- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Funded by:NSF | Collaborative Research: ..., NSF | Collaborative Research: M...NSF| Collaborative Research: MSB-ENSA: Leveraging NEON to Build a Predictive Cross-scale Theory of Ecosystem Transpiration ,NSF| Collaborative Research: MRA: A lineage-based framework to advance grassland macroecology and Earth System ModelingZhengfei Guo; Christopher J. Still; Calvin K. F. Lee; Youngryel Ryu; Benjamin Blonder; Jing Wang; Timothy C. Bonebrake; Alice Hughes; Yan Li; Henry C. H. Yeung; Kun Zhang; Ying Ki Law; Ziyu Lin; Jin Wu;doi: 10.1111/nph.18632
pmid: 36495263
Summary To what degree plant ecosystems thermoregulate their canopy temperature (Tc) is critical to assess ecosystems' metabolisms and resilience with climate change, but remains controversial, with opinions from no to moderate thermoregulation capability. With global datasets of Tc, air temperature (Ta), and other environmental and biotic variables from FLUXNET and satellites, we tested the ‘limited homeothermy’ hypothesis (indicated by Tc & Ta regression slope < 1 or Tc < Ta around midday) across global extratropics, including temporal and spatial dimensions. Across daily to weekly and monthly timescales, over 80% of sites/ecosystems have slopes ≥1 or Tc > Ta around midday, rejecting the above hypothesis. For those sites unsupporting the hypothesis, their Tc–Ta difference (ΔT) exhibits considerable seasonality that shows negative, partial correlations with leaf area index, implying a certain degree of thermoregulation capability. Spatially, site‐mean ΔT exhibits larger variations than the slope indicator, suggesting ΔT is a more sensitive indicator for detecting thermoregulatory differences across biomes. Furthermore, this large spatial‐wide ΔT variation (0–6°C) is primarily explained by environmental variables (38%) and secondarily by biotic factors (15%). These results demonstrate diverse thermoregulation patterns across global extratropics, with most ecosystems negating the ‘limited homeothermy’ hypothesis, but their thermoregulation still occurs, implying that slope < 1 or Tc < Ta are not necessary conditions for plant thermoregulation.
New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV C.E.R. Hatten; Y.Y. Hadiprakarsa; C.K.F. Lee; A. Jain; R. Kaur; A. Miller; S. Cheema; N.J. Au; S. Khalid; C. Dingle;The critically endangered helmeted hornbill (Rhinoplax vigil) is under threat around its Southeast Asian range due to hunting and habitat loss. Dependant on primary rainforest habitats, the species is thought to be highly sensitive to habitat disturbance. Compounding this is the threat of climate change where equatorial ecosystems, such as those found on Borneo, are predicted to increase in temperature and precipitation. It is therefore important to identify whether the species’ suitable habitats, both now and in the future, are protected from further anthropogenic disturbance. In this study we used species distribution models to assess the extent of suitable habitat for R. vigil across Borneo, an island which has undergone rapid deforestation in recent years, and a stronghold for the species. Using 302 R. vigil occurrence records, four environmental and three land-use cover variables, we modelled R. vigil current habitat suitability, and two future projections under climate change scenarios RCP 4.5 and RCP 8.5 for 2041–2060. Our results suggest that a quarter of Borneo's landmass is currently suitable for R. vigil. However, there is a steep decline in the predicted suitable habitat from 335,963 km2 (current scenario) to 73,170 km2 (future RCP 4.5), to 54,839 km2 (future RCP 8.5). Our model predicts that the amount of suitable habitat protected by current protected areas (PAs) and the planned Heart of Borneo (HoB) initiative will increase under future climate change, with the HoB protecting > 65 % of R. vigil suitable habitat across all projections. This is likely worsened by future land-use change not included in these models, which is a limitation to our study. We therefore encourage the connectivity of lowland PAs, and the continuation of HoB targets to prevent further decline of R. vigil habitat around Borneo. This study provides the first species-specific spatial assessment of the critically endangered helmeted hornbill distribution in response to climate change across current and planned protected regions in Borneo.
Global Ecology and C... arrow_drop_down Global Ecology and ConservationArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gecco.2024.e03206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Ecology and C... arrow_drop_down Global Ecology and ConservationArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gecco.2024.e03206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, Argentina, Australia, Spain, South AfricaPublisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170101466Linley, Grant; Jolly, Chris; Doherty, Tim; Geary, William; Armenteras, Dolors; Belcher, Claire; Bliege Bird, Rebecca; Duane, Andrea; Fletcher, Michael‐shawn; Giorgis, Melisa; Haslem, Angie; Jones, Gavin; Kelly, Luke; Lee, Calvin; Nolan, Rachael; Parr, Catherine; Pausas, Juli; Price, Jodi; Regos, Adrián; Ritchie, Euan; Ruffault, Julien; Williamson, Grant; Wu, Qianhan; Nimmo, Dale;handle: 10261/287938 , 11336/160389 , 11343/308573 , 1959.7/uws:68552
AbstractBackground‘Megafire’ is an emerging concept commonly used to describe fires that are extreme in terms of size, behaviour, and/or impacts, but the term’s meaning remains ambiguous.ApproachWe sought to resolve ambiguity surrounding the meaning of ‘megafire’ by conducting a structured review of the use and definition of the term in several languages in the peer‐reviewed scientific literature. We collated definitions and descriptions of megafire and identified criteria frequently invoked to define megafire. We recorded the size and location of megafires and mapped them to reveal global variation in the size of fires described as megafires.ResultsWe identified 109 studies that define the term ‘megafire’ or identify a megafire, with the term first appearing in the peer‐reviewed literature in 2005. Seventy‐one (~65%) of these studies attempted to describe or define the term. There was considerable variability in the criteria used to define megafire, although definitions of megafire based on fire size were most common. Megafire size thresholds varied geographically from > 100–100,000 ha, with fires > 10,000 ha the most common size threshold (41%, 18/44 studies). Definitions of megafire were most common from studies led by authors from North America (52%, 37/71). We recorded 137 instances from 84 studies where fires were reported as megafires, the vast majority (94%, 129/137) of which exceed 10,000 ha in size. Megafires occurred in a range of biomes, but were most frequently described in forested biomes (112/137, 82%), and usually described single ignition fires (59% 81/137).ConclusionAs Earth’s climate and ecosystems change, it is important that scientists can communicate trends in the occurrence of larger and more extreme fires with clarity. To overcome ambiguity, we suggest a definition of megafire as fires > 10,000 ha arising from single or multiple related ignition events. We introduce two additional terms – gigafire (> 100,000 ha) and terafire (> 1,000,000 ha) – for fires of an even larger scale than megafires.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/308573Data sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Datacitehttps://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 79visibility views 79 download downloads 67 Powered bymore_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/308573Data sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Datacitehttps://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV He Zhang; Calvin K.F. Lee; Ying Ki Law; Aland H.Y. Chan; Jinlong Zhang; Stephan W. Gale; Alice Hughes; Martha J. Ledger; Man Sing Wong; Amos P.K. Tai; Billy C.H. Hau; Jin Wu;pmid: 39216351
Forest restoration is a vital nature-based solution for mitigating climate change and land degradation. To ensure restoration effectiveness, the costs and benefits of alternative restoration strategies (i.e., active restoration vs. natural regeneration) need to be evaluated. Existing studies generally focus on maximum restoration potential, neglecting the recovery potential achievable through natural regeneration processes, leading to incomplete understanding of the true benefits and doubts about the necessity of active restoration. In this study, we introduce a multi-stage framework incorporating both restoration and regeneration potential into prioritized planning for ecosystem restoration. We used the vegetated landscape of Hong Kong (covering 728 km2) as our study system due to its comprehensive fine-resolution data and unique history of vegetation recovery, making it an ideal candidate to demonstrate the importance of this concept and inspire further research. We analyzed vegetation recovery status (i.e., recovering, degrading, and stable) over the past decade based on the canopy height data derived from multi-temporal airborne LiDAR. We assessed natural regeneration potential and maximum restoration potential separately, producing spatially-explicit predictions. Our results show that 44.9% of Hong Kong's vegetated area has showed evidence of recovery, but remaining gains through natural regeneration are limited, constituting around 4% of what could be attained through active restoration. We further estimated restoration priority by maximizing the restoration gain. When prioritizing 5% of degraded areas, the increment in canopy height could be up to 10.9%. Collectively, our findings highlight the importance of integrating both restoration and regeneration potential into restoration planning. The proposed framework can aid policymakers and land managers in optimizing forest restoration options and promoting the protection and recovery of fragile ecosystems.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2024.122306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2024.122306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Funded by:NSF | Collaborative Research: ..., NSF | Collaborative Research: M...NSF| Collaborative Research: MSB-ENSA: Leveraging NEON to Build a Predictive Cross-scale Theory of Ecosystem Transpiration ,NSF| Collaborative Research: MRA: A lineage-based framework to advance grassland macroecology and Earth System ModelingZhengfei Guo; Christopher J. Still; Calvin K. F. Lee; Youngryel Ryu; Benjamin Blonder; Jing Wang; Timothy C. Bonebrake; Alice Hughes; Yan Li; Henry C. H. Yeung; Kun Zhang; Ying Ki Law; Ziyu Lin; Jin Wu;doi: 10.1111/nph.18632
pmid: 36495263
Summary To what degree plant ecosystems thermoregulate their canopy temperature (Tc) is critical to assess ecosystems' metabolisms and resilience with climate change, but remains controversial, with opinions from no to moderate thermoregulation capability. With global datasets of Tc, air temperature (Ta), and other environmental and biotic variables from FLUXNET and satellites, we tested the ‘limited homeothermy’ hypothesis (indicated by Tc & Ta regression slope < 1 or Tc < Ta around midday) across global extratropics, including temporal and spatial dimensions. Across daily to weekly and monthly timescales, over 80% of sites/ecosystems have slopes ≥1 or Tc > Ta around midday, rejecting the above hypothesis. For those sites unsupporting the hypothesis, their Tc–Ta difference (ΔT) exhibits considerable seasonality that shows negative, partial correlations with leaf area index, implying a certain degree of thermoregulation capability. Spatially, site‐mean ΔT exhibits larger variations than the slope indicator, suggesting ΔT is a more sensitive indicator for detecting thermoregulatory differences across biomes. Furthermore, this large spatial‐wide ΔT variation (0–6°C) is primarily explained by environmental variables (38%) and secondarily by biotic factors (15%). These results demonstrate diverse thermoregulation patterns across global extratropics, with most ecosystems negating the ‘limited homeothermy’ hypothesis, but their thermoregulation still occurs, implying that slope < 1 or Tc < Ta are not necessary conditions for plant thermoregulation.
New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV C.E.R. Hatten; Y.Y. Hadiprakarsa; C.K.F. Lee; A. Jain; R. Kaur; A. Miller; S. Cheema; N.J. Au; S. Khalid; C. Dingle;The critically endangered helmeted hornbill (Rhinoplax vigil) is under threat around its Southeast Asian range due to hunting and habitat loss. Dependant on primary rainforest habitats, the species is thought to be highly sensitive to habitat disturbance. Compounding this is the threat of climate change where equatorial ecosystems, such as those found on Borneo, are predicted to increase in temperature and precipitation. It is therefore important to identify whether the species’ suitable habitats, both now and in the future, are protected from further anthropogenic disturbance. In this study we used species distribution models to assess the extent of suitable habitat for R. vigil across Borneo, an island which has undergone rapid deforestation in recent years, and a stronghold for the species. Using 302 R. vigil occurrence records, four environmental and three land-use cover variables, we modelled R. vigil current habitat suitability, and two future projections under climate change scenarios RCP 4.5 and RCP 8.5 for 2041–2060. Our results suggest that a quarter of Borneo's landmass is currently suitable for R. vigil. However, there is a steep decline in the predicted suitable habitat from 335,963 km2 (current scenario) to 73,170 km2 (future RCP 4.5), to 54,839 km2 (future RCP 8.5). Our model predicts that the amount of suitable habitat protected by current protected areas (PAs) and the planned Heart of Borneo (HoB) initiative will increase under future climate change, with the HoB protecting > 65 % of R. vigil suitable habitat across all projections. This is likely worsened by future land-use change not included in these models, which is a limitation to our study. We therefore encourage the connectivity of lowland PAs, and the continuation of HoB targets to prevent further decline of R. vigil habitat around Borneo. This study provides the first species-specific spatial assessment of the critically endangered helmeted hornbill distribution in response to climate change across current and planned protected regions in Borneo.
Global Ecology and C... arrow_drop_down Global Ecology and ConservationArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gecco.2024.e03206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Ecology and C... arrow_drop_down Global Ecology and ConservationArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gecco.2024.e03206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, Argentina, Australia, Spain, South AfricaPublisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE170101466Linley, Grant; Jolly, Chris; Doherty, Tim; Geary, William; Armenteras, Dolors; Belcher, Claire; Bliege Bird, Rebecca; Duane, Andrea; Fletcher, Michael‐shawn; Giorgis, Melisa; Haslem, Angie; Jones, Gavin; Kelly, Luke; Lee, Calvin; Nolan, Rachael; Parr, Catherine; Pausas, Juli; Price, Jodi; Regos, Adrián; Ritchie, Euan; Ruffault, Julien; Williamson, Grant; Wu, Qianhan; Nimmo, Dale;handle: 10261/287938 , 11336/160389 , 11343/308573 , 1959.7/uws:68552
AbstractBackground‘Megafire’ is an emerging concept commonly used to describe fires that are extreme in terms of size, behaviour, and/or impacts, but the term’s meaning remains ambiguous.ApproachWe sought to resolve ambiguity surrounding the meaning of ‘megafire’ by conducting a structured review of the use and definition of the term in several languages in the peer‐reviewed scientific literature. We collated definitions and descriptions of megafire and identified criteria frequently invoked to define megafire. We recorded the size and location of megafires and mapped them to reveal global variation in the size of fires described as megafires.ResultsWe identified 109 studies that define the term ‘megafire’ or identify a megafire, with the term first appearing in the peer‐reviewed literature in 2005. Seventy‐one (~65%) of these studies attempted to describe or define the term. There was considerable variability in the criteria used to define megafire, although definitions of megafire based on fire size were most common. Megafire size thresholds varied geographically from > 100–100,000 ha, with fires > 10,000 ha the most common size threshold (41%, 18/44 studies). Definitions of megafire were most common from studies led by authors from North America (52%, 37/71). We recorded 137 instances from 84 studies where fires were reported as megafires, the vast majority (94%, 129/137) of which exceed 10,000 ha in size. Megafires occurred in a range of biomes, but were most frequently described in forested biomes (112/137, 82%), and usually described single ignition fires (59% 81/137).ConclusionAs Earth’s climate and ecosystems change, it is important that scientists can communicate trends in the occurrence of larger and more extreme fires with clarity. To overcome ambiguity, we suggest a definition of megafire as fires > 10,000 ha arising from single or multiple related ignition events. We introduce two additional terms – gigafire (> 100,000 ha) and terafire (> 1,000,000 ha) – for fires of an even larger scale than megafires.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/308573Data sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Datacitehttps://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 79visibility views 79 download downloads 67 Powered bymore_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/308573Data sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Datacitehttps://dx.doi.org/10.26181/23...Other literature type . 2023License: CC BY NC NDData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV He Zhang; Calvin K.F. Lee; Ying Ki Law; Aland H.Y. Chan; Jinlong Zhang; Stephan W. Gale; Alice Hughes; Martha J. Ledger; Man Sing Wong; Amos P.K. Tai; Billy C.H. Hau; Jin Wu;pmid: 39216351
Forest restoration is a vital nature-based solution for mitigating climate change and land degradation. To ensure restoration effectiveness, the costs and benefits of alternative restoration strategies (i.e., active restoration vs. natural regeneration) need to be evaluated. Existing studies generally focus on maximum restoration potential, neglecting the recovery potential achievable through natural regeneration processes, leading to incomplete understanding of the true benefits and doubts about the necessity of active restoration. In this study, we introduce a multi-stage framework incorporating both restoration and regeneration potential into prioritized planning for ecosystem restoration. We used the vegetated landscape of Hong Kong (covering 728 km2) as our study system due to its comprehensive fine-resolution data and unique history of vegetation recovery, making it an ideal candidate to demonstrate the importance of this concept and inspire further research. We analyzed vegetation recovery status (i.e., recovering, degrading, and stable) over the past decade based on the canopy height data derived from multi-temporal airborne LiDAR. We assessed natural regeneration potential and maximum restoration potential separately, producing spatially-explicit predictions. Our results show that 44.9% of Hong Kong's vegetated area has showed evidence of recovery, but remaining gains through natural regeneration are limited, constituting around 4% of what could be attained through active restoration. We further estimated restoration priority by maximizing the restoration gain. When prioritizing 5% of degraded areas, the increment in canopy height could be up to 10.9%. Collectively, our findings highlight the importance of integrating both restoration and regeneration potential into restoration planning. The proposed framework can aid policymakers and land managers in optimizing forest restoration options and promoting the protection and recovery of fragile ecosystems.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2024.122306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2024.122306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu