- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, Norway, Norway, United Kingdom, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:UKRI | Characterization of major..., EC | STEMM-CCSUKRI| Characterization of major overburden leakage pathways above sub-seafloor CO2 storage reservoirs in the North Sea (CHIMNEY) ,EC| STEMM-CCSUmer Saleem; Jianghui Li; Christoph Böttner; Aude Lavayssière; Christian Deusner; Stefan Bünz; Gaye Bayrakci; Baixin Chen; Laurence J. North; Juerg M. Matter; Jens Karstens; Angus I. Best; Matthias Haeckel; Mark Chapman; Héctor Marín-Moreno; Héctor Marín-Moreno; Elke Kossel; Judith Elger; Timothy A. Minshull; Jonathan M. Bull; Timothy J. Henstock; Benedict T. I. Reinardy; Sourav K. Sahoo; Giuseppe Provenzano; Giuseppe Provenzano; Anna Lichtschlag; Farid Jedari-Eyvazi; Christian Berndt; Ben Roche; Ben Callow; Douglas P. Connelly; Naima Yilo; Bettina Schramm; Ismael Falcon-Suarez; Rachael H. James; Calum Macdonald; Marcella Dean; Malin Waage; Romina Gehrmann; Adam H. Robinson; Lou Parkes;Abstract Evaluation of seismic reflection data has identified the presence of fluid escape structures cross-cutting overburden stratigraphy within sedimentary basins globally. Seismically-imaged chimneys/pipes are considered to be possible pathways for fluid flow, which may hydraulically connect deeper strata to the seabed. The properties of fluid migration pathways through the overburden must be constrained to enable secure, long-term subsurface carbon dioxide (CO2) storage. We have investigated a site of natural active fluid escape in the North Sea, the Scanner pockmark complex, to determine the physical characteristics of focused fluid conduits, and how they control fluid flow. Here we show that a multi-scale, multi-disciplinary experimental approach is required for complete characterisation of fluid escape structures. Geophysical techniques are necessary to resolve fracture geometry and subsurface structure (e.g., multi-frequency seismics) and physical parameters of sediments (e.g., controlled source electromagnetics) across a wide range of length scales (m to km). At smaller (mm to cm) scales, sediment cores were sampled directly and their physical and chemical properties assessed using laboratory-based methods. Numerical modelling approaches bridge the resolution gap, though their validity is dependent on calibration and constraint from field and laboratory experimental data. Further, time-lapse seismic and acoustic methods capable of resolving temporal changes are key for determining fluid flux. Future optimisation of experiment resource use may be facilitated by the installation of permanent seabed infrastructure, and replacement of manual data processing with automated workflows. This study can be used to inform measurement, monitoring and verification workflows that will assist policymaking, regulation, and best practice for CO2 subsurface storage operations.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Norway, United Kingdom, Germany, United Kingdom, United Kingdom, Norway, NorwayPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSD.P. Connelly; J.M. Bull; A. Flohr; A. Schaap; D. Koopmans; J.C. Blackford; P.R. White; R.H. James; C. Pearce; A. Lichtschlag; E.P. Achterberg; D. de Beer; B. Roche; J. Li; K. Saw; G. Alendal; H. Avlesen; R. Brown; S.M. Borisov; C. Böttner; P.W. Cazenave; B. Chen; A.W. Dale; M. Dean; M. Dewar; M. Esposito; J. Gros; R. Hanz; M. Haeckel; B. Hosking; V. Huvenne; J. Karstens; T. Le Bas; T.G. Leighton; P. Linke; S. Loucaides; J.M. Matter; S. Monk; M.C. Mowlem; A. Oleynik; A.M. Omar; K. Peel; G. Provenzano; U. Saleem; M. Schmidt; B. Schramm; S. Sommer; J. Strong; I. Falcon Suarez; B. Ungerboeck; S. Widdicombe; H. Wright; E. Yakushev;handle: 11250/3025167 , 11250/3028049 , 11250/3023870
Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes.
NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Kiminori Shitashima; Anders Tengberg; Anna Lichtschlag; Dariia Atamanchuk; Peer Fietzek; Dmitry Aleynik; Per O. J. Hall; Henrik Stahl; Henrik Stahl;This work is focused on results from a recent controlled sub-seabed in situ carbon dioxide (CO2) release experiment carried out during May–October 2012 in Ardmucknish Bay on the Scottish west coast. Three types of pCO2 sensors (fluorescence, NDIR and ISFET-based technologies) were used in combination with multiparameter instruments measuring oxygen, temperature, salinity and currents in the water column at the epicentre of release and further away. It was shown that distribution of seafloor CO2 emissions features high spatial and temporal heterogeneity. The highest pCO2 values (∼1250 μatm) were detected at low tide around a bubble stream and within centimetres distance from the seafloor. Further up in the water column, 30–100 cm above the seabed, the gradients decreased, but continued to indicate elevated pCO2 at the epicentre of release throughout the injection campaign with the peak values between 400 and 740 μatm. High-frequency parallel measurements from two instruments placed within 1 m from each other, relocation of one of the instruments at the release site and 2D horizontal mapping of the release and control sites confirmed a localized impact from CO2 emissions. Observed effects on the water column were temporary and post-injection recovery took <7 days. A multivariate statistical approach was used to recognize the periods when the system was dominated by natural forcing with strong correlation between variation in pCO2 and O2, and when it was influenced by purposefully released CO2. Use of a hydrodynamic circulation model, calibrated with in situ data, was crucial to establishing background conditions in this complex and dynamic shallow water system.
NERC Open Research A... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:RCN | Bayesian monitoring desig..., EC | STEMM-CCSRCN| Bayesian monitoring design. ,EC| STEMM-CCSTariq Nawaz Chaudhary; Umer Saleem; Anna Lichtschlag; Guttorm Alendal; Mehroz Sana; Baixin Chen; Marius Dewar; Marius Dewar;Abstract The dynamics and plume development of injected CO2 dispersion and dissolution through sediments into water column, at the STEMM-CCS field experiment conducted in Goldeneye, are simulated and predicted by a newly developed two-phase flow model based on Navier-Stokes-Darcy equations. In the experiment, CO2 gas was released into shallow marine sediment 3.0 m below the seafloor at 120 m water depth in the North Sea. The pre-experimental survey data of porosity, grain size distributions, and brine concentration are used to reconstruct the model sediments. The gas CO2 is then injected into the sediments at a rate of 5.7 kg/day to 143 kg/day. The model is validated by diagnostic simulations to compare with field observation data of CO2 eruption time, changes in pH in sediments, and the gas leakage rates. Then the dynamics of the CO2 plume development in the sediments are investigated by model simulations, including the leakage pathways, the fluids interactions among CO2/brine/sediments, and CO2 dissolution, in order to comprehend the mechanisms of CO2 leakage through sediments. It is shown from model simulations that the CO2 plume develops horizontally in the sediments at a rate of 0.375 m/day, CO2 dissolution in the sediments is at an overall average rate of 0.03 g/sec with some peaks of 0.45 g/sec, 0.15 g/sec, and 0.3 g/sec, respectively, following the increase in injection rates, when some fresh brine provided. These, therefore, lead to a ratio of 0.90~0.93 of CO2 leakage rate to injection rate.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, France, United Kingdom, France, GermanyPublisher:Elsevier BV Funded by:EC | STEMM-CCS, UKRI | Characterization of major...EC| STEMM-CCS ,UKRI| Characterization of major overburden leakage pathways above sub-seafloor CO2 storage reservoirs in the North Sea (CHIMNEY)Lichtschlag, Anna; Haeckel, Matthias; Olierook, David; Peel, Kate; Flohr, Anita; Pearce, Christopher R.; Marieni, Chiara; James, Rachael H.; Connelly, Douglas P.;Abstract Sub-seabed geological CO2 storage is discussed as a climate mitigation strategy, but the impact of any leakage of stored CO2 into the marine environment is not well known. In this study, leakage from a CO2 storage reservoir through near-surface sediments was mimicked for low leakage rates in the North Sea. Field data were combined with laboratory experiments and transport-reaction modelling to estimate CO2 and mineral dissolution rates, and to assess the mobilization of metals in contact with CO2-rich fluids and their potential impact on the environment. We found that carbonate and silicate minerals reacted quickly with the dissolved CO2, increasing porewater alkalinity and neutralizing about 5% of the injected CO2. The release of Ca, Sr, Ba and Mn was mainly controlled by carbonate dissolution, while Fe, Li, B, Mg, and Si were released from silicate minerals, mainly from deeper sediment layers. No toxic metals were released from the sediments and overall the injected CO2 was only detected up to 1 m away from seabed CO2 bubble streams. Our results suggest that low leakage rates of CO2 over short timescales have minimal impact on the benthic environment. However, porewater composition and temperature are effective indicators for leakage detection, even at low CO2 leakage rates.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, United Kingdom, United Kingdom, GermanyPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSFlohr, Anita; Matter, Juerg M.; James, Rachael H.; Saw, Kevin; Brown, Robin; Gros, Jonas; Flude, Stephanie; Day, Christopher; Peel, Kate; Connelly, Douglas; Pearce, Christopher R.; Strong, James A.; Lichtschlag, Anna; Hillegonds, Darren J.; Ballentine, Christopher J.; Tyne, Rebecca L.;Abstract To inform cost-effective monitoring of offshore geological storage of carbon dioxide (CO2), a unique field experiment, designed to simulate leakage of CO2 from a sub-seafloor storage reservoir, was carried out in the central North Sea. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor) for 11 days at flow rates between 6 and 143 kg d-1. A set of natural, inherent tracers (13C, 18O) of injected CO2 and added, non-toxic tracer gases (octafluoropropane, sulfur hexafluoride, krypton, methane) were used to test their applicability for CO2 leakage attribution and quantification in the marine environment. All tracers except 18O were capable of attributing the CO2 source. Tracer analyses indicate that CO2 dissolution in sediment pore waters ranged from 35 % at the lowest injection rate to 41% at the highest injection rate. Direct measurements of gas released from the sediment into the water column suggest that 22 % to 48 % of the injected CO2 exited the seafloor at, respectively, the lowest and the highest injection rate. The remainder of injected CO2 accumulated in gas pockets in the sediment. The methodologies can be used to rapidly confirm the source of leaking CO2 once seabed samples are retrieved.
NERC Open Research A... arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Germany, United Kingdom, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | ECO2, UKRI | Quantifying and Monitorin...EC| ECO2 ,UKRI| Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon StorageDavid Long; Peter Taylor; Mark E. Vardy; Martin Sayer; Jerry Blackford; Maxine Akhurst; Chris Hauton; Dmitry Aleynik; Ian C. Wright; Rachael H. James; Anna Lichtschlag; Mark Naylor; Jonathan M. Bull; Henrik Stahl; Henrik Stahl; Steve Widdicombe; Matthew Toberman; David J. Smith; Douglas P. Connelly;AbstractCarbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthropogenic CO2 emissions. This process aims to capture CO2 from large point-source emitters and transport it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited below the sea bed on continental shelves. A key operational requirement is an understanding of best practice of monitoring for potential leakage and of the environmental impact that could result from a diffusive leak from a storage complex. Here we describe a controlled CO2 release experiment beneath the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The complex processes involved in setting up the experimental facility and ensuring its successful operation are discussed, including site selection, permissions, communications and facility construction. The experimental design and observational strategy are reviewed with respect to scientific outcomes along with lessons learnt in order to facilitate any similar future.
NERC Open Research A... arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/29194/1/Taylor.pdfData sources: OceanRepNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2015License: CC BYData sources: BASE (Open Access Aggregator)http://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 63 citations 63 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/29194/1/Taylor.pdfData sources: OceanRepNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2015License: CC BYData sources: BASE (Open Access Aggregator)http://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCS, RCN | Bayesian monitoring desig...EC| STEMM-CCS ,RCN| Bayesian monitoring design.Blackford, Jerry; Romanak, Katherine; Huvenne, Veerle A.I.; Lichtschlag, Anna; Strong, James Asa; Alendal, Guttorm; Schütz, Sigrid Eskeland; Oleynik, Anna; Dankel, Dorothy J.;Abstract Carbon capture and storage is key for mitigating greenhouse gas emissions, and offshore geological formations provide vast CO2 storage potential. Monitoring of sub-seabed CO2 storage sites requires that anomalies signifying a loss of containment be detected, and if attributed to storage, quantified and their impact assessed. However, monitoring at or above the seabed is only useful if one can reliably differentiate abnormal signals from natural variability. Baseline acquisition is the default option for describing the natural state, however we argue that a comprehensive baseline assessment is likely expensive and time-bound, given the multi-decadal nature of CCS operations and the dynamic heterogeneity of the marine environment. We present an outline of the elements comprising an efficient marine environmental baseline to support offshore monitoring. We demonstrate that many of these elements can be derived from pre-existing and ongoing sources, not necessarily related to CCS project development. We argue that a sufficient baseline can be achieved by identifying key emergent properties of the system rather than assembling an extensive description of the physical, chemical and biological states. Further, that contemporary comparisons between impacted and non-impacted sites are likely to be as valuable as before and after comparisons. However, as these emergent properties may be nuanced between sites and seasons and comparative studies need to be validated by the careful choice of reference site, a site-specific understanding of the scales of heterogeneity will be an invaluable component of a baseline.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Geomechanical Assessment ..., EC | STEMM-CCS, UKRI | Characterization of major...UKRI| Geomechanical Assessment of CO2 Storage Reservoir Integrity Post-closure (GASRIP) ,EC| STEMM-CCS ,UKRI| Characterization of major overburden leakage pathways above sub-seafloor CO2 storage reservoirs in the North Sea (CHIMNEY)Anna Lichtschlag; Mark Chapman; Giorgos Papageorgiou; Giorgos Papageorgiou; Sourav K. Sahoo; Ben Callow; Ben Roche; Laurence J. North; Romina Gehrmann; Ismael Falcon-Suarez; Héctor Marín-Moreno;Abstract Safe offshore Carbon Capture Utilization and Storage (CCUS) includes monitoring of the subseafloor, to identify and assess potential CO2 leaks from the geological reservoir through seal bypass structures. We simulated CO2-leaking through shallow marine sediments of the North Sea, using two gravity core samples from ∼1 and ∼2.1 m below seafloor. Both samples were subjected to brine−CO2 flow-through, with continuous monitoring of their transport, elastic and mechanical properties, using electrical resistivity, permeability, P-wave velocity and attenuation, and axial strains. We used the collected geophysical data to calibrate a resistivity-saturation model based on Archie’s law extended for clay content, and a rock physics for the elastic properties. The P-wave attributes detected the presence of CO2 in the sediment, but failed in providing accurate estimates of the CO2 saturation. Our results estimate porosities of 0.44 and 0.54, a background permeability of ∼10−15 and ∼10-17 m2, and maximum CO2 saturation of 18 % and 10 % (±5 %), for the sandier (shallower) and muddier (deeper) sample, respectively. The finer-grained sample likely suffered some degree of gas-induced fracturing, exhibiting an effective CO2 permeability increase sharper than the coarser-grained sample. Our core-scale multidisciplinary experiment contributes to improve the general interpretation of shallow sub-seafloor gas distribution and migration patterns.
NERC Open Research A... arrow_drop_down NERC Open Research Archive2021 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/id/eprint/530148/7/IH_Falcon_Suarez_etal_SI_STEMMCCS_clean_final.pdfData sources: NERC Open Research Archivee-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDFull-Text: https://nora.nerc.ac.uk/id/eprint/530148/7/IH_Falcon_Suarez_etal_SI_STEMMCCS_clean_final.pdfData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NERC Open Research Archive2021 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/id/eprint/530148/7/IH_Falcon_Suarez_etal_SI_STEMMCCS_clean_final.pdfData sources: NERC Open Research Archivee-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDFull-Text: https://nora.nerc.ac.uk/id/eprint/530148/7/IH_Falcon_Suarez_etal_SI_STEMMCCS_clean_final.pdfData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, GermanyPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSA.W. Dale; S. Sommer; A. Lichtschlag; D. Koopmans; M. Haeckel; E. Kossel; C. Deusner; P. Linke; J. Scholten; K. Wallmann; M.R. van Erk; J. Gros; F. Scholz; M. Schmidt;Abstract Injection of carbon dioxide (CO2) into subseafloor reservoirs is gaining traction as a strategy for mitigating anthropogenic CO2 emissions to the atmosphere. Yet, potential leakage, migration and dissolution of externally-supplied CO2 from such reservoirs are a cause for concern. The potential impact of CO2 leakage on the biogeochemistry of sediments and overlying waters in the North Sea was studied during a controlled subsurface CO2 release experiment in 2019 at a potential carbon capture and storage site (Goldeneye). This study describes the natural (unperturbed) biogeochemistry of sediments. They are classified as muddy sand to sandy mud with low organic carbon content (∼0.6 %). Distributions of dissolved inorganic carbon (DIC) and total alkalinity (TA) in sediment porewaters are reported in addition to in situ benthic fluxes of dissolved nutrients and oxygen between the sediments and the overlying water. Oxygen fluxes into the sediment, measured using benthic chambers and eddy covariance, were 6.18 ± 0.58 and 5.73 ± 2.03 mmol m−2 d-1, respectively. Diagnostic indicators are discussed that could be used to detect CO2 enrichment of sediments due to reservoir leakage at CCS sites. These include the ratio TA and ammonium to sulfate in sediment porewaters, benthic fluxes and chloride-normalized cation distributions. These indicators currently suggest that the organic carbon at Goldeneye has an oxidation state below zero and is mainly degraded via sulfate reduction. Carbonate precipitation is apparently negligible, whereas decreases in Mg2+ and K+ point toward ongoing alteration of lithogenic sediments by reverse weathering processes.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, Norway, Norway, United Kingdom, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:UKRI | Characterization of major..., EC | STEMM-CCSUKRI| Characterization of major overburden leakage pathways above sub-seafloor CO2 storage reservoirs in the North Sea (CHIMNEY) ,EC| STEMM-CCSUmer Saleem; Jianghui Li; Christoph Böttner; Aude Lavayssière; Christian Deusner; Stefan Bünz; Gaye Bayrakci; Baixin Chen; Laurence J. North; Juerg M. Matter; Jens Karstens; Angus I. Best; Matthias Haeckel; Mark Chapman; Héctor Marín-Moreno; Héctor Marín-Moreno; Elke Kossel; Judith Elger; Timothy A. Minshull; Jonathan M. Bull; Timothy J. Henstock; Benedict T. I. Reinardy; Sourav K. Sahoo; Giuseppe Provenzano; Giuseppe Provenzano; Anna Lichtschlag; Farid Jedari-Eyvazi; Christian Berndt; Ben Roche; Ben Callow; Douglas P. Connelly; Naima Yilo; Bettina Schramm; Ismael Falcon-Suarez; Rachael H. James; Calum Macdonald; Marcella Dean; Malin Waage; Romina Gehrmann; Adam H. Robinson; Lou Parkes;Abstract Evaluation of seismic reflection data has identified the presence of fluid escape structures cross-cutting overburden stratigraphy within sedimentary basins globally. Seismically-imaged chimneys/pipes are considered to be possible pathways for fluid flow, which may hydraulically connect deeper strata to the seabed. The properties of fluid migration pathways through the overburden must be constrained to enable secure, long-term subsurface carbon dioxide (CO2) storage. We have investigated a site of natural active fluid escape in the North Sea, the Scanner pockmark complex, to determine the physical characteristics of focused fluid conduits, and how they control fluid flow. Here we show that a multi-scale, multi-disciplinary experimental approach is required for complete characterisation of fluid escape structures. Geophysical techniques are necessary to resolve fracture geometry and subsurface structure (e.g., multi-frequency seismics) and physical parameters of sediments (e.g., controlled source electromagnetics) across a wide range of length scales (m to km). At smaller (mm to cm) scales, sediment cores were sampled directly and their physical and chemical properties assessed using laboratory-based methods. Numerical modelling approaches bridge the resolution gap, though their validity is dependent on calibration and constraint from field and laboratory experimental data. Further, time-lapse seismic and acoustic methods capable of resolving temporal changes are key for determining fluid flux. Future optimisation of experiment resource use may be facilitated by the installation of permanent seabed infrastructure, and replacement of manual data processing with automated workflows. This study can be used to inform measurement, monitoring and verification workflows that will assist policymaking, regulation, and best practice for CO2 subsurface storage operations.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Norway, United Kingdom, Germany, United Kingdom, United Kingdom, Norway, NorwayPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSD.P. Connelly; J.M. Bull; A. Flohr; A. Schaap; D. Koopmans; J.C. Blackford; P.R. White; R.H. James; C. Pearce; A. Lichtschlag; E.P. Achterberg; D. de Beer; B. Roche; J. Li; K. Saw; G. Alendal; H. Avlesen; R. Brown; S.M. Borisov; C. Böttner; P.W. Cazenave; B. Chen; A.W. Dale; M. Dean; M. Dewar; M. Esposito; J. Gros; R. Hanz; M. Haeckel; B. Hosking; V. Huvenne; J. Karstens; T. Le Bas; T.G. Leighton; P. Linke; S. Loucaides; J.M. Matter; S. Monk; M.C. Mowlem; A. Oleynik; A.M. Omar; K. Peel; G. Provenzano; U. Saleem; M. Schmidt; B. Schramm; S. Sommer; J. Strong; I. Falcon Suarez; B. Ungerboeck; S. Widdicombe; H. Wright; E. Yakushev;handle: 11250/3025167 , 11250/3028049 , 11250/3023870
Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes.
NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Kiminori Shitashima; Anders Tengberg; Anna Lichtschlag; Dariia Atamanchuk; Peer Fietzek; Dmitry Aleynik; Per O. J. Hall; Henrik Stahl; Henrik Stahl;This work is focused on results from a recent controlled sub-seabed in situ carbon dioxide (CO2) release experiment carried out during May–October 2012 in Ardmucknish Bay on the Scottish west coast. Three types of pCO2 sensors (fluorescence, NDIR and ISFET-based technologies) were used in combination with multiparameter instruments measuring oxygen, temperature, salinity and currents in the water column at the epicentre of release and further away. It was shown that distribution of seafloor CO2 emissions features high spatial and temporal heterogeneity. The highest pCO2 values (∼1250 μatm) were detected at low tide around a bubble stream and within centimetres distance from the seafloor. Further up in the water column, 30–100 cm above the seabed, the gradients decreased, but continued to indicate elevated pCO2 at the epicentre of release throughout the injection campaign with the peak values between 400 and 740 μatm. High-frequency parallel measurements from two instruments placed within 1 m from each other, relocation of one of the instruments at the release site and 2D horizontal mapping of the release and control sites confirmed a localized impact from CO2 emissions. Observed effects on the water column were temporary and post-injection recovery took <7 days. A multivariate statistical approach was used to recognize the periods when the system was dominated by natural forcing with strong correlation between variation in pCO2 and O2, and when it was influenced by purposefully released CO2. Use of a hydrodynamic circulation model, calibrated with in situ data, was crucial to establishing background conditions in this complex and dynamic shallow water system.
NERC Open Research A... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.10.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:RCN | Bayesian monitoring desig..., EC | STEMM-CCSRCN| Bayesian monitoring design. ,EC| STEMM-CCSTariq Nawaz Chaudhary; Umer Saleem; Anna Lichtschlag; Guttorm Alendal; Mehroz Sana; Baixin Chen; Marius Dewar; Marius Dewar;Abstract The dynamics and plume development of injected CO2 dispersion and dissolution through sediments into water column, at the STEMM-CCS field experiment conducted in Goldeneye, are simulated and predicted by a newly developed two-phase flow model based on Navier-Stokes-Darcy equations. In the experiment, CO2 gas was released into shallow marine sediment 3.0 m below the seafloor at 120 m water depth in the North Sea. The pre-experimental survey data of porosity, grain size distributions, and brine concentration are used to reconstruct the model sediments. The gas CO2 is then injected into the sediments at a rate of 5.7 kg/day to 143 kg/day. The model is validated by diagnostic simulations to compare with field observation data of CO2 eruption time, changes in pH in sediments, and the gas leakage rates. Then the dynamics of the CO2 plume development in the sediments are investigated by model simulations, including the leakage pathways, the fluids interactions among CO2/brine/sediments, and CO2 dissolution, in order to comprehend the mechanisms of CO2 leakage through sediments. It is shown from model simulations that the CO2 plume develops horizontally in the sediments at a rate of 0.375 m/day, CO2 dissolution in the sediments is at an overall average rate of 0.03 g/sec with some peaks of 0.45 g/sec, 0.15 g/sec, and 0.3 g/sec, respectively, following the increase in injection rates, when some fresh brine provided. These, therefore, lead to a ratio of 0.90~0.93 of CO2 leakage rate to injection rate.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, France, United Kingdom, France, GermanyPublisher:Elsevier BV Funded by:EC | STEMM-CCS, UKRI | Characterization of major...EC| STEMM-CCS ,UKRI| Characterization of major overburden leakage pathways above sub-seafloor CO2 storage reservoirs in the North Sea (CHIMNEY)Lichtschlag, Anna; Haeckel, Matthias; Olierook, David; Peel, Kate; Flohr, Anita; Pearce, Christopher R.; Marieni, Chiara; James, Rachael H.; Connelly, Douglas P.;Abstract Sub-seabed geological CO2 storage is discussed as a climate mitigation strategy, but the impact of any leakage of stored CO2 into the marine environment is not well known. In this study, leakage from a CO2 storage reservoir through near-surface sediments was mimicked for low leakage rates in the North Sea. Field data were combined with laboratory experiments and transport-reaction modelling to estimate CO2 and mineral dissolution rates, and to assess the mobilization of metals in contact with CO2-rich fluids and their potential impact on the environment. We found that carbonate and silicate minerals reacted quickly with the dissolved CO2, increasing porewater alkalinity and neutralizing about 5% of the injected CO2. The release of Ca, Sr, Ba and Mn was mainly controlled by carbonate dissolution, while Fe, Li, B, Mg, and Si were released from silicate minerals, mainly from deeper sediment layers. No toxic metals were released from the sediments and overall the injected CO2 was only detected up to 1 m away from seabed CO2 bubble streams. Our results suggest that low leakage rates of CO2 over short timescales have minimal impact on the benthic environment. However, porewater composition and temperature are effective indicators for leakage detection, even at low CO2 leakage rates.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, United Kingdom, United Kingdom, GermanyPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSFlohr, Anita; Matter, Juerg M.; James, Rachael H.; Saw, Kevin; Brown, Robin; Gros, Jonas; Flude, Stephanie; Day, Christopher; Peel, Kate; Connelly, Douglas; Pearce, Christopher R.; Strong, James A.; Lichtschlag, Anna; Hillegonds, Darren J.; Ballentine, Christopher J.; Tyne, Rebecca L.;Abstract To inform cost-effective monitoring of offshore geological storage of carbon dioxide (CO2), a unique field experiment, designed to simulate leakage of CO2 from a sub-seafloor storage reservoir, was carried out in the central North Sea. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor) for 11 days at flow rates between 6 and 143 kg d-1. A set of natural, inherent tracers (13C, 18O) of injected CO2 and added, non-toxic tracer gases (octafluoropropane, sulfur hexafluoride, krypton, methane) were used to test their applicability for CO2 leakage attribution and quantification in the marine environment. All tracers except 18O were capable of attributing the CO2 source. Tracer analyses indicate that CO2 dissolution in sediment pore waters ranged from 35 % at the lowest injection rate to 41% at the highest injection rate. Direct measurements of gas released from the sediment into the water column suggest that 22 % to 48 % of the injected CO2 exited the seafloor at, respectively, the lowest and the highest injection rate. The remainder of injected CO2 accumulated in gas pockets in the sediment. The methodologies can be used to rapidly confirm the source of leaking CO2 once seabed samples are retrieved.
NERC Open Research A... arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Germany, United Kingdom, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | ECO2, UKRI | Quantifying and Monitorin...EC| ECO2 ,UKRI| Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon StorageDavid Long; Peter Taylor; Mark E. Vardy; Martin Sayer; Jerry Blackford; Maxine Akhurst; Chris Hauton; Dmitry Aleynik; Ian C. Wright; Rachael H. James; Anna Lichtschlag; Mark Naylor; Jonathan M. Bull; Henrik Stahl; Henrik Stahl; Steve Widdicombe; Matthew Toberman; David J. Smith; Douglas P. Connelly;AbstractCarbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthropogenic CO2 emissions. This process aims to capture CO2 from large point-source emitters and transport it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited below the sea bed on continental shelves. A key operational requirement is an understanding of best practice of monitoring for potential leakage and of the environmental impact that could result from a diffusive leak from a storage complex. Here we describe a controlled CO2 release experiment beneath the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The complex processes involved in setting up the experimental facility and ensuring its successful operation are discussed, including site selection, permissions, communications and facility construction. The experimental design and observational strategy are reviewed with respect to scientific outcomes along with lessons learnt in order to facilitate any similar future.
NERC Open Research A... arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/29194/1/Taylor.pdfData sources: OceanRepNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2015License: CC BYData sources: BASE (Open Access Aggregator)http://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 63 citations 63 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/29194/1/Taylor.pdfData sources: OceanRepNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2015License: CC BYData sources: BASE (Open Access Aggregator)http://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCS, RCN | Bayesian monitoring desig...EC| STEMM-CCS ,RCN| Bayesian monitoring design.Blackford, Jerry; Romanak, Katherine; Huvenne, Veerle A.I.; Lichtschlag, Anna; Strong, James Asa; Alendal, Guttorm; Schütz, Sigrid Eskeland; Oleynik, Anna; Dankel, Dorothy J.;Abstract Carbon capture and storage is key for mitigating greenhouse gas emissions, and offshore geological formations provide vast CO2 storage potential. Monitoring of sub-seabed CO2 storage sites requires that anomalies signifying a loss of containment be detected, and if attributed to storage, quantified and their impact assessed. However, monitoring at or above the seabed is only useful if one can reliably differentiate abnormal signals from natural variability. Baseline acquisition is the default option for describing the natural state, however we argue that a comprehensive baseline assessment is likely expensive and time-bound, given the multi-decadal nature of CCS operations and the dynamic heterogeneity of the marine environment. We present an outline of the elements comprising an efficient marine environmental baseline to support offshore monitoring. We demonstrate that many of these elements can be derived from pre-existing and ongoing sources, not necessarily related to CCS project development. We argue that a sufficient baseline can be achieved by identifying key emergent properties of the system rather than assembling an extensive description of the physical, chemical and biological states. Further, that contemporary comparisons between impacted and non-impacted sites are likely to be as valuable as before and after comparisons. However, as these emergent properties may be nuanced between sites and seasons and comparative studies need to be validated by the careful choice of reference site, a site-specific understanding of the scales of heterogeneity will be an invaluable component of a baseline.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Geomechanical Assessment ..., EC | STEMM-CCS, UKRI | Characterization of major...UKRI| Geomechanical Assessment of CO2 Storage Reservoir Integrity Post-closure (GASRIP) ,EC| STEMM-CCS ,UKRI| Characterization of major overburden leakage pathways above sub-seafloor CO2 storage reservoirs in the North Sea (CHIMNEY)Anna Lichtschlag; Mark Chapman; Giorgos Papageorgiou; Giorgos Papageorgiou; Sourav K. Sahoo; Ben Callow; Ben Roche; Laurence J. North; Romina Gehrmann; Ismael Falcon-Suarez; Héctor Marín-Moreno;Abstract Safe offshore Carbon Capture Utilization and Storage (CCUS) includes monitoring of the subseafloor, to identify and assess potential CO2 leaks from the geological reservoir through seal bypass structures. We simulated CO2-leaking through shallow marine sediments of the North Sea, using two gravity core samples from ∼1 and ∼2.1 m below seafloor. Both samples were subjected to brine−CO2 flow-through, with continuous monitoring of their transport, elastic and mechanical properties, using electrical resistivity, permeability, P-wave velocity and attenuation, and axial strains. We used the collected geophysical data to calibrate a resistivity-saturation model based on Archie’s law extended for clay content, and a rock physics for the elastic properties. The P-wave attributes detected the presence of CO2 in the sediment, but failed in providing accurate estimates of the CO2 saturation. Our results estimate porosities of 0.44 and 0.54, a background permeability of ∼10−15 and ∼10-17 m2, and maximum CO2 saturation of 18 % and 10 % (±5 %), for the sandier (shallower) and muddier (deeper) sample, respectively. The finer-grained sample likely suffered some degree of gas-induced fracturing, exhibiting an effective CO2 permeability increase sharper than the coarser-grained sample. Our core-scale multidisciplinary experiment contributes to improve the general interpretation of shallow sub-seafloor gas distribution and migration patterns.
NERC Open Research A... arrow_drop_down NERC Open Research Archive2021 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/id/eprint/530148/7/IH_Falcon_Suarez_etal_SI_STEMMCCS_clean_final.pdfData sources: NERC Open Research Archivee-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDFull-Text: https://nora.nerc.ac.uk/id/eprint/530148/7/IH_Falcon_Suarez_etal_SI_STEMMCCS_clean_final.pdfData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NERC Open Research Archive2021 . Peer-reviewedFull-Text: http://nora.nerc.ac.uk/id/eprint/530148/7/IH_Falcon_Suarez_etal_SI_STEMMCCS_clean_final.pdfData sources: NERC Open Research Archivee-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDFull-Text: https://nora.nerc.ac.uk/id/eprint/530148/7/IH_Falcon_Suarez_etal_SI_STEMMCCS_clean_final.pdfData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, GermanyPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSA.W. Dale; S. Sommer; A. Lichtschlag; D. Koopmans; M. Haeckel; E. Kossel; C. Deusner; P. Linke; J. Scholten; K. Wallmann; M.R. van Erk; J. Gros; F. Scholz; M. Schmidt;Abstract Injection of carbon dioxide (CO2) into subseafloor reservoirs is gaining traction as a strategy for mitigating anthropogenic CO2 emissions to the atmosphere. Yet, potential leakage, migration and dissolution of externally-supplied CO2 from such reservoirs are a cause for concern. The potential impact of CO2 leakage on the biogeochemistry of sediments and overlying waters in the North Sea was studied during a controlled subsurface CO2 release experiment in 2019 at a potential carbon capture and storage site (Goldeneye). This study describes the natural (unperturbed) biogeochemistry of sediments. They are classified as muddy sand to sandy mud with low organic carbon content (∼0.6 %). Distributions of dissolved inorganic carbon (DIC) and total alkalinity (TA) in sediment porewaters are reported in addition to in situ benthic fluxes of dissolved nutrients and oxygen between the sediments and the overlying water. Oxygen fluxes into the sediment, measured using benthic chambers and eddy covariance, were 6.18 ± 0.58 and 5.73 ± 2.03 mmol m−2 d-1, respectively. Diagnostic indicators are discussed that could be used to detect CO2 enrichment of sediments due to reservoir leakage at CCS sites. These include the ratio TA and ammonium to sulfate in sediment porewaters, benthic fluxes and chloride-normalized cation distributions. These indicators currently suggest that the organic carbon at Goldeneye has an oxidation state below zero and is mainly degraded via sulfate reduction. Carbonate precipitation is apparently negligible, whereas decreases in Mg2+ and K+ point toward ongoing alteration of lithogenic sediments by reverse weathering processes.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu