- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Other ORP type 2013 United Kingdom, Germany, Germany, United States, Norway, Belgium, United States, France, Netherlands, United States, Netherlands, Switzerland, Australia, United Kingdom, United KingdomPublisher:Copernicus GmbH Funded by:EC | COMBINE, EC | GEOCARBON, EC | CARBOCHANGE +4 projectsEC| COMBINE ,EC| GEOCARBON ,EC| CARBOCHANGE ,RCN| Support for the Scientific Steering Committee of the Global Carbon Project ,EC| EMBRACE ,NSF| Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle ,EC| LUC4CPieter P. Tans; C. Le Quéré; Sönke Zaehle; Atul K. Jain; Fabienne Maignan; Jörg Schwinger; Jörg Schwinger; Dorothee C. E. Bakker; Steve D Jones; Geun-Ha Park; Christian Rödenbeck; Laurent Bopp; Arne Körtzinger; Abdirahman M Omar; Bronte Tilbrook; Gregg Marland; T. Ono; Joachim Segschneider; Thomas A. Boden; Richard A. Houghton; Andy Wiltshire; Pierre Regnier; Louise Chini; Philippe Ciais; Joanna Isobel House; Taro Takahashi; Almut Arneth; Glen P. Peters; Josep G. Canadell; Etsushi Kato; Robert J. Andres; Kees Klein Goldewijk; Benjamin Poulter; Anna B. Harper; Rik Wanninkhof; Pierre Friedlingstein; Michael R. Raupach; Benjamin D. Stocker; Stephen Sitch; Ralph F. Keeling; Benjamin Pfeil; Benjamin Pfeil; Robbie M. Andrew; S. van Heuven; Charles D. Koven; R. Moriarty; S. Saito; Nathalie Lefèvre; Scott C. Doney; Ian Harris; A. Arvanitis; Nicolas Viovy;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land-cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of Dynamic Global Vegetation Models. All uncertainties are reported as ± 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr−1, ELUC 0.8 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.6 ± 0.8 GtC yr−1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr−1, 2.2% above 2011, reflecting a continued trend in these emissions; GATM was 5.2 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and assuming and ELUC of 0.9 ± 0.5 GtC yr−1 (based on 2001–2010 average), SLAND was 2.5 ± 0.9 GtC yr−1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm on average over 2012. We estimate that EFF will increase by 2.1% (1.1–3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of World Gross Domestic Product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 550 ± 60 GtC for 1870–2013, 70% from EFF (390 ± 20 GtC) and 30% from ELUC (160 ± 55 GtC). This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (10.3334/CDIAC/GCP_2013_v1.1).
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2014 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2014 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/1956/10495Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.3334/CDIAC/GCP_2013_V2.3Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/74928Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2014Full-Text: https://doi.org/10.7916/D8319V8NData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefNorwegian Open Research ArchivesOther ORP type . 2014Data sources: Norwegian Open Research ArchivesBergen Open Research Archive - UiBArticle . 2014 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2014Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-6-689-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 384 citations 384 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2014 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2014 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/1956/10495Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.3334/CDIAC/GCP_2013_V2.3Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/74928Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2014Full-Text: https://doi.org/10.7916/D8319V8NData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefNorwegian Open Research ArchivesOther ORP type . 2014Data sources: Norwegian Open Research ArchivesBergen Open Research Archive - UiBArticle . 2014 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2014Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-6-689-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2020Embargo end date: 11 Dec 2020 Germany, United Kingdom, United Kingdom, Australia, Norway, Netherlands, Netherlands, Australia, Norway, Germany, Switzerland, France, Norway, Austria, United Kingdom, Germany, Switzerland, Netherlands, Norway, Germany, NetherlandsPublisher:Copernicus GmbH Funded by:NSF | INFEWS: U.S.-China: Integ..., SNSF | Climate and Environmental..., EC | CONSTRAIN +9 projectsNSF| INFEWS: U.S.-China: Integrated systems modeling for sustainable FEW nexus under multi-factor global changes: Innovative comparison between Yellow River and Mississippi River Basins ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System (bgcCEP) ,EC| CONSTRAIN ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,UKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,UKRI| Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) ,EC| VERIFY ,UKRI| Southern OceaN optimal Approach To Assess the carbon state, variability and climatic drivers (SONATA) ,RCN| Infrastructure for Norwegian Earth System modelling ,EC| 4C ,EC| CRESCENDO ,UKRI| NCEO LTS-SP. Friedlingstein; P. Friedlingstein; M. O'Sullivan; M. W. Jones; R. M. Andrew; J. Hauck; A. Olsen; A. Olsen; G. P. Peters; W. Peters; W. Peters; J. Pongratz; J. Pongratz; S. Sitch; C. Le Quéré; J. G. Canadell; P. Ciais; R. B. Jackson; S. Alin; L. E. O. C. Aragão; L. E. O. C. Aragão; A. Arneth; V. Arora; N. R. Bates; N. R. Bates; M. Becker; M. Becker; A. Benoit-Cattin; H. C. Bittig; L. Bopp; S. Bultan; N. Chandra; N. Chandra; F. Chevallier; L. P. Chini; W. Evans; L. Florentie; P. M. Forster; T. Gasser; M. Gehlen; D. Gilfillan; T. Gkritzalis; L. Gregor; N. Gruber; I. Harris; K. Hartung; K. Hartung; V. Haverd; R. A. Houghton; T. Ilyina; A. K. Jain; E. Joetzjer; K. Kadono; E. Kato; V. Kitidis; J. I. Korsbakken; P. Landschützer; N. Lefèvre; A. Lenton; S. Lienert; Z. Liu; D. Lombardozzi; G. Marland; G. Marland; N. Metzl; D. R. Munro; D. R. Munro; J. E. M. S. Nabel; S.-I. Nakaoka; Y. Niwa; Y. Niwa; K. O'Brien; K. O'Brien; T. Ono; P. I. Palmer; P. I. Palmer; D. Pierrot; B. Poulter; L. Resplandy; E. Robertson; C. Rödenbeck; J. Schwinger; J. Schwinger; R. Séférian; I. Skjelvan; I. Skjelvan; A. J. P. Smith; A. J. Sutton; T. Tanhua; P. P. Tans; H. Tian; B. Tilbrook; B. Tilbrook; G. van der Werf; N. Vuichard; A. P. Walker; R. Wanninkhof; A. J. Watson; D. Willis; A. J. Wiltshire; W. Yuan; X. Yue; S. Zaehle;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).
CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/126892Data sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2723621Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2738463Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020Earth System Science Data (ESSD)Article . 2020License: CC BYData sources: University of Groningen Research PortalMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2K citations 1,706 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/126892Data sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2723621Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2738463Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020Earth System Science Data (ESSD)Article . 2020License: CC BYData sources: University of Groningen Research PortalMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, United KingdomPublisher:IOP Publishing Funded by:EC | VERIFYEC| VERIFYC. Le Quéré; Jan Ivar Korsbakken; Glen P. Peters; Bo Zheng; Josep G. Canadell; Zhu Liu; Zhu Liu; Robbie M. Andrew; Robert B. Jackson;Recent reports have highlighted the challenge of keeping global average temperatures below 2 °C and—even more so—1.5 °C (IPCC 2018). Fossil-fuel burning and cement production release ∼90% of all CO _2 emissions from human activities. After a three-year hiatus with stable global emissions (Jackson et al 2016; Le Quéré C et al 2018a ; IEA 2018), CO _2 emissions grew by 1.6% in 2017 to 36.2 Gt (billion tonnes), and are expected to grow a further 2.7% in 2018 (range: 1.8%–3.7%) to a record 37.1 ± 2 Gt CO _2 (Le Quéré et al 2018b). Additional increases in 2019 remain uncertain but appear likely because of persistent growth in oil and natural gas use and strong growth projected for the global economy. Coal use has slowed markedly in the last few years, potentially peaking, but its future trajectory remains uncertain. Despite positive progress in ∼19 countries whose economies have grown over the last decade and their emissions have declined, growth in energy use from fossil-fuel sources is still outpacing the rise of low-carbon sources and activities. A robust global economy, insufficient emission reductions in developed countries, and a need for increased energy use in developing countries where per capita emissions remain far below those of wealthier nations will continue to put upward pressure on CO _2 emissions. Peak emissions will occur only when total fossil CO _2 emissions finally start to decline despite growth in global energy consumption, with fossil energy production replaced by rapidly growing low- or no-carbon technologies.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://insu.hal.science/insu-03721857Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaf303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 217 citations 217 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://insu.hal.science/insu-03721857Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaf303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Norway, Netherlands, France, Norway, France, FrancePublisher:IOP Publishing Matthew J. McGrath; Grégoire Broquet; Bo Zheng; Frédéric Chevallier; Glen P. Peters; Wenjun Meng; Philippe Ciais; Shu Tao; F. M. Bréon; Yilong Wang; Yilong Wang; Robbie M. Andrew; Gert-Jan Nabuurs;handle: 11250/2764357
Abstract The satellites that have been designed to support the monitoring of fossil fuel CO2 emissions aim to systematically measure atmospheric CO2 plumes generated by intense emissions from large cities, power plants and industrial sites. These data can be assimilated into atmospheric transport models in order to estimate the corresponding emissions. However, plumes emitted by cities and powerplants contain not only fossil fuel CO2 but also significant amounts of CO2 released by human respiration and by the burning of biofuels. We show that these amounts represent a significant proportion of the fossil fuel CO2 emissions, up to 40% for instance in cities of Nordic countries, and will thus leave some ambiguity in the retrieval of fossil fuel CO2 emissions from satellite concentration observations. Auxiliary information such as biofuel use statistics and radiocarbon measurement could help reduce the ambiguity and improve the framework of monitoring fossil fuel CO2 emissions from space.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02927411Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02927411Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1088/1748-9...Article . 2020Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab7835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02927411Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02927411Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1088/1748-9...Article . 2020Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab7835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, France, Norway, Norway, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | PARIS REINFORCE, EC | CHE, EC | VERIFY +1 projectsEC| PARIS REINFORCE ,EC| CHE ,EC| VERIFY ,EC| 4CMatthew W. Jones; Steven J. Davis; Glen P. Peters; Josep G. Canadell; Corinne Le Quéré; Pierre Friedlingstein; Pierre Friedlingstein; Robbie M. Andrew; Robert B. Jackson;handle: 11250/2828415 , 10871/125008
Five years after the adoption of the Paris Climate Agreement, growth in global CO2 emissions has begun to falter. The pervasive disruptions from the COVID-19 pandemic have radically altered the trajectory of global CO2 emissions. Contradictory effects of the post-COVID-19 investments in fossil fuel-based infrastructure and the recent strengthening of climate targets must be addressed with new policy choices to sustain a decline in global emissions in the post-COVID-19 era. Growth in CO2 emissions has slowed since the Paris Agreement 5 years ago. The COVID-19 pandemic has caused a drop in emissions of about 7% in 2020 relative to 2019, but strong policy is needed to address underlying drivers and to sustain a decline in global emissions beyond the current crisis.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/79469/1/Le_Quere_et_al_NCC_last_submitted_version.pdfData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/79469/1/Le_Quere_et_al_NCC_last_submitted_version.pdfData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01001-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 209 citations 209 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 3visibility views 3 download downloads 7 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/79469/1/Le_Quere_et_al_NCC_last_submitted_version.pdfData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/79469/1/Le_Quere_et_al_NCC_last_submitted_version.pdfData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01001-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Hao Xiao; Glen P. Peters; Robbie M. Andrew; Bo Meng; Jianguo Wang; Jinjun Xue;Abstract This study proposes an alternative input–output based spatial structural decomposition analysis to elucidate the importance of domestic regional heterogeneity and inter-regional spillover effects in determining China's regional CO 2 emissions growth. Our empirical results, based on the 2007 and 2010 Chinese inter-regional input–output tables, show that changes in most regions' final demand scale, final expenditure structure, and export scale have positive spatial spillover effects on other regions' CO 2 emissions growth; changes in most regions' consumption and export preference help reduce other regions' CO 2 emissions; changes in production technology and investment preferences may exert positive or negative effects on other region's CO 2 emissions growth through domestic supply chains. For some regions, the aggregate spillover effect from other regions may be larger than the intra-regional effect in determining regional emissions growth. All these facts can significantly help provide a better, deeper understanding of the driving forces behind the growth of regional CO 2 emissions and can thus enrich the policy implications concerning a narrow definition of “carbon leakage” through domestic inter-regional “trade” as well as a relevant political consensus about responsibility sharing between developed and developing regions inside China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2017.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu108 citations 108 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2017.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Austria, Germany, Germany, United KingdomPublisher:Springer Science and Business Media LLC Funded by:RCN | CICEP-Strategic Challenge...RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyGlen P. Peters; Robbie M. Andrew; Josep G. Canadell; Sabine Fuss; Robert B. Jackson; Jan Ivar Korsbakken; Corinne Le Quéré; Nebojsa Nakicenovic;doi: 10.1038/nclimate3202
This paper presents interrelated indicators for tracking progress towards the Paris Agreement. Findings show broad consistency with keeping warming below 2 °C, but technological advances are needed to achieve net-zero emissions. Current emission pledges to the Paris Agreement appear insufficient to hold the global average temperature increase to well below 2 °C above pre-industrial levels1. Yet, details are missing on how to track progress towards the ‘Paris goal’, inform the five-yearly ‘global stocktake’, and increase the ambition of Nationally Determined Contributions (NDCs). We develop a nested structure of key indicators to track progress through time. Global emissions2,3 track aggregated progress1, country-level decompositions track emerging trends4,5,6 that link directly to NDCs7, and technology diffusion8,9,10 indicates future reductions. We find the recent slowdown in global emissions growth11 is due to reduced growth in coal use since 2011, primarily in China and secondarily in the United States12. The slowdown is projected to continue in 2016, with global CO2 emissions from fossil fuels and industry similar to the 2015 level of 36 GtCO2. Explosive and policy-driven growth in wind and solar has contributed to the global emissions slowdown, but has been less important than economic factors and energy efficiency. We show that many key indicators are currently broadly consistent with emission scenarios that keep temperatures below 2 °C, but the continued lack of large-scale carbon capture and storage13 threatens 2030 targets and the longer-term Paris ambition of net-zero emissions.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 323 citations 323 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United Kingdom, Germany, United Kingdom, Australia, Netherlands, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:RCN | The Global Carbon Budget ..., EC | HELIX, EC | GEOCARBON +1 projectsRCN| The Global Carbon Budget and Carbon Atlas ,EC| HELIX ,EC| GEOCARBON ,EC| EMBRACEC. Le Quéré; Gunnar Luderer; Robbie M. Andrew; Joeri Rogelj; Joeri Rogelj; Reto Knutti; Glen P. Peters; D.P. van Vuuren; D.P. van Vuuren; Michiel Schaeffer; Josep G. Canadell; Pierre Friedlingstein; Michael R. Raupach;doi: 10.1038/ngeo2248
handle: 10871/20695 , 1885/69272
Efforts to limit climate change below a given temperature level require that global emissions of CO2 cumulated over time remain below a limited quota. This quota varies depending on the temperature level, the desired probability of staying below this level and the contributions of other gases. In spite of this restriction, global emissions of CO2 from fossil fuel combustion and cement production have continued to grow by 2.5% per year on average over the past decade. Two thirds of the CO2 emission quota consistent with a 2 °C temperature limit has already been used, and the total quota will likely be exhausted in a further 30 years at the 2014 emissions rates. We show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth. In the absence of more stringent mitigation, these trends are set to continue and further reduce the remaining quota until the onset of a potential new climate agreement in 2020. Breaking current emission trends in the short term is key to retaining credible climate targets within a rapidly diminishing emission quota.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/69272Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 641 citations 641 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/69272Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Andrew, Robbie;This dataset collects together a number of early estimates made of global emissions of fossil CO2, starting with Arvid Högbom in 1894. Microsoft Excel files for original data sources where these are time series, including images of the tables from the original sources, in addition to one CSV file of CO2 emissions from all sources. Sources that only reported emissions for a short period are not included in the Excel collection, but are included in the CSV file. In addition the original United Nations energy data used by several sources is included as UN1956.xlsx.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3816770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3816770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Zenodo Funded by:EC | VERIFYEC| VERIFYAuthors: Andrew, Robbie;Monthly Indian energy and activity data used for estimating India's monthly fossil CO2 emissions. Data are collated from a large number of source files, all in the public domain, and documented in the journal article of the same title. NOTE: These data are being regularly updated here: https://robbieandrew.github.io/india/.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3894394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3894394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Other ORP type 2013 United Kingdom, Germany, Germany, United States, Norway, Belgium, United States, France, Netherlands, United States, Netherlands, Switzerland, Australia, United Kingdom, United KingdomPublisher:Copernicus GmbH Funded by:EC | COMBINE, EC | GEOCARBON, EC | CARBOCHANGE +4 projectsEC| COMBINE ,EC| GEOCARBON ,EC| CARBOCHANGE ,RCN| Support for the Scientific Steering Committee of the Global Carbon Project ,EC| EMBRACE ,NSF| Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle ,EC| LUC4CPieter P. Tans; C. Le Quéré; Sönke Zaehle; Atul K. Jain; Fabienne Maignan; Jörg Schwinger; Jörg Schwinger; Dorothee C. E. Bakker; Steve D Jones; Geun-Ha Park; Christian Rödenbeck; Laurent Bopp; Arne Körtzinger; Abdirahman M Omar; Bronte Tilbrook; Gregg Marland; T. Ono; Joachim Segschneider; Thomas A. Boden; Richard A. Houghton; Andy Wiltshire; Pierre Regnier; Louise Chini; Philippe Ciais; Joanna Isobel House; Taro Takahashi; Almut Arneth; Glen P. Peters; Josep G. Canadell; Etsushi Kato; Robert J. Andres; Kees Klein Goldewijk; Benjamin Poulter; Anna B. Harper; Rik Wanninkhof; Pierre Friedlingstein; Michael R. Raupach; Benjamin D. Stocker; Stephen Sitch; Ralph F. Keeling; Benjamin Pfeil; Benjamin Pfeil; Robbie M. Andrew; S. van Heuven; Charles D. Koven; R. Moriarty; S. Saito; Nathalie Lefèvre; Scott C. Doney; Ian Harris; A. Arvanitis; Nicolas Viovy;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land-cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of Dynamic Global Vegetation Models. All uncertainties are reported as ± 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr−1, ELUC 0.8 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.6 ± 0.8 GtC yr−1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr−1, 2.2% above 2011, reflecting a continued trend in these emissions; GATM was 5.2 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and assuming and ELUC of 0.9 ± 0.5 GtC yr−1 (based on 2001–2010 average), SLAND was 2.5 ± 0.9 GtC yr−1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm on average over 2012. We estimate that EFF will increase by 2.1% (1.1–3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of World Gross Domestic Product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 550 ± 60 GtC for 1870–2013, 70% from EFF (390 ± 20 GtC) and 30% from ELUC (160 ± 55 GtC). This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (10.3334/CDIAC/GCP_2013_v1.1).
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2014 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2014 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/1956/10495Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.3334/CDIAC/GCP_2013_V2.3Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/74928Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2014Full-Text: https://doi.org/10.7916/D8319V8NData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefNorwegian Open Research ArchivesOther ORP type . 2014Data sources: Norwegian Open Research ArchivesBergen Open Research Archive - UiBArticle . 2014 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2014Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-6-689-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 384 citations 384 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2014 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2014 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/1956/10495Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.3334/CDIAC/GCP_2013_V2.3Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/74928Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2014Full-Text: https://doi.org/10.7916/D8319V8NData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefNorwegian Open Research ArchivesOther ORP type . 2014Data sources: Norwegian Open Research ArchivesBergen Open Research Archive - UiBArticle . 2014 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2014Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-6-689-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2020Embargo end date: 11 Dec 2020 Germany, United Kingdom, United Kingdom, Australia, Norway, Netherlands, Netherlands, Australia, Norway, Germany, Switzerland, France, Norway, Austria, United Kingdom, Germany, Switzerland, Netherlands, Norway, Germany, NetherlandsPublisher:Copernicus GmbH Funded by:NSF | INFEWS: U.S.-China: Integ..., SNSF | Climate and Environmental..., EC | CONSTRAIN +9 projectsNSF| INFEWS: U.S.-China: Integrated systems modeling for sustainable FEW nexus under multi-factor global changes: Innovative comparison between Yellow River and Mississippi River Basins ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System (bgcCEP) ,EC| CONSTRAIN ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,UKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,UKRI| Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) ,EC| VERIFY ,UKRI| Southern OceaN optimal Approach To Assess the carbon state, variability and climatic drivers (SONATA) ,RCN| Infrastructure for Norwegian Earth System modelling ,EC| 4C ,EC| CRESCENDO ,UKRI| NCEO LTS-SP. Friedlingstein; P. Friedlingstein; M. O'Sullivan; M. W. Jones; R. M. Andrew; J. Hauck; A. Olsen; A. Olsen; G. P. Peters; W. Peters; W. Peters; J. Pongratz; J. Pongratz; S. Sitch; C. Le Quéré; J. G. Canadell; P. Ciais; R. B. Jackson; S. Alin; L. E. O. C. Aragão; L. E. O. C. Aragão; A. Arneth; V. Arora; N. R. Bates; N. R. Bates; M. Becker; M. Becker; A. Benoit-Cattin; H. C. Bittig; L. Bopp; S. Bultan; N. Chandra; N. Chandra; F. Chevallier; L. P. Chini; W. Evans; L. Florentie; P. M. Forster; T. Gasser; M. Gehlen; D. Gilfillan; T. Gkritzalis; L. Gregor; N. Gruber; I. Harris; K. Hartung; K. Hartung; V. Haverd; R. A. Houghton; T. Ilyina; A. K. Jain; E. Joetzjer; K. Kadono; E. Kato; V. Kitidis; J. I. Korsbakken; P. Landschützer; N. Lefèvre; A. Lenton; S. Lienert; Z. Liu; D. Lombardozzi; G. Marland; G. Marland; N. Metzl; D. R. Munro; D. R. Munro; J. E. M. S. Nabel; S.-I. Nakaoka; Y. Niwa; Y. Niwa; K. O'Brien; K. O'Brien; T. Ono; P. I. Palmer; P. I. Palmer; D. Pierrot; B. Poulter; L. Resplandy; E. Robertson; C. Rödenbeck; J. Schwinger; J. Schwinger; R. Séférian; I. Skjelvan; I. Skjelvan; A. J. P. Smith; A. J. Sutton; T. Tanhua; P. P. Tans; H. Tian; B. Tilbrook; B. Tilbrook; G. van der Werf; N. Vuichard; A. P. Walker; R. Wanninkhof; A. J. Watson; D. Willis; A. J. Wiltshire; W. Yuan; X. Yue; S. Zaehle;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).
CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/126892Data sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2723621Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2738463Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020Earth System Science Data (ESSD)Article . 2020License: CC BYData sources: University of Groningen Research PortalMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2K citations 1,706 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/126892Data sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2723621Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2738463Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020Earth System Science Data (ESSD)Article . 2020License: CC BYData sources: University of Groningen Research PortalMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, United KingdomPublisher:IOP Publishing Funded by:EC | VERIFYEC| VERIFYC. Le Quéré; Jan Ivar Korsbakken; Glen P. Peters; Bo Zheng; Josep G. Canadell; Zhu Liu; Zhu Liu; Robbie M. Andrew; Robert B. Jackson;Recent reports have highlighted the challenge of keeping global average temperatures below 2 °C and—even more so—1.5 °C (IPCC 2018). Fossil-fuel burning and cement production release ∼90% of all CO _2 emissions from human activities. After a three-year hiatus with stable global emissions (Jackson et al 2016; Le Quéré C et al 2018a ; IEA 2018), CO _2 emissions grew by 1.6% in 2017 to 36.2 Gt (billion tonnes), and are expected to grow a further 2.7% in 2018 (range: 1.8%–3.7%) to a record 37.1 ± 2 Gt CO _2 (Le Quéré et al 2018b). Additional increases in 2019 remain uncertain but appear likely because of persistent growth in oil and natural gas use and strong growth projected for the global economy. Coal use has slowed markedly in the last few years, potentially peaking, but its future trajectory remains uncertain. Despite positive progress in ∼19 countries whose economies have grown over the last decade and their emissions have declined, growth in energy use from fossil-fuel sources is still outpacing the rise of low-carbon sources and activities. A robust global economy, insufficient emission reductions in developed countries, and a need for increased energy use in developing countries where per capita emissions remain far below those of wealthier nations will continue to put upward pressure on CO _2 emissions. Peak emissions will occur only when total fossil CO _2 emissions finally start to decline despite growth in global energy consumption, with fossil energy production replaced by rapidly growing low- or no-carbon technologies.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://insu.hal.science/insu-03721857Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaf303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 217 citations 217 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://insu.hal.science/insu-03721857Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaf303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Norway, Netherlands, France, Norway, France, FrancePublisher:IOP Publishing Matthew J. McGrath; Grégoire Broquet; Bo Zheng; Frédéric Chevallier; Glen P. Peters; Wenjun Meng; Philippe Ciais; Shu Tao; F. M. Bréon; Yilong Wang; Yilong Wang; Robbie M. Andrew; Gert-Jan Nabuurs;handle: 11250/2764357
Abstract The satellites that have been designed to support the monitoring of fossil fuel CO2 emissions aim to systematically measure atmospheric CO2 plumes generated by intense emissions from large cities, power plants and industrial sites. These data can be assimilated into atmospheric transport models in order to estimate the corresponding emissions. However, plumes emitted by cities and powerplants contain not only fossil fuel CO2 but also significant amounts of CO2 released by human respiration and by the burning of biofuels. We show that these amounts represent a significant proportion of the fossil fuel CO2 emissions, up to 40% for instance in cities of Nordic countries, and will thus leave some ambiguity in the retrieval of fossil fuel CO2 emissions from satellite concentration observations. Auxiliary information such as biofuel use statistics and radiocarbon measurement could help reduce the ambiguity and improve the framework of monitoring fossil fuel CO2 emissions from space.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02927411Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02927411Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1088/1748-9...Article . 2020Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab7835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02927411Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02927411Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1088/1748-9...Article . 2020Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab7835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, France, Norway, Norway, United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | PARIS REINFORCE, EC | CHE, EC | VERIFY +1 projectsEC| PARIS REINFORCE ,EC| CHE ,EC| VERIFY ,EC| 4CMatthew W. Jones; Steven J. Davis; Glen P. Peters; Josep G. Canadell; Corinne Le Quéré; Pierre Friedlingstein; Pierre Friedlingstein; Robbie M. Andrew; Robert B. Jackson;handle: 11250/2828415 , 10871/125008
Five years after the adoption of the Paris Climate Agreement, growth in global CO2 emissions has begun to falter. The pervasive disruptions from the COVID-19 pandemic have radically altered the trajectory of global CO2 emissions. Contradictory effects of the post-COVID-19 investments in fossil fuel-based infrastructure and the recent strengthening of climate targets must be addressed with new policy choices to sustain a decline in global emissions in the post-COVID-19 era. Growth in CO2 emissions has slowed since the Paris Agreement 5 years ago. The COVID-19 pandemic has caused a drop in emissions of about 7% in 2020 relative to 2019, but strong policy is needed to address underlying drivers and to sustain a decline in global emissions beyond the current crisis.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/79469/1/Le_Quere_et_al_NCC_last_submitted_version.pdfData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/79469/1/Le_Quere_et_al_NCC_last_submitted_version.pdfData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01001-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 209 citations 209 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 3visibility views 3 download downloads 7 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/79469/1/Le_Quere_et_al_NCC_last_submitted_version.pdfData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/79469/1/Le_Quere_et_al_NCC_last_submitted_version.pdfData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01001-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Hao Xiao; Glen P. Peters; Robbie M. Andrew; Bo Meng; Jianguo Wang; Jinjun Xue;Abstract This study proposes an alternative input–output based spatial structural decomposition analysis to elucidate the importance of domestic regional heterogeneity and inter-regional spillover effects in determining China's regional CO 2 emissions growth. Our empirical results, based on the 2007 and 2010 Chinese inter-regional input–output tables, show that changes in most regions' final demand scale, final expenditure structure, and export scale have positive spatial spillover effects on other regions' CO 2 emissions growth; changes in most regions' consumption and export preference help reduce other regions' CO 2 emissions; changes in production technology and investment preferences may exert positive or negative effects on other region's CO 2 emissions growth through domestic supply chains. For some regions, the aggregate spillover effect from other regions may be larger than the intra-regional effect in determining regional emissions growth. All these facts can significantly help provide a better, deeper understanding of the driving forces behind the growth of regional CO 2 emissions and can thus enrich the policy implications concerning a narrow definition of “carbon leakage” through domestic inter-regional “trade” as well as a relevant political consensus about responsibility sharing between developed and developing regions inside China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2017.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu108 citations 108 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2017.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Austria, Germany, Germany, United KingdomPublisher:Springer Science and Business Media LLC Funded by:RCN | CICEP-Strategic Challenge...RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyGlen P. Peters; Robbie M. Andrew; Josep G. Canadell; Sabine Fuss; Robert B. Jackson; Jan Ivar Korsbakken; Corinne Le Quéré; Nebojsa Nakicenovic;doi: 10.1038/nclimate3202
This paper presents interrelated indicators for tracking progress towards the Paris Agreement. Findings show broad consistency with keeping warming below 2 °C, but technological advances are needed to achieve net-zero emissions. Current emission pledges to the Paris Agreement appear insufficient to hold the global average temperature increase to well below 2 °C above pre-industrial levels1. Yet, details are missing on how to track progress towards the ‘Paris goal’, inform the five-yearly ‘global stocktake’, and increase the ambition of Nationally Determined Contributions (NDCs). We develop a nested structure of key indicators to track progress through time. Global emissions2,3 track aggregated progress1, country-level decompositions track emerging trends4,5,6 that link directly to NDCs7, and technology diffusion8,9,10 indicates future reductions. We find the recent slowdown in global emissions growth11 is due to reduced growth in coal use since 2011, primarily in China and secondarily in the United States12. The slowdown is projected to continue in 2016, with global CO2 emissions from fossil fuels and industry similar to the 2015 level of 36 GtCO2. Explosive and policy-driven growth in wind and solar has contributed to the global emissions slowdown, but has been less important than economic factors and energy efficiency. We show that many key indicators are currently broadly consistent with emission scenarios that keep temperatures below 2 °C, but the continued lack of large-scale carbon capture and storage13 threatens 2030 targets and the longer-term Paris ambition of net-zero emissions.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 323 citations 323 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United Kingdom, Germany, United Kingdom, Australia, Netherlands, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:RCN | The Global Carbon Budget ..., EC | HELIX, EC | GEOCARBON +1 projectsRCN| The Global Carbon Budget and Carbon Atlas ,EC| HELIX ,EC| GEOCARBON ,EC| EMBRACEC. Le Quéré; Gunnar Luderer; Robbie M. Andrew; Joeri Rogelj; Joeri Rogelj; Reto Knutti; Glen P. Peters; D.P. van Vuuren; D.P. van Vuuren; Michiel Schaeffer; Josep G. Canadell; Pierre Friedlingstein; Michael R. Raupach;doi: 10.1038/ngeo2248
handle: 10871/20695 , 1885/69272
Efforts to limit climate change below a given temperature level require that global emissions of CO2 cumulated over time remain below a limited quota. This quota varies depending on the temperature level, the desired probability of staying below this level and the contributions of other gases. In spite of this restriction, global emissions of CO2 from fossil fuel combustion and cement production have continued to grow by 2.5% per year on average over the past decade. Two thirds of the CO2 emission quota consistent with a 2 °C temperature limit has already been used, and the total quota will likely be exhausted in a further 30 years at the 2014 emissions rates. We show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth. In the absence of more stringent mitigation, these trends are set to continue and further reduce the remaining quota until the onset of a potential new climate agreement in 2020. Breaking current emission trends in the short term is key to retaining credible climate targets within a rapidly diminishing emission quota.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/69272Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 641 citations 641 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/69272Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversity of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Andrew, Robbie;This dataset collects together a number of early estimates made of global emissions of fossil CO2, starting with Arvid Högbom in 1894. Microsoft Excel files for original data sources where these are time series, including images of the tables from the original sources, in addition to one CSV file of CO2 emissions from all sources. Sources that only reported emissions for a short period are not included in the Excel collection, but are included in the CSV file. In addition the original United Nations energy data used by several sources is included as UN1956.xlsx.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3816770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3816770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Zenodo Funded by:EC | VERIFYEC| VERIFYAuthors: Andrew, Robbie;Monthly Indian energy and activity data used for estimating India's monthly fossil CO2 emissions. Data are collated from a large number of source files, all in the public domain, and documented in the journal article of the same title. NOTE: These data are being regularly updated here: https://robbieandrew.github.io/india/.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3894394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3894394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu