- home
- Advanced Search
- Energy Research
- Sustainability
- Energy Research
- Sustainability
description Publicationkeyboard_double_arrow_right Article , Conference object 2022Publisher:MDPI AG Amor Fezzani; Idriss Hadj-Mahammed; Abdellah Kouzou; Layachi Zaghba; Said Drid; Messaouda Khennane; Ralph Kennel; Mohamed Abdelrahem;doi: 10.3390/su14031771
Energy efficiency and ratio performance are two key parameters for the analysis of the performance of photovoltaic (PV) modules. The present paper focusses on the assessment of the efficiency of four different photovoltaic module technologies based on energy efficiency and ratio performance. These PV modules were installed at the Applied Research Unit in Renewable Energy (URAER) in Algeria and were used to provide experimental data to help local and international economical actors with performance enhancement and optimal choice of different technologies subject to arid outdoor conditions. The modules studied in this paper are: two thin-film modules of copper indium selenide (CIS), hetero-junction with intrinsic thin-layer silicon (HIT) and two crystalline silicon modules (polycrystalline (poly-Si), monocrystalline (mono-Si)). These technologies were initially characterized using a DC regulator based on their measured I-V characteristics under the same outdoor climate conditions as the location where the monitoring of the electrical energy produced from each PV module was carried out. The DC regulator allows for extracting the maximum electrical power. At the same time, the measurements of the solar radiation and temperature were obtained from a pyranometer type Kipp & ZonenTM CMP21 and a Pt-100 temperature sensor (Kipp & Zonen, Delft, Netherlands). These measurements were performed from July 2020 to June 2021. In this work, the monthly average performance parameters such as energy efficiency are given and analyzed. The average efficiency of the modules over 12 months was evaluated at 4.74%, 7.65%, 9.13% and 10.27% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The calculated percentage deviations in the efficiency of the modules were 8.49%, 18.88%, 19.74% and 23.57% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The low variation in the efficiency of the HIT module can be attributed to the better operation of this module under arid outdoor conditions, which makes it a promising module for adaptation to the region concerned.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Amor Fezzani; Mawloud Guermoui; Abdellah Kouzou; Ahmed Hafaifa; Layachi Zaghba; Said Drid; Jose Rodriguez; Mohamed Abdelrahem;doi: 10.3390/su151914282
Currently, for the determination of the suitable and optimal PV power plant according to the climate conditions of the concerned region, researchers focus on the estimation of certain performance factors, which are reported to be the key parameters for the analysis of the performances of grid-connected photovoltaic (PV) power systems. In this context, this paper focuses on on-site real-time analysis of the performance of three solar photovoltaic plants: Sidi-bel-Abbés (12 MWp), Laghouat (60 MWp), and Ghardaïa (1.1 MWp). These plants are located in different regions experiencing diverse climatic conditions in Algeria. The analysis was carried out by the standardized norms of IEC 61724, using monitoring data collected over one year. The photovoltaic power plants were evaluated in terms of performance factors, such as the reference yield (Yr), final yield (Yf), performance ratio (PR), and capacity factor (CF). On the other side, based on real data collected at the concerned sites, two linear functions depending on solar irradiance and the PV module temperature for each site are proposed for the evaluation of the generated alternative power output (PAC) for the three PV plants. The obtained results based on the study presented in this paper can help designers of PV power plants of different technologies and different climate conditions to precisely decide the convenient technology that allows the best production of the electrical energy for grid-tied PV systems. Furthermore, this study can contribute in giving a clear vision of the implementation of upcoming large-scale solar PV power plants in Algeria within the studied area and other areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151914282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151914282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object 2022Publisher:MDPI AG Amor Fezzani; Idriss Hadj-Mahammed; Abdellah Kouzou; Layachi Zaghba; Said Drid; Messaouda Khennane; Ralph Kennel; Mohamed Abdelrahem;doi: 10.3390/su14031771
Energy efficiency and ratio performance are two key parameters for the analysis of the performance of photovoltaic (PV) modules. The present paper focusses on the assessment of the efficiency of four different photovoltaic module technologies based on energy efficiency and ratio performance. These PV modules were installed at the Applied Research Unit in Renewable Energy (URAER) in Algeria and were used to provide experimental data to help local and international economical actors with performance enhancement and optimal choice of different technologies subject to arid outdoor conditions. The modules studied in this paper are: two thin-film modules of copper indium selenide (CIS), hetero-junction with intrinsic thin-layer silicon (HIT) and two crystalline silicon modules (polycrystalline (poly-Si), monocrystalline (mono-Si)). These technologies were initially characterized using a DC regulator based on their measured I-V characteristics under the same outdoor climate conditions as the location where the monitoring of the electrical energy produced from each PV module was carried out. The DC regulator allows for extracting the maximum electrical power. At the same time, the measurements of the solar radiation and temperature were obtained from a pyranometer type Kipp & ZonenTM CMP21 and a Pt-100 temperature sensor (Kipp & Zonen, Delft, Netherlands). These measurements were performed from July 2020 to June 2021. In this work, the monthly average performance parameters such as energy efficiency are given and analyzed. The average efficiency of the modules over 12 months was evaluated at 4.74%, 7.65%, 9.13% and 10.27% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The calculated percentage deviations in the efficiency of the modules were 8.49%, 18.88%, 19.74% and 23.57% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The low variation in the efficiency of the HIT module can be attributed to the better operation of this module under arid outdoor conditions, which makes it a promising module for adaptation to the region concerned.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Amor Fezzani; Mawloud Guermoui; Abdellah Kouzou; Ahmed Hafaifa; Layachi Zaghba; Said Drid; Jose Rodriguez; Mohamed Abdelrahem;doi: 10.3390/su151914282
Currently, for the determination of the suitable and optimal PV power plant according to the climate conditions of the concerned region, researchers focus on the estimation of certain performance factors, which are reported to be the key parameters for the analysis of the performances of grid-connected photovoltaic (PV) power systems. In this context, this paper focuses on on-site real-time analysis of the performance of three solar photovoltaic plants: Sidi-bel-Abbés (12 MWp), Laghouat (60 MWp), and Ghardaïa (1.1 MWp). These plants are located in different regions experiencing diverse climatic conditions in Algeria. The analysis was carried out by the standardized norms of IEC 61724, using monitoring data collected over one year. The photovoltaic power plants were evaluated in terms of performance factors, such as the reference yield (Yr), final yield (Yf), performance ratio (PR), and capacity factor (CF). On the other side, based on real data collected at the concerned sites, two linear functions depending on solar irradiance and the PV module temperature for each site are proposed for the evaluation of the generated alternative power output (PAC) for the three PV plants. The obtained results based on the study presented in this paper can help designers of PV power plants of different technologies and different climate conditions to precisely decide the convenient technology that allows the best production of the electrical energy for grid-tied PV systems. Furthermore, this study can contribute in giving a clear vision of the implementation of upcoming large-scale solar PV power plants in Algeria within the studied area and other areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151914282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151914282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu