

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact of CO2 leakage from sub-seabed carbon dioxide storage on sediment and porewater geochemistry

Abstract Sub-seabed geological CO2 storage is discussed as a climate mitigation strategy, but the impact of any leakage of stored CO2 into the marine environment is not well known. In this study, leakage from a CO2 storage reservoir through near-surface sediments was mimicked for low leakage rates in the North Sea. Field data were combined with laboratory experiments and transport-reaction modelling to estimate CO2 and mineral dissolution rates, and to assess the mobilization of metals in contact with CO2-rich fluids and their potential impact on the environment. We found that carbonate and silicate minerals reacted quickly with the dissolved CO2, increasing porewater alkalinity and neutralizing about 5% of the injected CO2. The release of Ca, Sr, Ba and Mn was mainly controlled by carbonate dissolution, while Fe, Li, B, Mg, and Si were released from silicate minerals, mainly from deeper sediment layers. No toxic metals were released from the sediments and overall the injected CO2 was only detected up to 1 m away from seabed CO2 bubble streams. Our results suggest that low leakage rates of CO2 over short timescales have minimal impact on the benthic environment. However, porewater composition and temperature are effective indicators for leakage detection, even at low CO2 leakage rates.
- University of Southampton United Kingdom
- French National Centre for Scientific Research France
- Helmholtz Association of German Research Centres Germany
- Natural Environment Research Council United Kingdom
- Géosciences Environnement Toulouse France
333
333
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 30 download downloads 32 - 30views32downloads
Data source Views Downloads e-Prints Soton 10 2 NERC Open Research Archive 20 30


