- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Skander Jribi; Skander Jribi; Skander Jribi; Bidyut Baran Saha; Bidyut Baran Saha; Takahiko Miyazaki; Takahiko Miyazaki; Tomohiro Maruyama; Shinnosuke Maeda; Shigeru Koyama; Shigeru Koyama;Abstract Experimental validation of simulated adsorber/desorber beds for sorption cooling applications is essential to obtain reliable results. We have conducted rigorous simulation of the adsorption process occurring in a finned tube adsorber utilizing 2D-axisymmetric geometry. The adsorber uses activated carbon–ethanol as adsorbent–refrigerant pair. It is cooled with water at nearly 30 °C and experiencing a sharp pressure increase of ethanol from 0.95 kPa initially to 6 kPa. The simulated temperatures at adsorbent thicknesses of 0, 1, 5 and 10 mm from tube outer diameter showed an increase in adsorbent temperature up to 20 °C from its initial temperature. They were slightly higher at start of adsorption and were consistent with experimental data at higher flow time. The validated CFD model will serve as a base for evaluating and optimizing activated carbon–ethanol adsorption cooling cycle. It can be extended also to different adsorber designs and other adsorbent–adsorbate pairs.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2016.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2016.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:American Chemical Society (ACS) Authors: Bidyut Baran Saha; Skander Jribi; Ibrahim I. El-Sharkawy; Shigeru Koyama;doi: 10.1021/je100973t
This paper presents adsorption isotherm data of CO2 onto two different types of highly porous activated carbons (ACs) for temperatures ranging from (−18 to 80) °C and pressures up to 10 MPa. The assorted adsorbents are activated carbon fiber (ACF) of type A-20 and activated carbon powder of type Maxsorb III. Adsorption isotherm data have been obtained using a volumetric technique and fitted to the Dubinin−Astakhov (D−A), Toth, Langmuir, and modified D−A equations. The latter considers the pseudosaturation pressure of CO2 that plays an important role for supercritical gas adsorption, and the pseudosaturation pressure was determined from the experimental data. The Toth and modified D−A isotherms correlate with the experimental data within 5 % root-mean-square deviation (rmsd) and present a better fitting than that of the Langmuir and the D−A equations. The isosteric heat of adsorption data were derived from the Toth and modified D−A isotherm equations and the correlation proposed by Chakraborty et al., and ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/je100973t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu140 citations 140 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/je100973t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Shigeru Koyama; Shigeru Koyama; Skander Jribi; Takahiko Miyazaki; Takahiko Miyazaki; Ibrahim I. El-Sharkawy; Ibrahim I. El-Sharkawy; Animesh Pal; Bidyut Baran Saha; Bidyut Baran Saha;Abstract Adsorption of carbon dioxide onto highly porous activated carbon based consolidated composite adsorbent has been experimentally investigated. Experiments have been conducted at temperatures of 30, 50, 70 °C and pressures up to 7 MPa using magnetic suspension adsorption measurement unit. The innovative adsorption isotherms data have been correlated using three isotherm models namely, Langmuir, Toth, and modified Dubinin-Astakhov (D-A). The studied models successfully fitted with the experimental data and Toth isotherm model shows a better fitting. Results showed that the volumetric adsorption capacity of CO2 onto the studied consolidated composite is higher than that of CO2 onto parent activated carbon powder (Maxsorb III). The isosteric heat of adsorption of the studied pairs has been calculated from isotherm data. The performance of ideal adsorption cooling cycle, employing consolidated composite adsorbent/CO2 pair, has also been simulated at three different evaporator temperatures, namely 5, 10 and 15 °C along with a coolant temperature of 25 °C and heat source temperatures ranging from 45 to 90 °C. The estimated thermodynamic parameters and isotherm data are important for further development of CO2 based adsorption cooling systems.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.08.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 81 citations 81 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.08.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Shinnosuke Maeda; Takahiko Miyazaki; Takahiko Miyazaki; Tomohiro Maruyama; Bidyut Baran Saha; Bidyut Baran Saha; Shigeru Koyama; Shigeru Koyama; Skander Jribi; Skander Jribi; Skander Jribi;The adsorption rate is an important parameter for accurate performance estimation of adsorbent-refrigerant based adsorption cooling cycles. Here, we have investigated the response of two adsorption kinetics models of activated carbon–ethanol pair by means of CFD simulation. The isothermal assumption used in estimating the diffusion time constant of Fickian diffusion and linear driving force (LDF) models led to divergence and under-estimated adsorption uptakes, respectively. By including the simulated adsorbent temperature profile in fitting of LDF model to experimental data, we assessed the non-isothermal diffusion time constants which were 2.5 to 5 times higher than those evaluated previously with isothermal assumption. The goodness of fitting, evaluated with coefficient of determination (R2), improved and became higher than 0.95 from 0.73 initially. The developed non-isothermal LDF equation allows accurate heat and mass transfer simulations and performance optimization of large scale adsorption/desorption bed employing activated carbon-ethanol pair for adsorption cooling applications.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2016.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2016.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Marzia Khanam; Skander Jribi; Takahiko Miyazaki; Bidyut Baran Saha; Shigeru Koyama;doi: 10.3390/en11061499
Adsorber heat exchanger design has great importance in increasing the performance of the adsorption-based cooling system. In this study, a transient two-dimensional axisymmetric Computational Fluid Dynamics (CFD) model has been developed for the performance investigation of finned tube type adsorber using activated carbon and ethanol as the working pair. The operating conditions of the cooling system were 15, 20 and 80 for evaporation, cooling and heating temperatures, respectively. The simulated temperature profiles for different adsorbent thicknesses were validated with those from experimental data measured in our laboratory. Moreover, the error in mass and energy balance were 3% and 7.88%, respectively. Besides, the performance investigation has been performed for cycle time ranging from 600 s to 1400 s. The optimum cycle time was 800 s and the corresponding evaluated specific cooling power (SCP) and coefficient of performance (COP) were found to be 488 W/kg and 0.61, respectively. The developed CFD model will be used for fin height and fin pitch optimization and can be extended to other adsorbent-adsorbate based adsorption cooling system.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1499/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1499/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Kim Choon Ng; Shigeru Koyama; Anutosh Chakraborty; Bidyut Baran Saha; Skander Jribi; Skander Jribi;Abstract In this study, the dynamic behavior of a 4-bed adsorption chiller was analyzed employing highly porous activated carbon of type Maxsorb III as the adsorbent and R1234ze(E), which global warming potential (GWP) is as low as 9, as the refrigerant. The simulated results in terms of heat transfer fluid temperatures, cycle average cooling capacity and coefficient of performance (COP) were obtained numerically. With 80 kg of Maxsorb III, the system is able to produce 2 kW of cooling power at driving heat source temperature of 85 °C which can be obtained from waste heat or solar energy. In particular, it can be powered by the waste heat from the internal combustion engine and therefore is suitable for automobile air-conditioning applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.11.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.11.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Skander Jribi; Hatem Bentaher; Bidyut Baran Saha; Bidyut Baran Saha; Shigeru Koyama;Abstract In this study, a transient mathematical model of a 4-bed adsorption chiller using Maxsorb III as the adsorbent and CO 2 as the refrigerant has been analyzed. The performances of the cyclic-steady-state system are presented for different heating and cooling water inlet temperatures. It is found that the desorption pressure has a big influence in the performances due to the low critical point of CO 2 ( T c = 31 °C). With 80 kg of Maxsorb III, the CO 2 based adsorption chiller produces 2 kW of cooling power and presents a COP of 0.1, at driving heat source temperature of 95 °C along with a cooling temperature of 27 °C and at optimum desorption pressure of 79 bar. The present thermal compression air-conditioning system could be driven with solar energy or waste heat from internal combustion engines and therefore is suitable for both residential and mobile air-conditioning applications.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.06.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.06.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Aref Maalej; Skander Jribi; Skander Jribi; Animesh Pal; M.M. Younes; M.M. Younes; Takahiko Miyazaki; Takahiko Miyazaki; Bidyut Baran Saha; Bidyut Baran Saha; Shigeru Koyama; Shigeru Koyama;Abstract Knowledge of adsorption characteristics of adsorbent-adsorbate pairs is essential for designing adsorption beds for adsorption cooling and adsorptive gas capturing applications. We investigated the adsorption isotherms and the adsorption kinetics of CO2 onto microporous activated carbon powder of type Maxsorb III. Measurements were performed with gravimetric apparatus for temperatures from 30 to 70 °C and pressures up to 7 MPa for adsorption isotherms and up to 4 MPa for adsorption kinetics. The gravimetric adsorption data obtained were consistent with previously measured isotherms with volumetric apparatus. Both absolute and excess adsorption data have been fitted precisely with Toth and Dubinin-Astakhov isotherm equations. The classical linear driving force (LDF) model with a constant mass transfer coefficient failed to correlate the experimental adsorption kinetics data. To overcome this problem, the authors presented a modified LDF equation with a variable mass transfer coefficient which is a function of the equilibrium and instantaneous uptakes. This modified LDF equation led to a better fitting and could be implemented easily in simulation of pressure swing adsorption (PSA), temperature swing adsorption (TSA) and adsorption chiller applications.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2016.12.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2016.12.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2010Publisher:Research Publishing Services Anutosh Chakraborty; Bidyut Baran Saha; Skander Jribi; Shigeru Koyama; Yutaro Terao;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3850/978-981-08-7614-2_impres044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3850/978-981-08-7614-2_impres044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:AIP Publishing Authors: Qussay Hroub; Youssef Drira; Skander Jribi; Hatem Bentaher;doi: 10.1063/5.0231072
The growing demand for efficient and cost-effective solar thermal energy solutions underscores the importance of innovative receiver designs in parabolic trough collector (PTC) systems. Despite the reliability of conventional designs, there is a need for low-cost alternatives that are accessible for widespread use, particularly in developing regions. However, a notable absence of comparative studies using the International Organization for Standardization (ISO) norm, the ISO 9806:2017 standard, which is the most current framework for thermal performance testing, thus highlighting a critical area for exploration. This study aims to develop and evaluate two low-cost receiver designs for a PTC system equipped with a stainless-steel reflector: one featuring a U-pipe within an evacuated glass tube, and the other using inlet and outlet pipes. Experimental testing was conducted according to the ISO 9806:2017 standard to assess their impact on the thermal efficiency of the collecting system. Additionally, we validated our results against previous research findings, which employed the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) norm, the ASHRAE 93 standard, which is the older and more rigorous. The thermal efficiencies were determined to be 43.79% for the U-pipe receiver and 49.77% for the inlet/outlet pipes receiver. The latter design shows a reduced overall heat loss coefficient, caused by the increased heat transfer surface area and the direct contact between the water and the absorber. These findings highlight the potential of the inlet/outlet pipes receiver as a cost-effective and efficient solution, particularly in developing regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0231072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0231072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Skander Jribi; Skander Jribi; Skander Jribi; Bidyut Baran Saha; Bidyut Baran Saha; Takahiko Miyazaki; Takahiko Miyazaki; Tomohiro Maruyama; Shinnosuke Maeda; Shigeru Koyama; Shigeru Koyama;Abstract Experimental validation of simulated adsorber/desorber beds for sorption cooling applications is essential to obtain reliable results. We have conducted rigorous simulation of the adsorption process occurring in a finned tube adsorber utilizing 2D-axisymmetric geometry. The adsorber uses activated carbon–ethanol as adsorbent–refrigerant pair. It is cooled with water at nearly 30 °C and experiencing a sharp pressure increase of ethanol from 0.95 kPa initially to 6 kPa. The simulated temperatures at adsorbent thicknesses of 0, 1, 5 and 10 mm from tube outer diameter showed an increase in adsorbent temperature up to 20 °C from its initial temperature. They were slightly higher at start of adsorption and were consistent with experimental data at higher flow time. The validated CFD model will serve as a base for evaluating and optimizing activated carbon–ethanol adsorption cooling cycle. It can be extended also to different adsorber designs and other adsorbent–adsorbate pairs.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2016.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2016.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:American Chemical Society (ACS) Authors: Bidyut Baran Saha; Skander Jribi; Ibrahim I. El-Sharkawy; Shigeru Koyama;doi: 10.1021/je100973t
This paper presents adsorption isotherm data of CO2 onto two different types of highly porous activated carbons (ACs) for temperatures ranging from (−18 to 80) °C and pressures up to 10 MPa. The assorted adsorbents are activated carbon fiber (ACF) of type A-20 and activated carbon powder of type Maxsorb III. Adsorption isotherm data have been obtained using a volumetric technique and fitted to the Dubinin−Astakhov (D−A), Toth, Langmuir, and modified D−A equations. The latter considers the pseudosaturation pressure of CO2 that plays an important role for supercritical gas adsorption, and the pseudosaturation pressure was determined from the experimental data. The Toth and modified D−A isotherms correlate with the experimental data within 5 % root-mean-square deviation (rmsd) and present a better fitting than that of the Langmuir and the D−A equations. The isosteric heat of adsorption data were derived from the Toth and modified D−A isotherm equations and the correlation proposed by Chakraborty et al., and ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/je100973t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu140 citations 140 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/je100973t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Shigeru Koyama; Shigeru Koyama; Skander Jribi; Takahiko Miyazaki; Takahiko Miyazaki; Ibrahim I. El-Sharkawy; Ibrahim I. El-Sharkawy; Animesh Pal; Bidyut Baran Saha; Bidyut Baran Saha;Abstract Adsorption of carbon dioxide onto highly porous activated carbon based consolidated composite adsorbent has been experimentally investigated. Experiments have been conducted at temperatures of 30, 50, 70 °C and pressures up to 7 MPa using magnetic suspension adsorption measurement unit. The innovative adsorption isotherms data have been correlated using three isotherm models namely, Langmuir, Toth, and modified Dubinin-Astakhov (D-A). The studied models successfully fitted with the experimental data and Toth isotherm model shows a better fitting. Results showed that the volumetric adsorption capacity of CO2 onto the studied consolidated composite is higher than that of CO2 onto parent activated carbon powder (Maxsorb III). The isosteric heat of adsorption of the studied pairs has been calculated from isotherm data. The performance of ideal adsorption cooling cycle, employing consolidated composite adsorbent/CO2 pair, has also been simulated at three different evaporator temperatures, namely 5, 10 and 15 °C along with a coolant temperature of 25 °C and heat source temperatures ranging from 45 to 90 °C. The estimated thermodynamic parameters and isotherm data are important for further development of CO2 based adsorption cooling systems.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.08.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 81 citations 81 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.08.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Shinnosuke Maeda; Takahiko Miyazaki; Takahiko Miyazaki; Tomohiro Maruyama; Bidyut Baran Saha; Bidyut Baran Saha; Shigeru Koyama; Shigeru Koyama; Skander Jribi; Skander Jribi; Skander Jribi;The adsorption rate is an important parameter for accurate performance estimation of adsorbent-refrigerant based adsorption cooling cycles. Here, we have investigated the response of two adsorption kinetics models of activated carbon–ethanol pair by means of CFD simulation. The isothermal assumption used in estimating the diffusion time constant of Fickian diffusion and linear driving force (LDF) models led to divergence and under-estimated adsorption uptakes, respectively. By including the simulated adsorbent temperature profile in fitting of LDF model to experimental data, we assessed the non-isothermal diffusion time constants which were 2.5 to 5 times higher than those evaluated previously with isothermal assumption. The goodness of fitting, evaluated with coefficient of determination (R2), improved and became higher than 0.95 from 0.73 initially. The developed non-isothermal LDF equation allows accurate heat and mass transfer simulations and performance optimization of large scale adsorption/desorption bed employing activated carbon-ethanol pair for adsorption cooling applications.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2016.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2016.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Marzia Khanam; Skander Jribi; Takahiko Miyazaki; Bidyut Baran Saha; Shigeru Koyama;doi: 10.3390/en11061499
Adsorber heat exchanger design has great importance in increasing the performance of the adsorption-based cooling system. In this study, a transient two-dimensional axisymmetric Computational Fluid Dynamics (CFD) model has been developed for the performance investigation of finned tube type adsorber using activated carbon and ethanol as the working pair. The operating conditions of the cooling system were 15, 20 and 80 for evaporation, cooling and heating temperatures, respectively. The simulated temperature profiles for different adsorbent thicknesses were validated with those from experimental data measured in our laboratory. Moreover, the error in mass and energy balance were 3% and 7.88%, respectively. Besides, the performance investigation has been performed for cycle time ranging from 600 s to 1400 s. The optimum cycle time was 800 s and the corresponding evaluated specific cooling power (SCP) and coefficient of performance (COP) were found to be 488 W/kg and 0.61, respectively. The developed CFD model will be used for fin height and fin pitch optimization and can be extended to other adsorbent-adsorbate based adsorption cooling system.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1499/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/6/1499/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11061499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Kim Choon Ng; Shigeru Koyama; Anutosh Chakraborty; Bidyut Baran Saha; Skander Jribi; Skander Jribi;Abstract In this study, the dynamic behavior of a 4-bed adsorption chiller was analyzed employing highly porous activated carbon of type Maxsorb III as the adsorbent and R1234ze(E), which global warming potential (GWP) is as low as 9, as the refrigerant. The simulated results in terms of heat transfer fluid temperatures, cycle average cooling capacity and coefficient of performance (COP) were obtained numerically. With 80 kg of Maxsorb III, the system is able to produce 2 kW of cooling power at driving heat source temperature of 85 °C which can be obtained from waste heat or solar energy. In particular, it can be powered by the waste heat from the internal combustion engine and therefore is suitable for automobile air-conditioning applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.11.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.11.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Skander Jribi; Hatem Bentaher; Bidyut Baran Saha; Bidyut Baran Saha; Shigeru Koyama;Abstract In this study, a transient mathematical model of a 4-bed adsorption chiller using Maxsorb III as the adsorbent and CO 2 as the refrigerant has been analyzed. The performances of the cyclic-steady-state system are presented for different heating and cooling water inlet temperatures. It is found that the desorption pressure has a big influence in the performances due to the low critical point of CO 2 ( T c = 31 °C). With 80 kg of Maxsorb III, the CO 2 based adsorption chiller produces 2 kW of cooling power and presents a COP of 0.1, at driving heat source temperature of 95 °C along with a cooling temperature of 27 °C and at optimum desorption pressure of 79 bar. The present thermal compression air-conditioning system could be driven with solar energy or waste heat from internal combustion engines and therefore is suitable for both residential and mobile air-conditioning applications.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.06.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.06.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Aref Maalej; Skander Jribi; Skander Jribi; Animesh Pal; M.M. Younes; M.M. Younes; Takahiko Miyazaki; Takahiko Miyazaki; Bidyut Baran Saha; Bidyut Baran Saha; Shigeru Koyama; Shigeru Koyama;Abstract Knowledge of adsorption characteristics of adsorbent-adsorbate pairs is essential for designing adsorption beds for adsorption cooling and adsorptive gas capturing applications. We investigated the adsorption isotherms and the adsorption kinetics of CO2 onto microporous activated carbon powder of type Maxsorb III. Measurements were performed with gravimetric apparatus for temperatures from 30 to 70 °C and pressures up to 7 MPa for adsorption isotherms and up to 4 MPa for adsorption kinetics. The gravimetric adsorption data obtained were consistent with previously measured isotherms with volumetric apparatus. Both absolute and excess adsorption data have been fitted precisely with Toth and Dubinin-Astakhov isotherm equations. The classical linear driving force (LDF) model with a constant mass transfer coefficient failed to correlate the experimental adsorption kinetics data. To overcome this problem, the authors presented a modified LDF equation with a variable mass transfer coefficient which is a function of the equilibrium and instantaneous uptakes. This modified LDF equation led to a better fitting and could be implemented easily in simulation of pressure swing adsorption (PSA), temperature swing adsorption (TSA) and adsorption chiller applications.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2016.12.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2016.12.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2010Publisher:Research Publishing Services Anutosh Chakraborty; Bidyut Baran Saha; Skander Jribi; Shigeru Koyama; Yutaro Terao;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3850/978-981-08-7614-2_impres044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3850/978-981-08-7614-2_impres044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:AIP Publishing Authors: Qussay Hroub; Youssef Drira; Skander Jribi; Hatem Bentaher;doi: 10.1063/5.0231072
The growing demand for efficient and cost-effective solar thermal energy solutions underscores the importance of innovative receiver designs in parabolic trough collector (PTC) systems. Despite the reliability of conventional designs, there is a need for low-cost alternatives that are accessible for widespread use, particularly in developing regions. However, a notable absence of comparative studies using the International Organization for Standardization (ISO) norm, the ISO 9806:2017 standard, which is the most current framework for thermal performance testing, thus highlighting a critical area for exploration. This study aims to develop and evaluate two low-cost receiver designs for a PTC system equipped with a stainless-steel reflector: one featuring a U-pipe within an evacuated glass tube, and the other using inlet and outlet pipes. Experimental testing was conducted according to the ISO 9806:2017 standard to assess their impact on the thermal efficiency of the collecting system. Additionally, we validated our results against previous research findings, which employed the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) norm, the ASHRAE 93 standard, which is the older and more rigorous. The thermal efficiencies were determined to be 43.79% for the U-pipe receiver and 49.77% for the inlet/outlet pipes receiver. The latter design shows a reduced overall heat loss coefficient, caused by the increased heat transfer surface area and the direct contact between the water and the absorber. These findings highlight the potential of the inlet/outlet pipes receiver as a cost-effective and efficient solution, particularly in developing regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0231072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0231072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu