Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao New Phytologistarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
New Phytologist
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
New Phytologist
Article . 2023
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Does plant ecosystem thermoregulation occur? An extratropical assessment at different spatial and temporal scales

Authors: Zhengfei Guo; Christopher J. Still; Calvin K. F. Lee; Youngryel Ryu; Benjamin Blonder; Jing Wang; Timothy C. Bonebrake; +7 Authors

Does plant ecosystem thermoregulation occur? An extratropical assessment at different spatial and temporal scales

Abstract

Summary To what degree plant ecosystems thermoregulate their canopy temperature (Tc) is critical to assess ecosystems' metabolisms and resilience with climate change, but remains controversial, with opinions from no to moderate thermoregulation capability. With global datasets of Tc, air temperature (Ta), and other environmental and biotic variables from FLUXNET and satellites, we tested the ‘limited homeothermy’ hypothesis (indicated by Tc & Ta regression slope < 1 or Tc < Ta around midday) across global extratropics, including temporal and spatial dimensions. Across daily to weekly and monthly timescales, over 80% of sites/ecosystems have slopes ≥1 or Tc > Ta around midday, rejecting the above hypothesis. For those sites unsupporting the hypothesis, their Tc–Ta difference (ΔT) exhibits considerable seasonality that shows negative, partial correlations with leaf area index, implying a certain degree of thermoregulation capability. Spatially, site‐mean ΔT exhibits larger variations than the slope indicator, suggesting ΔT is a more sensitive indicator for detecting thermoregulatory differences across biomes. Furthermore, this large spatial‐wide ΔT variation (0–6°C) is primarily explained by environmental variables (38%) and secondarily by biotic factors (15%). These results demonstrate diverse thermoregulation patterns across global extratropics, with most ecosystems negating the ‘limited homeothermy’ hypothesis, but their thermoregulation still occurs, implying that slope < 1 or Tc < Ta are not necessary conditions for plant thermoregulation.

Related Organizations
Keywords

Climate Change, Temperature, Plants, Ecosystem, Body Temperature Regulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
bronze