- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Dana M. Bergstrom; Dana M. Bergstrom;pmid: 34809999
Antarctica's isolation has been breached by various non-native species, including microbes, a grass, and some invertebrates. As yet, no marine species have reportedly established populations. With increasing effects of climate change and human activity, continued concerted action is needed to keep Antarctica protected from the impacts of non-native species establishment.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2021.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2021.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Dana M. Bergstrom; Dana M. Bergstrom;pmid: 34809999
Antarctica's isolation has been breached by various non-native species, including microbes, a grass, and some invertebrates. As yet, no marine species have reportedly established populations. With increasing effects of climate change and human activity, continued concerted action is needed to keep Antarctica protected from the impacts of non-native species establishment.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2021.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2021.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Australia, United KingdomPublisher:Wiley Funded by:NSF | Increased Connectivity in..., ARC | Discovery Projects - Gran..., ARC | Special Research Initiati...NSF| Increased Connectivity in a Polar Desert Resulting from Climate Warming: McMurdo Dry Valley LTER Program ,ARC| Discovery Projects - Grant ID: DP200100223 ,ARC| Special Research Initiatives - Grant ID: SR200100005Jasmine R. Lee; Melinda J. Waterman; Justine D. Shaw; Dana M. Bergstrom; Heather J. Lynch; Diana H. Wall; Sharon A. Robinson;AbstractAntarctic biodiversity faces an unknown future with a changing climate. Most terrestrial biota is restricted to limited patches of ice‐free land in a sea of ice, where they are adapted to the continent's extreme cold and wind and exploit microhabitats of suitable conditions. As temperatures rise, ice‐free areas are predicted to expand, more rapidly in some areas than others. There is high uncertainty as to how species' distributions, physiology, abundance, and survivorship will be affected as their habitats transform. Here we use current knowledge to propose hypotheses that ice‐free area expansion (i) will increase habitat availability, though the quality of habitat will vary; (ii) will increase structural connectivity, although not necessarily increase opportunities for species establishment; (iii) combined with milder climates will increase likelihood of non‐native species establishment, but may also lengthen activity windows for all species; and (iv) will benefit some species and not others, possibly resulting in increased homogeneity of biodiversity. We anticipate considerable spatial, temporal, and taxonomic variation in species responses, and a heightened need for interdisciplinary research to understand the factors associated with ecosystem resilience under future scenarios. Such research will help identify at‐risk species or vulnerable localities and is crucial for informing environmental management and policymaking into the future.
NERC Open Research A... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Australia, United KingdomPublisher:Wiley Funded by:NSF | Increased Connectivity in..., ARC | Discovery Projects - Gran..., ARC | Special Research Initiati...NSF| Increased Connectivity in a Polar Desert Resulting from Climate Warming: McMurdo Dry Valley LTER Program ,ARC| Discovery Projects - Grant ID: DP200100223 ,ARC| Special Research Initiatives - Grant ID: SR200100005Jasmine R. Lee; Melinda J. Waterman; Justine D. Shaw; Dana M. Bergstrom; Heather J. Lynch; Diana H. Wall; Sharon A. Robinson;AbstractAntarctic biodiversity faces an unknown future with a changing climate. Most terrestrial biota is restricted to limited patches of ice‐free land in a sea of ice, where they are adapted to the continent's extreme cold and wind and exploit microhabitats of suitable conditions. As temperatures rise, ice‐free areas are predicted to expand, more rapidly in some areas than others. There is high uncertainty as to how species' distributions, physiology, abundance, and survivorship will be affected as their habitats transform. Here we use current knowledge to propose hypotheses that ice‐free area expansion (i) will increase habitat availability, though the quality of habitat will vary; (ii) will increase structural connectivity, although not necessarily increase opportunities for species establishment; (iii) combined with milder climates will increase likelihood of non‐native species establishment, but may also lengthen activity windows for all species; and (iv) will benefit some species and not others, possibly resulting in increased homogeneity of biodiversity. We anticipate considerable spatial, temporal, and taxonomic variation in species responses, and a heightened need for interdisciplinary research to understand the factors associated with ecosystem resilience under future scenarios. Such research will help identify at‐risk species or vulnerable localities and is crucial for informing environmental management and policymaking into the future.
NERC Open Research A... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, Australia, United StatesPublisher:Wiley Publicly fundedBen Raymond; Ben Raymond; Katinka X. Ruthrof; Suzanne M. Prober; John van den Hoff; Euan G. Ritchie; Kristen J. Williams; Shaun T. Brooks; Rowan Trebilco; Rowan Trebilco; Kate J. Helmstedt; Delphi F. L. Ward; Andrew J. Constable; Samantha A. Setterfield; Michael H. Depledge; Sharon A. Robinson; Norman C. Duke; Carla M. Sgrò; Christopher M. Baker; Emily Nicholson; Melodie A. McGeoch; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Justine D. Shaw; Barbara C. Wienecke; David B. Lindenmayer; Glenda M. Wardle; Andrés Holz; David M. J. S. Bowman; Tracy D. Ainsworth; Jonathan S. Stark; Lucie M. Bland; Toby Travers; Craig R. Johnson; Dana M. Bergstrom; Dana M. Bergstrom; Rachel Morgain; Josep G. Canadell; Phillip J. Zylstra; Phillip J. Zylstra; Catherine R. Dickson; Lesley Hughes; Katherine A. Dafforn;AbstractGlobally, collapse of ecosystems—potentially irreversible change to ecosystem structure, composition and function—imperils biodiversity, human health and well‐being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2, from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic ‘presses’ and/or acute ‘pulses’, drive ecosystem collapse. Ecosystem responses to 5–17 pressures were categorised as four collapse profiles—abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three‐step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.
Australian National ... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 172 citations 172 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, Australia, United StatesPublisher:Wiley Publicly fundedBen Raymond; Ben Raymond; Katinka X. Ruthrof; Suzanne M. Prober; John van den Hoff; Euan G. Ritchie; Kristen J. Williams; Shaun T. Brooks; Rowan Trebilco; Rowan Trebilco; Kate J. Helmstedt; Delphi F. L. Ward; Andrew J. Constable; Samantha A. Setterfield; Michael H. Depledge; Sharon A. Robinson; Norman C. Duke; Carla M. Sgrò; Christopher M. Baker; Emily Nicholson; Melodie A. McGeoch; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Justine D. Shaw; Barbara C. Wienecke; David B. Lindenmayer; Glenda M. Wardle; Andrés Holz; David M. J. S. Bowman; Tracy D. Ainsworth; Jonathan S. Stark; Lucie M. Bland; Toby Travers; Craig R. Johnson; Dana M. Bergstrom; Dana M. Bergstrom; Rachel Morgain; Josep G. Canadell; Phillip J. Zylstra; Phillip J. Zylstra; Catherine R. Dickson; Lesley Hughes; Katherine A. Dafforn;AbstractGlobally, collapse of ecosystems—potentially irreversible change to ecosystem structure, composition and function—imperils biodiversity, human health and well‐being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2, from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic ‘presses’ and/or acute ‘pulses’, drive ecosystem collapse. Ecosystem responses to 5–17 pressures were categorised as four collapse profiles—abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three‐step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.
Australian National ... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 172 citations 172 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, United Kingdom, Spain, Australia, South Africa, Australia, Australia, DenmarkPublisher:Public Library of Science (PLoS) Funded by:NSF | Polar Seabirds with Long-..., UKRI | Evolutionary history of C..., NSF | COLLABORATIVE RESEARCH: A...NSF| Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics ,UKRI| Evolutionary history of Colobanthus quitensis and its associated micro-organisms ,NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsJasmine R. Lee; Aleks Terauds; Josie Carwardine; Justine D. Shaw; Richard A. Fuller; Hugh P. Possingham; Steven L. Chown; Peter Convey; Neil Gilbert; Kevin A. Hughes; Ewan McIvor; Sharon A. Robinson; Yan Ropert-Coudert; Dana M. Bergstrom; Elisabeth M. Biersma; Claire Christian; Don A. Cowan; Yves Frenot; Stéphanie Jenouvrier; Lisa Kelley; Michael J. Lee; Heather J. Lynch; Birgit Njåstad; Antonio Quesada; Ricardo M. Roura; E. Ashley Shaw; Damon Stanwell-Smith; Megumu Tsujimoto; Diana H. Wall; Annick Wilmotte; Iadine Chadès;Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations.
NERC Open Research A... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/2263/92783Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/2263/92783Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, United Kingdom, Spain, Australia, South Africa, Australia, Australia, DenmarkPublisher:Public Library of Science (PLoS) Funded by:NSF | Polar Seabirds with Long-..., UKRI | Evolutionary history of C..., NSF | COLLABORATIVE RESEARCH: A...NSF| Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics ,UKRI| Evolutionary history of Colobanthus quitensis and its associated micro-organisms ,NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsJasmine R. Lee; Aleks Terauds; Josie Carwardine; Justine D. Shaw; Richard A. Fuller; Hugh P. Possingham; Steven L. Chown; Peter Convey; Neil Gilbert; Kevin A. Hughes; Ewan McIvor; Sharon A. Robinson; Yan Ropert-Coudert; Dana M. Bergstrom; Elisabeth M. Biersma; Claire Christian; Don A. Cowan; Yves Frenot; Stéphanie Jenouvrier; Lisa Kelley; Michael J. Lee; Heather J. Lynch; Birgit Njåstad; Antonio Quesada; Ricardo M. Roura; E. Ashley Shaw; Damon Stanwell-Smith; Megumu Tsujimoto; Diana H. Wall; Annick Wilmotte; Iadine Chadès;Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations.
NERC Open Research A... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/2263/92783Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/2263/92783Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Catherine R. Dickson; David J. Baker; Dana M. Bergstrom; Rowan H. Brookes; Jennie Whinam; Melodie A. McGeoch;doi: 10.1111/aec.12958
handle: 11343/276439
AbstractUnder anthropogenic climate change, emerging diseases and pathogens are increasingly prevalent in high latitude and altitude regions that were previously protected by cold winter temperatures. Ongoing island‐wide dieback of a foundation species, the cushion plant Azorella macquariensis, on World Heritage listed Macquarie Island provides the first sub‐Antarctic example. To better understand the island‐wide progression of cushion dieback and its drivers, we established and quantified plant condition classes and measured microclimate across 62 sites. We then tested whether the drivers of cushion dieback were associated with (i) water stress: represented by vapour pressure deficit, wind exposure and gravel content, (ii) pathogen virulence: using freezing days and extreme humidity as empirically supported surrogates, or (iii) both. There was a strong north‐south progression in cushion condition, with dieback most active in the centre of the island and advanced in the north. Dieback was most extensive at sites with fewer freezing days and high humidity. Natural southern refugia were explained by the significantly colder temperatures, associated with a north‐south temperature gradient. It is expected that under current climate change trajectories, where Macquarie is likely to continue to become warmer and wetter, cushion dieback will remain pervasive, expanding most slowly in the south and potentially outpacing recovery. We emphasise the need for increased awareness to prevent the establishment of pathogens into and across the landscapes of newly susceptible high latitude and altitude regions. Areas of high conservation significance need to be prioritised for management, to prevent further landscape‐scale change under current climate trajectories.
Austral Ecology arrow_drop_down Austral EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Austral Ecology arrow_drop_down Austral EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Catherine R. Dickson; David J. Baker; Dana M. Bergstrom; Rowan H. Brookes; Jennie Whinam; Melodie A. McGeoch;doi: 10.1111/aec.12958
handle: 11343/276439
AbstractUnder anthropogenic climate change, emerging diseases and pathogens are increasingly prevalent in high latitude and altitude regions that were previously protected by cold winter temperatures. Ongoing island‐wide dieback of a foundation species, the cushion plant Azorella macquariensis, on World Heritage listed Macquarie Island provides the first sub‐Antarctic example. To better understand the island‐wide progression of cushion dieback and its drivers, we established and quantified plant condition classes and measured microclimate across 62 sites. We then tested whether the drivers of cushion dieback were associated with (i) water stress: represented by vapour pressure deficit, wind exposure and gravel content, (ii) pathogen virulence: using freezing days and extreme humidity as empirically supported surrogates, or (iii) both. There was a strong north‐south progression in cushion condition, with dieback most active in the centre of the island and advanced in the north. Dieback was most extensive at sites with fewer freezing days and high humidity. Natural southern refugia were explained by the significantly colder temperatures, associated with a north‐south temperature gradient. It is expected that under current climate change trajectories, where Macquarie is likely to continue to become warmer and wetter, cushion dieback will remain pervasive, expanding most slowly in the south and potentially outpacing recovery. We emphasise the need for increased awareness to prevent the establishment of pathogens into and across the landscapes of newly susceptible high latitude and altitude regions. Areas of high conservation significance need to be prioritised for management, to prevent further landscape‐scale change under current climate trajectories.
Austral Ecology arrow_drop_down Austral EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Austral Ecology arrow_drop_down Austral EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Dana M. Bergstrom; Dana M. Bergstrom;pmid: 34809999
Antarctica's isolation has been breached by various non-native species, including microbes, a grass, and some invertebrates. As yet, no marine species have reportedly established populations. With increasing effects of climate change and human activity, continued concerted action is needed to keep Antarctica protected from the impacts of non-native species establishment.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2021.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2021.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Dana M. Bergstrom; Dana M. Bergstrom;pmid: 34809999
Antarctica's isolation has been breached by various non-native species, including microbes, a grass, and some invertebrates. As yet, no marine species have reportedly established populations. With increasing effects of climate change and human activity, continued concerted action is needed to keep Antarctica protected from the impacts of non-native species establishment.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2021.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2021.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Australia, United KingdomPublisher:Wiley Funded by:NSF | Increased Connectivity in..., ARC | Discovery Projects - Gran..., ARC | Special Research Initiati...NSF| Increased Connectivity in a Polar Desert Resulting from Climate Warming: McMurdo Dry Valley LTER Program ,ARC| Discovery Projects - Grant ID: DP200100223 ,ARC| Special Research Initiatives - Grant ID: SR200100005Jasmine R. Lee; Melinda J. Waterman; Justine D. Shaw; Dana M. Bergstrom; Heather J. Lynch; Diana H. Wall; Sharon A. Robinson;AbstractAntarctic biodiversity faces an unknown future with a changing climate. Most terrestrial biota is restricted to limited patches of ice‐free land in a sea of ice, where they are adapted to the continent's extreme cold and wind and exploit microhabitats of suitable conditions. As temperatures rise, ice‐free areas are predicted to expand, more rapidly in some areas than others. There is high uncertainty as to how species' distributions, physiology, abundance, and survivorship will be affected as their habitats transform. Here we use current knowledge to propose hypotheses that ice‐free area expansion (i) will increase habitat availability, though the quality of habitat will vary; (ii) will increase structural connectivity, although not necessarily increase opportunities for species establishment; (iii) combined with milder climates will increase likelihood of non‐native species establishment, but may also lengthen activity windows for all species; and (iv) will benefit some species and not others, possibly resulting in increased homogeneity of biodiversity. We anticipate considerable spatial, temporal, and taxonomic variation in species responses, and a heightened need for interdisciplinary research to understand the factors associated with ecosystem resilience under future scenarios. Such research will help identify at‐risk species or vulnerable localities and is crucial for informing environmental management and policymaking into the future.
NERC Open Research A... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Australia, United KingdomPublisher:Wiley Funded by:NSF | Increased Connectivity in..., ARC | Discovery Projects - Gran..., ARC | Special Research Initiati...NSF| Increased Connectivity in a Polar Desert Resulting from Climate Warming: McMurdo Dry Valley LTER Program ,ARC| Discovery Projects - Grant ID: DP200100223 ,ARC| Special Research Initiatives - Grant ID: SR200100005Jasmine R. Lee; Melinda J. Waterman; Justine D. Shaw; Dana M. Bergstrom; Heather J. Lynch; Diana H. Wall; Sharon A. Robinson;AbstractAntarctic biodiversity faces an unknown future with a changing climate. Most terrestrial biota is restricted to limited patches of ice‐free land in a sea of ice, where they are adapted to the continent's extreme cold and wind and exploit microhabitats of suitable conditions. As temperatures rise, ice‐free areas are predicted to expand, more rapidly in some areas than others. There is high uncertainty as to how species' distributions, physiology, abundance, and survivorship will be affected as their habitats transform. Here we use current knowledge to propose hypotheses that ice‐free area expansion (i) will increase habitat availability, though the quality of habitat will vary; (ii) will increase structural connectivity, although not necessarily increase opportunities for species establishment; (iii) combined with milder climates will increase likelihood of non‐native species establishment, but may also lengthen activity windows for all species; and (iv) will benefit some species and not others, possibly resulting in increased homogeneity of biodiversity. We anticipate considerable spatial, temporal, and taxonomic variation in species responses, and a heightened need for interdisciplinary research to understand the factors associated with ecosystem resilience under future scenarios. Such research will help identify at‐risk species or vulnerable localities and is crucial for informing environmental management and policymaking into the future.
NERC Open Research A... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, Australia, United StatesPublisher:Wiley Publicly fundedBen Raymond; Ben Raymond; Katinka X. Ruthrof; Suzanne M. Prober; John van den Hoff; Euan G. Ritchie; Kristen J. Williams; Shaun T. Brooks; Rowan Trebilco; Rowan Trebilco; Kate J. Helmstedt; Delphi F. L. Ward; Andrew J. Constable; Samantha A. Setterfield; Michael H. Depledge; Sharon A. Robinson; Norman C. Duke; Carla M. Sgrò; Christopher M. Baker; Emily Nicholson; Melodie A. McGeoch; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Justine D. Shaw; Barbara C. Wienecke; David B. Lindenmayer; Glenda M. Wardle; Andrés Holz; David M. J. S. Bowman; Tracy D. Ainsworth; Jonathan S. Stark; Lucie M. Bland; Toby Travers; Craig R. Johnson; Dana M. Bergstrom; Dana M. Bergstrom; Rachel Morgain; Josep G. Canadell; Phillip J. Zylstra; Phillip J. Zylstra; Catherine R. Dickson; Lesley Hughes; Katherine A. Dafforn;AbstractGlobally, collapse of ecosystems—potentially irreversible change to ecosystem structure, composition and function—imperils biodiversity, human health and well‐being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2, from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic ‘presses’ and/or acute ‘pulses’, drive ecosystem collapse. Ecosystem responses to 5–17 pressures were categorised as four collapse profiles—abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three‐step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.
Australian National ... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 172 citations 172 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, Australia, United StatesPublisher:Wiley Publicly fundedBen Raymond; Ben Raymond; Katinka X. Ruthrof; Suzanne M. Prober; John van den Hoff; Euan G. Ritchie; Kristen J. Williams; Shaun T. Brooks; Rowan Trebilco; Rowan Trebilco; Kate J. Helmstedt; Delphi F. L. Ward; Andrew J. Constable; Samantha A. Setterfield; Michael H. Depledge; Sharon A. Robinson; Norman C. Duke; Carla M. Sgrò; Christopher M. Baker; Emily Nicholson; Melodie A. McGeoch; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Justine D. Shaw; Barbara C. Wienecke; David B. Lindenmayer; Glenda M. Wardle; Andrés Holz; David M. J. S. Bowman; Tracy D. Ainsworth; Jonathan S. Stark; Lucie M. Bland; Toby Travers; Craig R. Johnson; Dana M. Bergstrom; Dana M. Bergstrom; Rachel Morgain; Josep G. Canadell; Phillip J. Zylstra; Phillip J. Zylstra; Catherine R. Dickson; Lesley Hughes; Katherine A. Dafforn;AbstractGlobally, collapse of ecosystems—potentially irreversible change to ecosystem structure, composition and function—imperils biodiversity, human health and well‐being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2, from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic ‘presses’ and/or acute ‘pulses’, drive ecosystem collapse. Ecosystem responses to 5–17 pressures were categorised as four collapse profiles—abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three‐step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.
Australian National ... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 172 citations 172 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, United Kingdom, Spain, Australia, South Africa, Australia, Australia, DenmarkPublisher:Public Library of Science (PLoS) Funded by:NSF | Polar Seabirds with Long-..., UKRI | Evolutionary history of C..., NSF | COLLABORATIVE RESEARCH: A...NSF| Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics ,UKRI| Evolutionary history of Colobanthus quitensis and its associated micro-organisms ,NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsJasmine R. Lee; Aleks Terauds; Josie Carwardine; Justine D. Shaw; Richard A. Fuller; Hugh P. Possingham; Steven L. Chown; Peter Convey; Neil Gilbert; Kevin A. Hughes; Ewan McIvor; Sharon A. Robinson; Yan Ropert-Coudert; Dana M. Bergstrom; Elisabeth M. Biersma; Claire Christian; Don A. Cowan; Yves Frenot; Stéphanie Jenouvrier; Lisa Kelley; Michael J. Lee; Heather J. Lynch; Birgit Njåstad; Antonio Quesada; Ricardo M. Roura; E. Ashley Shaw; Damon Stanwell-Smith; Megumu Tsujimoto; Diana H. Wall; Annick Wilmotte; Iadine Chadès;Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations.
NERC Open Research A... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/2263/92783Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/2263/92783Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, United Kingdom, Spain, Australia, South Africa, Australia, Australia, DenmarkPublisher:Public Library of Science (PLoS) Funded by:NSF | Polar Seabirds with Long-..., UKRI | Evolutionary history of C..., NSF | COLLABORATIVE RESEARCH: A...NSF| Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics ,UKRI| Evolutionary history of Colobanthus quitensis and its associated micro-organisms ,NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsJasmine R. Lee; Aleks Terauds; Josie Carwardine; Justine D. Shaw; Richard A. Fuller; Hugh P. Possingham; Steven L. Chown; Peter Convey; Neil Gilbert; Kevin A. Hughes; Ewan McIvor; Sharon A. Robinson; Yan Ropert-Coudert; Dana M. Bergstrom; Elisabeth M. Biersma; Claire Christian; Don A. Cowan; Yves Frenot; Stéphanie Jenouvrier; Lisa Kelley; Michael J. Lee; Heather J. Lynch; Birgit Njåstad; Antonio Quesada; Ricardo M. Roura; E. Ashley Shaw; Damon Stanwell-Smith; Megumu Tsujimoto; Diana H. Wall; Annick Wilmotte; Iadine Chadès;Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations.
NERC Open Research A... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/2263/92783Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/2263/92783Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03906003Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Catherine R. Dickson; David J. Baker; Dana M. Bergstrom; Rowan H. Brookes; Jennie Whinam; Melodie A. McGeoch;doi: 10.1111/aec.12958
handle: 11343/276439
AbstractUnder anthropogenic climate change, emerging diseases and pathogens are increasingly prevalent in high latitude and altitude regions that were previously protected by cold winter temperatures. Ongoing island‐wide dieback of a foundation species, the cushion plant Azorella macquariensis, on World Heritage listed Macquarie Island provides the first sub‐Antarctic example. To better understand the island‐wide progression of cushion dieback and its drivers, we established and quantified plant condition classes and measured microclimate across 62 sites. We then tested whether the drivers of cushion dieback were associated with (i) water stress: represented by vapour pressure deficit, wind exposure and gravel content, (ii) pathogen virulence: using freezing days and extreme humidity as empirically supported surrogates, or (iii) both. There was a strong north‐south progression in cushion condition, with dieback most active in the centre of the island and advanced in the north. Dieback was most extensive at sites with fewer freezing days and high humidity. Natural southern refugia were explained by the significantly colder temperatures, associated with a north‐south temperature gradient. It is expected that under current climate change trajectories, where Macquarie is likely to continue to become warmer and wetter, cushion dieback will remain pervasive, expanding most slowly in the south and potentially outpacing recovery. We emphasise the need for increased awareness to prevent the establishment of pathogens into and across the landscapes of newly susceptible high latitude and altitude regions. Areas of high conservation significance need to be prioritised for management, to prevent further landscape‐scale change under current climate trajectories.
Austral Ecology arrow_drop_down Austral EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Austral Ecology arrow_drop_down Austral EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Catherine R. Dickson; David J. Baker; Dana M. Bergstrom; Rowan H. Brookes; Jennie Whinam; Melodie A. McGeoch;doi: 10.1111/aec.12958
handle: 11343/276439
AbstractUnder anthropogenic climate change, emerging diseases and pathogens are increasingly prevalent in high latitude and altitude regions that were previously protected by cold winter temperatures. Ongoing island‐wide dieback of a foundation species, the cushion plant Azorella macquariensis, on World Heritage listed Macquarie Island provides the first sub‐Antarctic example. To better understand the island‐wide progression of cushion dieback and its drivers, we established and quantified plant condition classes and measured microclimate across 62 sites. We then tested whether the drivers of cushion dieback were associated with (i) water stress: represented by vapour pressure deficit, wind exposure and gravel content, (ii) pathogen virulence: using freezing days and extreme humidity as empirically supported surrogates, or (iii) both. There was a strong north‐south progression in cushion condition, with dieback most active in the centre of the island and advanced in the north. Dieback was most extensive at sites with fewer freezing days and high humidity. Natural southern refugia were explained by the significantly colder temperatures, associated with a north‐south temperature gradient. It is expected that under current climate change trajectories, where Macquarie is likely to continue to become warmer and wetter, cushion dieback will remain pervasive, expanding most slowly in the south and potentially outpacing recovery. We emphasise the need for increased awareness to prevent the establishment of pathogens into and across the landscapes of newly susceptible high latitude and altitude regions. Areas of high conservation significance need to be prioritised for management, to prevent further landscape‐scale change under current climate trajectories.
Austral Ecology arrow_drop_down Austral EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Austral Ecology arrow_drop_down Austral EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu