (Cyanobacteria: Bagasse) and S from 0.7 wt% to 0.4 wt%. Principal Component Analysis (PCA) analysis identified that biocrude yield is positively correlated with the initial lipid content and anti-correlated with the carbohydrates fraction. Biocrude N content is closely related to the initial amount of proteins in the algae. The Preference Ranking Organization METHod for Enrichment of Evaluations and its descriptive complement Geometrical Analysis for Interactive Aid (PROMETHEE and GAIA) analysis ranked the co-liquefaction of Chlorella vulgaris and bagasse (1:1) at 350 °C and 60 min as one of the best overall combination in terms of biocrude yield, N and S content.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.106119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.106119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Yujie Fan; Yujie Fan; Claudia Prestigiacomo; Miao Gong; Thomas Tietz; Ursel Hornung; Nicolaus Dahmen;Hydrothermal liquefaction (HTL) can be considered a promising route for the energy valorisation of waste sewage sludge (SS). However, not much information is available on continuous flow processing. In this study, the mixed SS was subjected to HTL at 350°C for 8 min in a continuous reactor with loadings of 10 wt% in the feed flow. The results show that the mass recovery reached 88%, with a biocrude yield of 30.8 wt% (3.9 wt% N content). The recovered biocrude yields are highly dependent on the selection of the recovery solvent for extraction, and dichloromethane can contribute an additional 3.1 wt% biocrude from aqueous phase, acetone can extract some pyrrole derivatives into the trapped phases. Comparable results were also achieved by performing batch reactions under the same conditions: a slightly higher biocrude yield (33.1 wt%) with an N content of 4.3 wt%. The higher N content observed in the biocrude from the batch process indicates that interactions and chelation between intermediates are enhanced during heating up and cooling period, which lead to more N-containing compounds.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.996353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.996353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 GermanyPublisher:Elsevier BV Lopez Barreiro, D.; Samori, C.; Terranella, G.; Hornung, U.; Kruse, A.; Prins, W.;pmid: 25463806
The interest in third generation biofuels from microalgae has been rising during the past years. Meanwhile, it seems not economically feasible to grow algae just for biofuels. Co-products with a higher value should be produced by extracting a particular algae fraction to improve the economics of an algae biorefinery. The present study aims at analyzing the influence of two main microalgae components (lipids and proteins) on the composition and quantity of biocrude oil obtained via hydrothermal liquefaction of two strains (Nannochloropsis gaditana and Scenedesmus almeriensis). The algae were liquefied as raw biomass, after extracting lipids and after extracting proteins in microautoclave experiments at different temperatures (300-375°C) for 5 and 15min. The results indicate that extracting the proteins from the microalgae prior to HTL may be interesting to improve the economics of the process while at the same time reducing the nitrogen content of the biocrude oil.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 96 citations 96 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:American Chemical Society (ACS) Boda Yang; Shicheng Zhang; Ying Su; Ursel Hornung; Nicolaus Dahmen; Bingfeng Guo; Bingfeng Guo;In the past decade, microalgae biomass has been attracting considerable interest in valuable biocomponents and biofuel production. Meanwhile, plastic waste handling has become one of the most pressing global environmental concerns. Coprocessing of plastic waste and biomass has previously been reported to produce good quality fuel oil and high-value chemicals. In this study, we examined a coliquefaction process (co-HTL) of 2 microalgae, Chlorella vulgaris (Cv) and Nannochloropsis gaditana (Ng), with nine types of common plastics. In a first step, the co-HTL process was conducted in microautoclave reactors with a fixed algae/plastic mass ratio (50:50) at a temperature of 350 °C and a pressure of 16 MPa for a holding time of 15 min. Among the different types of plastics, positive synergistic effects between polycarbonate (PC), polystyrene (PS), and microalgae have been observed: (1) Plastics showed greater decomposition. (2) HTL crude oil yields were increased. Ng algae exhibits a higher interaction ability with plastics. Then, PC and PS were coprocessed with Ng algae using the response surface methodology to optimize the effects of temperature (300–400 °C), algae/plastic mass ratio (20:80–80:20), and holding time (5–45 min) on HTL crude oil yield. Software-based data analysis of the co-HTL experiments were conducted, and the optimal parameters were proposed, which were verified by the experiment results; Ng+PC (20:80 wt %) exhibits the highest crude oil yield of 67.2% at 300 °C with a 5 min holding time, while Ng+PS (80:20 wt %) generates 51.4 wt % crude oil yield at 400 °C and a 25 min holding time. Finally, the analytical results of elemental analysis, FTIR, 1H NMR, GPC, GC-MS, and TGA on the crude oil produced from pure microalgae HTL and co-HTL were compared, indicating that Ng+PC crude oil is more suitable for aromatic chemicals production and Ng+PS crude oil could be more favorable for biofuel applications.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsestengg.1c00261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Fan, Yujie; Meyer, Leif; Gong, Miao; Krause, Bärbel; Hornung, Ursel; Dahmen, Nicolaus;In this study, the fate of nitrogen during catalytic hydrothermal liquefaction (HTL) of sewage sludge (SS) is investigated using three different catalysts (CuNi/SiO$_2$, HCOOH, CuSO$_4$) with 5 wt% loading. The bio-crude yields obtained from HTL experiments catalyzed with CuNi/SiO$_2$ are similar to those obtained through non-catalyzed experiments. HCOOH slightly increases the bio-crude yields, while maximum yields of 24.5 wt% is obtained in the presence of CuSO$_4$, which also reduces the nitrogen content by 15 % and enhances the hydrocarbons compared to the non-catalyzed HTL. Mechanistic investigations regarding the interaction of amino acids and carbohydrates by Maillard reactions are carried out using model compounds, namely lysine and lactose. CuSO$_4$ effectively increases the yield with 50 % and reduces the nitrogen content by 24 % in the bio-crude during HTL of lysine alone. In the case of the model mixtures, bio-crude yields, nitrogen content, and Maillard reactions products behaved similarly both for catalytic and non-catalytic HTL, a slight reduction of amines was found in the presence of CuSO$_4$. Hydro-char and some organic compounds are assumed to act highly reductant during catalytic HTL. Coke deposition and adsorbed poisoning by Maillard reaction products are proposed as the main reasons for the deactivation of catalysts.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.126948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, GermanyPublisher:Elsevier BV Alireza Taghipour; Ursel Hornung; Jerome A. Ramirez; Richard J. Brown; Thomas J. Rainey;Abstract Hydrothermal liquefaction (HTL) biocrude is a promising source of energy with potential for co-processing with conventional fuels or as a drop-in fuel. However, it needs upgrading to reduce heteroatoms (e.g., N, S, O), improve physical properties, stability, and miscibility with hydrocarbons. Distillation is a conventional physical upgrading method that has not been studied extensively for biocrude using an industry-accepted procedure on a large scale. In this study, an algae-based biocrude was distilled into four fractions using ASTM D2892 standard method: Fraction 1 (
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Review , Journal 2020 Finland, GermanyPublisher:MDPI AG Funded by:EC | BL2FEC| BL2FLappalainen, Jukka; Baudouin, David; Hornung, Ursel; Schuler, Julia; Melin, Kristian; Bjelić, Saša; Vogel, Frédéric; Konttinen, Jukka; Joronen; Tero;To mitigate global warming, humankind has been forced to develop new efficient energy solutions based on renewable energy sources. Hydrothermal liquefaction (HTL) is a promising technology that can efficiently produce bio-oil from several biomass sources. The HTL process uses sub- or supercritical water for producing bio-oil, water-soluble organics, gaseous products and char. Black liquor mainly contains cooking chemicals (mainly alkali salts) lignin and the hemicellulose parts of the wood chips used for cellulose digestion. This review explores the effects of different process parameters, solvents and catalysts for the HTL of black liquor or black liquor-derived lignin. Using short residence times under near- or supercritical water conditions may improve both the quality and the quantity of the bio-oil yield. The quality and yield of bio-oil can be further improved by using solvents (e.g., phenol) and catalysts (e.g., alkali salts, zirconia). However, the solubility of alkali salts present in black liquor can lead to clogging problem in the HTL reactor and process tubes when approaching supercritical water conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Tampere University: TrepoReview . 2020License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/127496Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Tampere University: TrepoReview . 2020License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/127496Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Elsevier BV Ursel Hornung; Mario Beck; Andrea Kruse; Andrea Kruse; Frederik Ronsse; Wolter Prins; Diego López Barreiro;Abstract The brown algae Fucus vesiculosus, Laminaria saccharina and Alaria esculenta were subjected to hydrothermal liquefaction (HTL) for 15 min at 350 °C in batch microautoclaves. Further optimization was carried out in view of optimizing the biocrude oil yield, varying the temperature from 330 to 370 °C. The maximum conversion to biocrude was 29.4 ± 1.1 wt.% at 360 °C for A. esculenta. The reaction pathways for macroalgae HTL and its capability for recycling nutrients were also investigated. The aqueous phase showed potential for a partial recovery of the nitrogen (21.2–28.6 wt.%) and sulfur (25.8–34.6 wt.%) from the initial biomass, and an almost total recovery of potassium and sodium. Results indicate that HTL as a sole conversion method to produce biofuel as single product is not recommended for macroalgae due to the low conversion to biocrude oil. At such conditions, its use as post-treatment for the remaining biomass after extracting valuable compounds (especially from the carbohydrate fraction) might be more interesting, and is suggested as the future direction for research.
Algal Research arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.algal.2015.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Algal Research arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.algal.2015.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu