- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Netherlands, Netherlands, Netherlands, Austria, United KingdomPublisher:Springer Science and Business Media LLC Nathan P. Gillett; Joeri Rogelj; Joeri Rogelj; Myles R. Allen; Michiel Schaeffer; Reto Knutti; Detlef P. van Vuuren; Detlef P. van Vuuren; Pierre Friedlingstein; Keywan Riahi; Keywan Riahi;doi: 10.1038/nclimate2868
handle: 10871/20152
Several methods exist to estimate the cumulative carbon emissions that would keep global warming to below a given temperature limit. Here we review estimates reported by the IPCC and the recent literature, and discuss the reasons underlying their differences. The most scientifically robust number-the carbon budget for CO2 -induced warming only-is also the least relevant for real-world policy. Including all greenhouse gases and using methods based on scenarios that avoid instead of exceed a given temperature limit results in lower carbon budgets. For a >66% chance of limiting warming below the internationally agreed temperature limit of 2 °C relative to pre-industrial levels, the most appropriate carbon budget estimate is 590-1,240 GtCO2 from 2015 onwards. Variations within this range depend on the probability of staying below 2 °C and on end-of-century non-CO2 warming. Current CO2 emissions are about 40 GtCO2 yr -1, and global CO2 emissions thus have to be reduced urgently to keep within a 2 °C-compatible budget.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 243 citations 243 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 26 Jan 2023 SwitzerlandPublisher:Copernicus GmbH Funded by:NSF | Department of Energy (DoE..., EC | XAIDA, NSF | The Management and Operat... +1 projectsNSF| Department of Energy (DoE) Support of the National Center for Atmospheric Research Activities ,EC| XAIDA ,NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR) ,SNSF| Combining theory with Big Data? The case of uncertainty in prediction of trends in extreme weather and impactsI. E. de Vries; S. Sippel; A. G. Pendergrass; A. G. Pendergrass; R. Knutti;Abstract. Detection and attribution (D&A) of forced precipitation change is challenging due to internal variability and limited spatial and temporal coverage of observational records. These factors result in a low signal-to-noise ratio of potential regional and even global trends. Here, we use a statistical method – ridge regression – to create physically interpretable fingerprints for detection of forced changes in mean and extreme precipitation with a high signal-to-noise ratio. The fingerprints are constructed using CMIP6 multi-model output masked to match coverage of three gridded precipitation observational datasets – GHCNDEX, HadEX3, and GPCC –, and are then applied to these observational datasets to assess the degree of forced change detectable in the real-world climate. We show that the signature of forced change is detected in all three observational datasets for global metrics of mean and extreme precipitation. Forced changes are still detectable from changes in the spatial patterns of precipitation even if the global mean trend is removed from the data. This shows detection of forced change in mean and extreme precipitation beyond a global mean trend, and increases confidence in the detection method's power, as well as in climate models' ability to capture the relevant processes that contribute to large-scale patterns of change. We also find, however, that detectability depends on the observational dataset used. Not only coverage differences but also observational uncertainty contribute to dataset disagreement, exemplified by times of emergence of forced change from internal variability ranging from 1998 to 2004 among datasets. Furthermore, different choices for the period over which the forced trend is computed result in different levels of agreement between observations and model projections. These sensitivities may explain apparent contradictions in recent studies on whether models under- or overestimate the observed forced increase in mean and extreme precipitation. Lastly, the detection fingerprints are found to rely primarily on the signal in the extratropical Northern Hemisphere, which is at least partly due to observational coverage, but potentially also due to the presence of a more robust signal in the Northern Hemisphere in general.
Earth System Dynamic... arrow_drop_down https://doi.org/10.5194/egusph...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Dynamics (ESD)Article . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2022-568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Earth System Dynamic... arrow_drop_down https://doi.org/10.5194/egusph...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Dynamics (ESD)Article . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2022-568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Embargo end date: 01 Jan 2015 Austria, Germany, Switzerland, Netherlands, NetherlandsPublisher:IOP Publishing Malte Meinshausen; Malte Meinshausen; Joeri Rogelj; Joeri Rogelj; Keywan Riahi; Keywan Riahi; Michiel Schaeffer; Reto Knutti;Limiting global warming to any level requires limiting the total amount of CO2 emissions, or staying within a CO2 budget. Here we assess how emissions from short-lived non-CO2 species like methane, hydrofluorocarbons (HFCs), black-carbon, and sulphates influence these CO2 budgets. Our default case, which assumes mitigation in all sectors and of all gases, results in a CO2 budget between 2011–2100 of 340 PgC for a >66% chance of staying below 2°C, consistent with the assessment of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Extreme variations of air-pollutant emissions from black-carbon and sulphates influence this budget by about ±5%. In the hypothetical case of no methane or HFCs mitigation—which is unlikely when CO2 is stringently reduced—the budgets would be much smaller (40% or up to 60%, respectively). However, assuming very stringent CH4 mitigation as a sensitivity case, CO2 budgets could be 25% higher. A limit on cumulative CO2 emissions remains critical for temperature targets. Even a 25% higher CO2 budget still means peaking global emissions in the next two decades, and achieving net zero CO2 emissions during the third quarter of the 21st century. The leverage we have to affect the CO2 budget by targeting non-CO2 diminishes strongly along with CO2 mitigation, because these are partly linked through economic and technological factors. Environmental Research Letters, 10 (7) ISSN:1748-9326 ISSN:1748-9318
Publication Database... arrow_drop_down IIASA DAREArticle . 2015License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/11424/1/Impact%20of%20short-lived%20non-CO2%20mitigation.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsIIASA PUREArticle . 2015 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/11424/1/Impact%20of%20short-lived%20non-CO2%20mitigation.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 73 citations 73 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down IIASA DAREArticle . 2015License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/11424/1/Impact%20of%20short-lived%20non-CO2%20mitigation.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsIIASA PUREArticle . 2015 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/11424/1/Impact%20of%20short-lived%20non-CO2%20mitigation.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book , Article 2008 France, Germany, United States, United Kingdom, United Kingdom, United KingdomPublisher:IEEE Michael P. Meredith; C. Le Quéré; C. Turley; R. Pingree; Richard Washington; Nathaniel L. Bindoff; R. Arthurton; J. Flueckiger; D. Iglesias-Rodriguez; John A. Church; David P. Stevens; W. Berger; F. MacKenzie; Reto Knutti; Meike Vogt; Gill Malin; U. Bathmann; M. Kendall; Douglas G. Martinson; A. Tudhope; M. Le Tissier; Helge Drange; I. Salter; R. Wood; D. de Gusmao; M. Barange; W. Maslowski; R. Hopcroft; G. Beaugrand; E. Lewis-Brown; Steve Rintoul; A. Andersson; C. Mauritzen; J. Raven; J.C. Gascard; C. Wallace; Michael Sparrow; M. Edwards; P. Treguer; A.C. Fischer; Zhaomin Wang; Stephen Dye; Richard J. Matear; N. Bates; Sabine Kasten; T. Furevik; Gavin A. Schmidt; M. Visbeck; H. Cattle; C. Paull; K. Shimada; P. Chisholm; P.C. Reid;The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up approximately 40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/0066b5zhData sources: Bielefeld Academic Search Engine (BASE)https://escholarship.org/conte...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2009Data sources: Electronic Publication Information CenterNERC Open Research ArchivePart of book or chapter of book . 2009Data sources: NERC Open Research Archivehttps://doi.org/10.1016/s0065-...Part of book or chapter of book . 2009 . Peer-reviewedData sources: Crossrefe-Prints SotonPart of book or chapter of book . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/estc.2008.4684318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/0066b5zhData sources: Bielefeld Academic Search Engine (BASE)https://escholarship.org/conte...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2009Data sources: Electronic Publication Information CenterNERC Open Research ArchivePart of book or chapter of book . 2009Data sources: NERC Open Research Archivehttps://doi.org/10.1016/s0065-...Part of book or chapter of book . 2009 . Peer-reviewedData sources: Crossrefe-Prints SotonPart of book or chapter of book . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/estc.2008.4684318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Embargo end date: 01 Jan 2015 Germany, Germany, Austria, SwitzerlandPublisher:IOP Publishing Reto Knutti; Joeri Rogelj; Joeri Rogelj; Malte Meinshausen; Malte Meinshausen; Andy Reisinger; Keywan Riahi; Keywan Riahi; David L. McCollum;Global-mean temperature increase is roughly proportional to cumulative emissions of carbon-dioxide (CO2). Limiting global warming to any level thus implies a finite CO2 budget. Due to geophysical uncertainties, the size of such budgets can only be expressed in probabilistic terms and is further influenced by non-CO2 emissions. We here explore how societal choices related to energy demand and specific mitigation options influence the size of carbon budgets for meeting a given temperature objective. We find that choices that exclude specific CO2 mitigation technologies (like Carbon Capture and Storage) result in greater costs, smaller compatible CO2 budgets until 2050, but larger CO2 budgets until 2100. Vice versa, choices that lead to a larger CO2 mitigation potential result in CO2 budgets until 2100 that are smaller but can be met at lower costs. In most cases, these budget variations can be explained by the amount of non-CO2 mitigation that is carried out in conjunction with CO2, and associated global carbon prices that also drive mitigation of non-CO2 gases. Budget variations are of the order of 10% around their central value. In all cases, limiting warming to below 2 °C thus still implies that CO2 emissions need to be reduced rapidly in the coming decades. Environmental Research Letters, 10 (7) ISSN:1748-9326 ISSN:1748-9318
Publication Database... arrow_drop_down IIASA PUREArticle . 2015 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/11423/1/Mitigation%20choices%20impact%20carbon%20budget%20size.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down IIASA PUREArticle . 2015 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/11423/1/Mitigation%20choices%20impact%20carbon%20budget%20size.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United KingdomPublisher:Elsevier BV Funded by:NSERC, SNSF | Klima- und UmweltphysikNSERC ,SNSF| Klima- und UmweltphysikAuthors: Bahn, Olivier; Edwards, Neil R.; Knutti, Reto; Stocker, Thomas F.;Paleoclimate evidence and climate models indicate that certain elements of the climate system may exhibit thresholds, with small changes in greenhouse gas emissions resulting in non-linear and potentially irreversible regime shifts with serious consequences for socio-economic systems. Such thresholds or tipping points in the climate system are likely to depend on both the magnitude and rate of change of surface warming. The collapse of the Atlantic thermohaline circulation (THC) is one example of such a threshold. To evaluate mitigation policies that curb greenhouse gas emissions to levels that prevent such a climate threshold being reached, we use the MERGE model of Manne, Mendelsohn and Richels. Depending on assumptions on climate sensitivity and technological progress, our analysis shows that preserving the THC may require a fast and strong greenhouse gas emission reduction from today's level, with transition to nuclear and/or renewable energy, possibly combined with the use of carbon capture and sequestration systems.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:American Geophysical Union (AGU) Funded by:EC | SEACHANGEEC| SEACHANGEAnthony C. Hirst; Jonathan M. Gregory; Jonathan M. Gregory; Leon D. Rotstayn; Simon J. Marsland; John A. Church; Mark Collier; Malte Meinshausen; Malte Meinshausen; Andrew Schurer; Markus Huber; Aixue Hu; Reto Knutti; Martin Dix; Dave Bi; Harun Rashid;Episodic explosive volcanic eruptions are a natural part of the climate system but are often omitted from atmosphere‐ocean general circulation model (AOGCM) preindustrial spin‐up and control experiments. This omission imposes a negative bias on ocean heat uptake in simulations of the historical period. In models of a range of complexity, we find that global‐mean sea level rise due to thermal expansion during the last ∼ 150 years is consequently underestimated by 5–30 mm, which is a substantial proportion of the model mean of 50 mm in Coupled Model Intercomparison Project Phase 3 AOGCMs with anthropogenic forcing only, and is therefore important in accounting for 20th century sea level rise. We test and recommend a procedure for removing the bias.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/grl....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/grl.50339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/grl....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/grl.50339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United Kingdom, Germany, United Kingdom, Australia, Netherlands, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:RCN | The Global Carbon Budget ..., EC | HELIX, EC | GEOCARBON +1 projectsRCN| The Global Carbon Budget and Carbon Atlas ,EC| HELIX ,EC| GEOCARBON ,EC| EMBRACEC. Le Quéré; Gunnar Luderer; Robbie M. Andrew; Joeri Rogelj; Joeri Rogelj; Reto Knutti; Glen P. Peters; D.P. van Vuuren; D.P. van Vuuren; Michiel Schaeffer; Josep G. Canadell; Pierre Friedlingstein; Michael R. Raupach;doi: 10.1038/ngeo2248
handle: 10871/20695 , 1885/69272
Efforts to limit climate change below a given temperature level require that global emissions of CO2 cumulated over time remain below a limited quota. This quota varies depending on the temperature level, the desired probability of staying below this level and the contributions of other gases. In spite of this restriction, global emissions of CO2 from fossil fuel combustion and cement production have continued to grow by 2.5% per year on average over the past decade. Two thirds of the CO2 emission quota consistent with a 2 °C temperature limit has already been used, and the total quota will likely be exhausted in a further 30 years at the 2014 emissions rates. We show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth. In the absence of more stringent mitigation, these trends are set to continue and further reduce the remaining quota until the onset of a potential new climate agreement in 2020. Breaking current emission trends in the short term is key to retaining credible climate targets within a rapidly diminishing emission quota.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/69272Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 641 citations 641 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/69272Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:American Geophysical Union (AGU) Funded by:SNSF | SPARC International Proje...SNSF| SPARC International Project officeAngélil, Oliver; Stone, Dáithí A; Tadross, Mark; Tummon, Fiona; Wehner, Michael; Knutti, Reto;doi: 10.1002/2014gl059234
Author(s): Angelil, O; Stone, DA; Tadross, M; Tummon, F; Wehner, M; Knutti, R | Abstract: Recent studies have examined the anthropogenic contribution to specific extreme weather events, such as the European (2003) and Russian (2010) heat waves. While these targeted studies examine the attributable risk of an event occurring over a specified temporal and spatial domain, it is unclear how effectively their attribution statements can serve as a proxy for similar events occurring at different temporal and spatial scales. Here we test the sensitivity of attribution results to the temporal and spatial scales of extreme precipitation and temperature events by applying a probabilistic event attribution framework to the output of two global climate models, each run with and without anthropogenic greenhouse gas emissions. Attributable risk tends to be more sensitive to the temporal than spatial scale of the event, increasing as event duration increases. Globally, correlations between attribution statements at different spatial scales are very strong for temperature extremes and moderate for heavy precipitation extremes. © 2014. American Geophysical Union. All Rights Reserved.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2014Full-Text: https://escholarship.org/uc/item/1zb4132wData sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2014 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2014gl059234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2014Full-Text: https://escholarship.org/uc/item/1zb4132wData sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2014 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2014gl059234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SwitzerlandPublisher:Wiley Funded by:SNSF | Climate Change Extremes a..., SNSF | Climate and Environmental...SNSF| Climate Change Extremes and Adaptation Strategies considering Uncertainty and Federalism (CCAdapt) ,SNSF| Climate and Environmental PhysicsBrönnimann S.; Appenzeller C.; Croci-Maspoli M.; Fuhrer J.; Grosjean M.; Hohmann R.; Ingold K.; Knutti R.; Liniger M. A.; Raible C. C.; Röthlisberger R.; Schär C.; Scherrer S. C.; Strassmann K.; Thalmann P.;Climate change is clearly discernible in observed climate records in Switzerland. It impacts on natural systems, ecosystems, and economic sectors such as agriculture, tourism, and energy, and it affects Swiss livelihood in various ways. The observed and projected changes call for a response from the political system, which in Switzerland is characterized by federalism and direct democratic instruments. Swiss climate science embraces natural and social sciences and builds on institutionalized links between researchers, public, and private stakeholders. In this article, we review the physical, institutional, and political aspects of climate change in Switzerland. We show how the current state of Swiss climate science and policy developed over the past 20 years in the context of international developments and national responses. Specific to Switzerland is its topographic setting with mountain regions and lowlands on both sides of the Alpine ridge, which makes climate change clearly apparent and for some aspects (tourist sector, hydropower, and extreme events) highly relevant and better perceivable (e.g., retreating glaciers). Not surprisingly the Alpine region is of central interest in Swiss climate change studies.This article is categorized under:Trans‐Disciplinary Perspectives > National Reviews
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2014 . Peer-reviewedFull-Text: https://boris.unibe.ch/53522/1/wcc280.pdfData sources: Bern Open Repository and Information System (BORIS)Wiley Interdisciplinary Reviews Climate ChangeArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2014 . Peer-reviewedFull-Text: https://boris.unibe.ch/53522/1/wcc280.pdfData sources: Bern Open Repository and Information System (BORIS)Wiley Interdisciplinary Reviews Climate ChangeArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Netherlands, Netherlands, Netherlands, Austria, United KingdomPublisher:Springer Science and Business Media LLC Nathan P. Gillett; Joeri Rogelj; Joeri Rogelj; Myles R. Allen; Michiel Schaeffer; Reto Knutti; Detlef P. van Vuuren; Detlef P. van Vuuren; Pierre Friedlingstein; Keywan Riahi; Keywan Riahi;doi: 10.1038/nclimate2868
handle: 10871/20152
Several methods exist to estimate the cumulative carbon emissions that would keep global warming to below a given temperature limit. Here we review estimates reported by the IPCC and the recent literature, and discuss the reasons underlying their differences. The most scientifically robust number-the carbon budget for CO2 -induced warming only-is also the least relevant for real-world policy. Including all greenhouse gases and using methods based on scenarios that avoid instead of exceed a given temperature limit results in lower carbon budgets. For a >66% chance of limiting warming below the internationally agreed temperature limit of 2 °C relative to pre-industrial levels, the most appropriate carbon budget estimate is 590-1,240 GtCO2 from 2015 onwards. Variations within this range depend on the probability of staying below 2 °C and on end-of-century non-CO2 warming. Current CO2 emissions are about 40 GtCO2 yr -1, and global CO2 emissions thus have to be reduced urgently to keep within a 2 °C-compatible budget.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 243 citations 243 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 26 Jan 2023 SwitzerlandPublisher:Copernicus GmbH Funded by:NSF | Department of Energy (DoE..., EC | XAIDA, NSF | The Management and Operat... +1 projectsNSF| Department of Energy (DoE) Support of the National Center for Atmospheric Research Activities ,EC| XAIDA ,NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR) ,SNSF| Combining theory with Big Data? The case of uncertainty in prediction of trends in extreme weather and impactsI. E. de Vries; S. Sippel; A. G. Pendergrass; A. G. Pendergrass; R. Knutti;Abstract. Detection and attribution (D&A) of forced precipitation change is challenging due to internal variability and limited spatial and temporal coverage of observational records. These factors result in a low signal-to-noise ratio of potential regional and even global trends. Here, we use a statistical method – ridge regression – to create physically interpretable fingerprints for detection of forced changes in mean and extreme precipitation with a high signal-to-noise ratio. The fingerprints are constructed using CMIP6 multi-model output masked to match coverage of three gridded precipitation observational datasets – GHCNDEX, HadEX3, and GPCC –, and are then applied to these observational datasets to assess the degree of forced change detectable in the real-world climate. We show that the signature of forced change is detected in all three observational datasets for global metrics of mean and extreme precipitation. Forced changes are still detectable from changes in the spatial patterns of precipitation even if the global mean trend is removed from the data. This shows detection of forced change in mean and extreme precipitation beyond a global mean trend, and increases confidence in the detection method's power, as well as in climate models' ability to capture the relevant processes that contribute to large-scale patterns of change. We also find, however, that detectability depends on the observational dataset used. Not only coverage differences but also observational uncertainty contribute to dataset disagreement, exemplified by times of emergence of forced change from internal variability ranging from 1998 to 2004 among datasets. Furthermore, different choices for the period over which the forced trend is computed result in different levels of agreement between observations and model projections. These sensitivities may explain apparent contradictions in recent studies on whether models under- or overestimate the observed forced increase in mean and extreme precipitation. Lastly, the detection fingerprints are found to rely primarily on the signal in the extratropical Northern Hemisphere, which is at least partly due to observational coverage, but potentially also due to the presence of a more robust signal in the Northern Hemisphere in general.
Earth System Dynamic... arrow_drop_down https://doi.org/10.5194/egusph...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Dynamics (ESD)Article . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2022-568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Earth System Dynamic... arrow_drop_down https://doi.org/10.5194/egusph...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Dynamics (ESD)Article . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-2022-568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Embargo end date: 01 Jan 2015 Austria, Germany, Switzerland, Netherlands, NetherlandsPublisher:IOP Publishing Malte Meinshausen; Malte Meinshausen; Joeri Rogelj; Joeri Rogelj; Keywan Riahi; Keywan Riahi; Michiel Schaeffer; Reto Knutti;Limiting global warming to any level requires limiting the total amount of CO2 emissions, or staying within a CO2 budget. Here we assess how emissions from short-lived non-CO2 species like methane, hydrofluorocarbons (HFCs), black-carbon, and sulphates influence these CO2 budgets. Our default case, which assumes mitigation in all sectors and of all gases, results in a CO2 budget between 2011–2100 of 340 PgC for a >66% chance of staying below 2°C, consistent with the assessment of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Extreme variations of air-pollutant emissions from black-carbon and sulphates influence this budget by about ±5%. In the hypothetical case of no methane or HFCs mitigation—which is unlikely when CO2 is stringently reduced—the budgets would be much smaller (40% or up to 60%, respectively). However, assuming very stringent CH4 mitigation as a sensitivity case, CO2 budgets could be 25% higher. A limit on cumulative CO2 emissions remains critical for temperature targets. Even a 25% higher CO2 budget still means peaking global emissions in the next two decades, and achieving net zero CO2 emissions during the third quarter of the 21st century. The leverage we have to affect the CO2 budget by targeting non-CO2 diminishes strongly along with CO2 mitigation, because these are partly linked through economic and technological factors. Environmental Research Letters, 10 (7) ISSN:1748-9326 ISSN:1748-9318
Publication Database... arrow_drop_down IIASA DAREArticle . 2015License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/11424/1/Impact%20of%20short-lived%20non-CO2%20mitigation.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsIIASA PUREArticle . 2015 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/11424/1/Impact%20of%20short-lived%20non-CO2%20mitigation.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 73 citations 73 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down IIASA DAREArticle . 2015License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/11424/1/Impact%20of%20short-lived%20non-CO2%20mitigation.pdfData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsIIASA PUREArticle . 2015 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/11424/1/Impact%20of%20short-lived%20non-CO2%20mitigation.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book , Article 2008 France, Germany, United States, United Kingdom, United Kingdom, United KingdomPublisher:IEEE Michael P. Meredith; C. Le Quéré; C. Turley; R. Pingree; Richard Washington; Nathaniel L. Bindoff; R. Arthurton; J. Flueckiger; D. Iglesias-Rodriguez; John A. Church; David P. Stevens; W. Berger; F. MacKenzie; Reto Knutti; Meike Vogt; Gill Malin; U. Bathmann; M. Kendall; Douglas G. Martinson; A. Tudhope; M. Le Tissier; Helge Drange; I. Salter; R. Wood; D. de Gusmao; M. Barange; W. Maslowski; R. Hopcroft; G. Beaugrand; E. Lewis-Brown; Steve Rintoul; A. Andersson; C. Mauritzen; J. Raven; J.C. Gascard; C. Wallace; Michael Sparrow; M. Edwards; P. Treguer; A.C. Fischer; Zhaomin Wang; Stephen Dye; Richard J. Matear; N. Bates; Sabine Kasten; T. Furevik; Gavin A. Schmidt; M. Visbeck; H. Cattle; C. Paull; K. Shimada; P. Chisholm; P.C. Reid;The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up approximately 40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/0066b5zhData sources: Bielefeld Academic Search Engine (BASE)https://escholarship.org/conte...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2009Data sources: Electronic Publication Information CenterNERC Open Research ArchivePart of book or chapter of book . 2009Data sources: NERC Open Research Archivehttps://doi.org/10.1016/s0065-...Part of book or chapter of book . 2009 . Peer-reviewedData sources: Crossrefe-Prints SotonPart of book or chapter of book . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/estc.2008.4684318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/0066b5zhData sources: Bielefeld Academic Search Engine (BASE)https://escholarship.org/conte...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2009Data sources: Electronic Publication Information CenterNERC Open Research ArchivePart of book or chapter of book . 2009Data sources: NERC Open Research Archivehttps://doi.org/10.1016/s0065-...Part of book or chapter of book . 2009 . Peer-reviewedData sources: Crossrefe-Prints SotonPart of book or chapter of book . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/estc.2008.4684318&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Embargo end date: 01 Jan 2015 Germany, Germany, Austria, SwitzerlandPublisher:IOP Publishing Reto Knutti; Joeri Rogelj; Joeri Rogelj; Malte Meinshausen; Malte Meinshausen; Andy Reisinger; Keywan Riahi; Keywan Riahi; David L. McCollum;Global-mean temperature increase is roughly proportional to cumulative emissions of carbon-dioxide (CO2). Limiting global warming to any level thus implies a finite CO2 budget. Due to geophysical uncertainties, the size of such budgets can only be expressed in probabilistic terms and is further influenced by non-CO2 emissions. We here explore how societal choices related to energy demand and specific mitigation options influence the size of carbon budgets for meeting a given temperature objective. We find that choices that exclude specific CO2 mitigation technologies (like Carbon Capture and Storage) result in greater costs, smaller compatible CO2 budgets until 2050, but larger CO2 budgets until 2100. Vice versa, choices that lead to a larger CO2 mitigation potential result in CO2 budgets until 2100 that are smaller but can be met at lower costs. In most cases, these budget variations can be explained by the amount of non-CO2 mitigation that is carried out in conjunction with CO2, and associated global carbon prices that also drive mitigation of non-CO2 gases. Budget variations are of the order of 10% around their central value. In all cases, limiting warming to below 2 °C thus still implies that CO2 emissions need to be reduced rapidly in the coming decades. Environmental Research Letters, 10 (7) ISSN:1748-9326 ISSN:1748-9318
Publication Database... arrow_drop_down IIASA PUREArticle . 2015 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/11423/1/Mitigation%20choices%20impact%20carbon%20budget%20size.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down IIASA PUREArticle . 2015 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/11423/1/Mitigation%20choices%20impact%20carbon%20budget%20size.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United KingdomPublisher:Elsevier BV Funded by:NSERC, SNSF | Klima- und UmweltphysikNSERC ,SNSF| Klima- und UmweltphysikAuthors: Bahn, Olivier; Edwards, Neil R.; Knutti, Reto; Stocker, Thomas F.;Paleoclimate evidence and climate models indicate that certain elements of the climate system may exhibit thresholds, with small changes in greenhouse gas emissions resulting in non-linear and potentially irreversible regime shifts with serious consequences for socio-economic systems. Such thresholds or tipping points in the climate system are likely to depend on both the magnitude and rate of change of surface warming. The collapse of the Atlantic thermohaline circulation (THC) is one example of such a threshold. To evaluate mitigation policies that curb greenhouse gas emissions to levels that prevent such a climate threshold being reached, we use the MERGE model of Manne, Mendelsohn and Richels. Depending on assumptions on climate sensitivity and technological progress, our analysis shows that preserving the THC may require a fast and strong greenhouse gas emission reduction from today's level, with transition to nuclear and/or renewable energy, possibly combined with the use of carbon capture and sequestration systems.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:American Geophysical Union (AGU) Funded by:EC | SEACHANGEEC| SEACHANGEAnthony C. Hirst; Jonathan M. Gregory; Jonathan M. Gregory; Leon D. Rotstayn; Simon J. Marsland; John A. Church; Mark Collier; Malte Meinshausen; Malte Meinshausen; Andrew Schurer; Markus Huber; Aixue Hu; Reto Knutti; Martin Dix; Dave Bi; Harun Rashid;Episodic explosive volcanic eruptions are a natural part of the climate system but are often omitted from atmosphere‐ocean general circulation model (AOGCM) preindustrial spin‐up and control experiments. This omission imposes a negative bias on ocean heat uptake in simulations of the historical period. In models of a range of complexity, we find that global‐mean sea level rise due to thermal expansion during the last ∼ 150 years is consequently underestimated by 5–30 mm, which is a substantial proportion of the model mean of 50 mm in Coupled Model Intercomparison Project Phase 3 AOGCMs with anthropogenic forcing only, and is therefore important in accounting for 20th century sea level rise. We test and recommend a procedure for removing the bias.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/grl....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/grl.50339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/grl....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/grl.50339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United Kingdom, Germany, United Kingdom, Australia, Netherlands, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:RCN | The Global Carbon Budget ..., EC | HELIX, EC | GEOCARBON +1 projectsRCN| The Global Carbon Budget and Carbon Atlas ,EC| HELIX ,EC| GEOCARBON ,EC| EMBRACEC. Le Quéré; Gunnar Luderer; Robbie M. Andrew; Joeri Rogelj; Joeri Rogelj; Reto Knutti; Glen P. Peters; D.P. van Vuuren; D.P. van Vuuren; Michiel Schaeffer; Josep G. Canadell; Pierre Friedlingstein; Michael R. Raupach;doi: 10.1038/ngeo2248
handle: 10871/20695 , 1885/69272
Efforts to limit climate change below a given temperature level require that global emissions of CO2 cumulated over time remain below a limited quota. This quota varies depending on the temperature level, the desired probability of staying below this level and the contributions of other gases. In spite of this restriction, global emissions of CO2 from fossil fuel combustion and cement production have continued to grow by 2.5% per year on average over the past decade. Two thirds of the CO2 emission quota consistent with a 2 °C temperature limit has already been used, and the total quota will likely be exhausted in a further 30 years at the 2014 emissions rates. We show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth. In the absence of more stringent mitigation, these trends are set to continue and further reduce the remaining quota until the onset of a potential new climate agreement in 2020. Breaking current emission trends in the short term is key to retaining credible climate targets within a rapidly diminishing emission quota.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/69272Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 641 citations 641 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/69272Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:American Geophysical Union (AGU) Funded by:SNSF | SPARC International Proje...SNSF| SPARC International Project officeAngélil, Oliver; Stone, Dáithí A; Tadross, Mark; Tummon, Fiona; Wehner, Michael; Knutti, Reto;doi: 10.1002/2014gl059234
Author(s): Angelil, O; Stone, DA; Tadross, M; Tummon, F; Wehner, M; Knutti, R | Abstract: Recent studies have examined the anthropogenic contribution to specific extreme weather events, such as the European (2003) and Russian (2010) heat waves. While these targeted studies examine the attributable risk of an event occurring over a specified temporal and spatial domain, it is unclear how effectively their attribution statements can serve as a proxy for similar events occurring at different temporal and spatial scales. Here we test the sensitivity of attribution results to the temporal and spatial scales of extreme precipitation and temperature events by applying a probabilistic event attribution framework to the output of two global climate models, each run with and without anthropogenic greenhouse gas emissions. Attributable risk tends to be more sensitive to the temporal than spatial scale of the event, increasing as event duration increases. Globally, correlations between attribution statements at different spatial scales are very strong for temperature extremes and moderate for heavy precipitation extremes. © 2014. American Geophysical Union. All Rights Reserved.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2014Full-Text: https://escholarship.org/uc/item/1zb4132wData sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2014 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2014gl059234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2014Full-Text: https://escholarship.org/uc/item/1zb4132wData sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2014 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2014gl059234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SwitzerlandPublisher:Wiley Funded by:SNSF | Climate Change Extremes a..., SNSF | Climate and Environmental...SNSF| Climate Change Extremes and Adaptation Strategies considering Uncertainty and Federalism (CCAdapt) ,SNSF| Climate and Environmental PhysicsBrönnimann S.; Appenzeller C.; Croci-Maspoli M.; Fuhrer J.; Grosjean M.; Hohmann R.; Ingold K.; Knutti R.; Liniger M. A.; Raible C. C.; Röthlisberger R.; Schär C.; Scherrer S. C.; Strassmann K.; Thalmann P.;Climate change is clearly discernible in observed climate records in Switzerland. It impacts on natural systems, ecosystems, and economic sectors such as agriculture, tourism, and energy, and it affects Swiss livelihood in various ways. The observed and projected changes call for a response from the political system, which in Switzerland is characterized by federalism and direct democratic instruments. Swiss climate science embraces natural and social sciences and builds on institutionalized links between researchers, public, and private stakeholders. In this article, we review the physical, institutional, and political aspects of climate change in Switzerland. We show how the current state of Swiss climate science and policy developed over the past 20 years in the context of international developments and national responses. Specific to Switzerland is its topographic setting with mountain regions and lowlands on both sides of the Alpine ridge, which makes climate change clearly apparent and for some aspects (tourist sector, hydropower, and extreme events) highly relevant and better perceivable (e.g., retreating glaciers). Not surprisingly the Alpine region is of central interest in Swiss climate change studies.This article is categorized under:Trans‐Disciplinary Perspectives > National Reviews
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2014 . Peer-reviewedFull-Text: https://boris.unibe.ch/53522/1/wcc280.pdfData sources: Bern Open Repository and Information System (BORIS)Wiley Interdisciplinary Reviews Climate ChangeArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2014 . Peer-reviewedFull-Text: https://boris.unibe.ch/53522/1/wcc280.pdfData sources: Bern Open Repository and Information System (BORIS)Wiley Interdisciplinary Reviews Climate ChangeArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu