- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCS, RCN | Bayesian monitoring desig...EC| STEMM-CCS ,RCN| Bayesian monitoring design.Blackford, Jerry; Romanak, Katherine; Huvenne, Veerle A.I.; Lichtschlag, Anna; Strong, James Asa; Alendal, Guttorm; Schütz, Sigrid Eskeland; Oleynik, Anna; Dankel, Dorothy J.;Abstract Carbon capture and storage is key for mitigating greenhouse gas emissions, and offshore geological formations provide vast CO2 storage potential. Monitoring of sub-seabed CO2 storage sites requires that anomalies signifying a loss of containment be detected, and if attributed to storage, quantified and their impact assessed. However, monitoring at or above the seabed is only useful if one can reliably differentiate abnormal signals from natural variability. Baseline acquisition is the default option for describing the natural state, however we argue that a comprehensive baseline assessment is likely expensive and time-bound, given the multi-decadal nature of CCS operations and the dynamic heterogeneity of the marine environment. We present an outline of the elements comprising an efficient marine environmental baseline to support offshore monitoring. We demonstrate that many of these elements can be derived from pre-existing and ongoing sources, not necessarily related to CCS project development. We argue that a sufficient baseline can be achieved by identifying key emergent properties of the system rather than assembling an extensive description of the physical, chemical and biological states. Further, that contemporary comparisons between impacted and non-impacted sites are likely to be as valuable as before and after comparisons. However, as these emergent properties may be nuanced between sites and seasons and comparative studies need to be validated by the careful choice of reference site, a site-specific understanding of the scales of heterogeneity will be an invaluable component of a baseline.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCS, RCN | Bayesian monitoring desig...EC| STEMM-CCS ,RCN| Bayesian monitoring design.Blackford, Jerry; Romanak, Katherine; Huvenne, Veerle A.I.; Lichtschlag, Anna; Strong, James Asa; Alendal, Guttorm; Schütz, Sigrid Eskeland; Oleynik, Anna; Dankel, Dorothy J.;Abstract Carbon capture and storage is key for mitigating greenhouse gas emissions, and offshore geological formations provide vast CO2 storage potential. Monitoring of sub-seabed CO2 storage sites requires that anomalies signifying a loss of containment be detected, and if attributed to storage, quantified and their impact assessed. However, monitoring at or above the seabed is only useful if one can reliably differentiate abnormal signals from natural variability. Baseline acquisition is the default option for describing the natural state, however we argue that a comprehensive baseline assessment is likely expensive and time-bound, given the multi-decadal nature of CCS operations and the dynamic heterogeneity of the marine environment. We present an outline of the elements comprising an efficient marine environmental baseline to support offshore monitoring. We demonstrate that many of these elements can be derived from pre-existing and ongoing sources, not necessarily related to CCS project development. We argue that a sufficient baseline can be achieved by identifying key emergent properties of the system rather than assembling an extensive description of the physical, chemical and biological states. Further, that contemporary comparisons between impacted and non-impacted sites are likely to be as valuable as before and after comparisons. However, as these emergent properties may be nuanced between sites and seasons and comparative studies need to be validated by the careful choice of reference site, a site-specific understanding of the scales of heterogeneity will be an invaluable component of a baseline.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Norway, United Kingdom, Germany, United Kingdom, United Kingdom, Norway, NorwayPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSD.P. Connelly; J.M. Bull; A. Flohr; A. Schaap; D. Koopmans; J.C. Blackford; P.R. White; R.H. James; C. Pearce; A. Lichtschlag; E.P. Achterberg; D. de Beer; B. Roche; J. Li; K. Saw; G. Alendal; H. Avlesen; R. Brown; S.M. Borisov; C. Böttner; P.W. Cazenave; B. Chen; A.W. Dale; M. Dean; M. Dewar; M. Esposito; J. Gros; R. Hanz; M. Haeckel; B. Hosking; V. Huvenne; J. Karstens; T. Le Bas; T.G. Leighton; P. Linke; S. Loucaides; J.M. Matter; S. Monk; M.C. Mowlem; A. Oleynik; A.M. Omar; K. Peel; G. Provenzano; U. Saleem; M. Schmidt; B. Schramm; S. Sommer; J. Strong; I. Falcon Suarez; B. Ungerboeck; S. Widdicombe; H. Wright; E. Yakushev;handle: 11250/3025167 , 11250/3028049 , 11250/3023870
Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes.
NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Norway, United Kingdom, Germany, United Kingdom, United Kingdom, Norway, NorwayPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSD.P. Connelly; J.M. Bull; A. Flohr; A. Schaap; D. Koopmans; J.C. Blackford; P.R. White; R.H. James; C. Pearce; A. Lichtschlag; E.P. Achterberg; D. de Beer; B. Roche; J. Li; K. Saw; G. Alendal; H. Avlesen; R. Brown; S.M. Borisov; C. Böttner; P.W. Cazenave; B. Chen; A.W. Dale; M. Dean; M. Dewar; M. Esposito; J. Gros; R. Hanz; M. Haeckel; B. Hosking; V. Huvenne; J. Karstens; T. Le Bas; T.G. Leighton; P. Linke; S. Loucaides; J.M. Matter; S. Monk; M.C. Mowlem; A. Oleynik; A.M. Omar; K. Peel; G. Provenzano; U. Saleem; M. Schmidt; B. Schramm; S. Sommer; J. Strong; I. Falcon Suarez; B. Ungerboeck; S. Widdicombe; H. Wright; E. Yakushev;handle: 11250/3025167 , 11250/3028049 , 11250/3023870
Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes.
NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, United Kingdom, United Kingdom, GermanyPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSFlohr, Anita; Matter, Juerg M.; James, Rachael H.; Saw, Kevin; Brown, Robin; Gros, Jonas; Flude, Stephanie; Day, Christopher; Peel, Kate; Connelly, Douglas; Pearce, Christopher R.; Strong, James A.; Lichtschlag, Anna; Hillegonds, Darren J.; Ballentine, Christopher J.; Tyne, Rebecca L.;Abstract To inform cost-effective monitoring of offshore geological storage of carbon dioxide (CO2), a unique field experiment, designed to simulate leakage of CO2 from a sub-seafloor storage reservoir, was carried out in the central North Sea. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor) for 11 days at flow rates between 6 and 143 kg d-1. A set of natural, inherent tracers (13C, 18O) of injected CO2 and added, non-toxic tracer gases (octafluoropropane, sulfur hexafluoride, krypton, methane) were used to test their applicability for CO2 leakage attribution and quantification in the marine environment. All tracers except 18O were capable of attributing the CO2 source. Tracer analyses indicate that CO2 dissolution in sediment pore waters ranged from 35 % at the lowest injection rate to 41% at the highest injection rate. Direct measurements of gas released from the sediment into the water column suggest that 22 % to 48 % of the injected CO2 exited the seafloor at, respectively, the lowest and the highest injection rate. The remainder of injected CO2 accumulated in gas pockets in the sediment. The methodologies can be used to rapidly confirm the source of leaking CO2 once seabed samples are retrieved.
NERC Open Research A... arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, United Kingdom, United Kingdom, GermanyPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSFlohr, Anita; Matter, Juerg M.; James, Rachael H.; Saw, Kevin; Brown, Robin; Gros, Jonas; Flude, Stephanie; Day, Christopher; Peel, Kate; Connelly, Douglas; Pearce, Christopher R.; Strong, James A.; Lichtschlag, Anna; Hillegonds, Darren J.; Ballentine, Christopher J.; Tyne, Rebecca L.;Abstract To inform cost-effective monitoring of offshore geological storage of carbon dioxide (CO2), a unique field experiment, designed to simulate leakage of CO2 from a sub-seafloor storage reservoir, was carried out in the central North Sea. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor) for 11 days at flow rates between 6 and 143 kg d-1. A set of natural, inherent tracers (13C, 18O) of injected CO2 and added, non-toxic tracer gases (octafluoropropane, sulfur hexafluoride, krypton, methane) were used to test their applicability for CO2 leakage attribution and quantification in the marine environment. All tracers except 18O were capable of attributing the CO2 source. Tracer analyses indicate that CO2 dissolution in sediment pore waters ranged from 35 % at the lowest injection rate to 41% at the highest injection rate. Direct measurements of gas released from the sediment into the water column suggest that 22 % to 48 % of the injected CO2 exited the seafloor at, respectively, the lowest and the highest injection rate. The remainder of injected CO2 accumulated in gas pockets in the sediment. The methodologies can be used to rapidly confirm the source of leaking CO2 once seabed samples are retrieved.
NERC Open Research A... arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSStefan Sommer; María Martínez-Cabanas; Klaus Wallmann; Kevin Saw; Anita Flohr; Anita Flohr; Jack Triest; Andrew W. Dale; Dirk Koopmans; Jonathan M. Bull; Joseph Fone; Ben Roche; Robin Brown; Jonas Gros; Peter Linke; James A. Strong; Mark Schmidt; Mario Esposito; Saskia Dötsch;Abstract According to many prognostic scenarios by the Intergovernmental Panel on Climate Change (IPCC), a scaling-up of carbon dioxide (CO2) capture and storage (CCS) by several orders-of-magnitude is necessary to meet the target of ≤2 °C global warming by 2100 relative to preindustrial levels. Since a large fraction of the predicted CO2 storage capacity lies offshore, there is a pressing need to develop field-tested methods to detect and quantify potential leaks in the marine environment. Here, we combine field measurements with numerical models to determine the flow rate of a controlled release of CO2 in a shallow marine setting at about 119 m water depth in the North Sea. In this experiment, CO2 was injected into the sediment at 3 m depth at 143 kg d-1. The new leakage monitoring tool predicts that 91 kg d-1 of CO2 escaped across the seafloor, and that 51 kg d-1 of CO2 were retained in the sediment, in agreement with independent field estimates. The new approach relies mostly on field data collected from ship-deployed technology (towed sensors, Acoustic Doppler current profiler—ADCP), which makes it a promising tool to monitor existing and upcoming offshore CO2 storage sites and to detect and quantify potential CO2 leakage.
NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSStefan Sommer; María Martínez-Cabanas; Klaus Wallmann; Kevin Saw; Anita Flohr; Anita Flohr; Jack Triest; Andrew W. Dale; Dirk Koopmans; Jonathan M. Bull; Joseph Fone; Ben Roche; Robin Brown; Jonas Gros; Peter Linke; James A. Strong; Mark Schmidt; Mario Esposito; Saskia Dötsch;Abstract According to many prognostic scenarios by the Intergovernmental Panel on Climate Change (IPCC), a scaling-up of carbon dioxide (CO2) capture and storage (CCS) by several orders-of-magnitude is necessary to meet the target of ≤2 °C global warming by 2100 relative to preindustrial levels. Since a large fraction of the predicted CO2 storage capacity lies offshore, there is a pressing need to develop field-tested methods to detect and quantify potential leaks in the marine environment. Here, we combine field measurements with numerical models to determine the flow rate of a controlled release of CO2 in a shallow marine setting at about 119 m water depth in the North Sea. In this experiment, CO2 was injected into the sediment at 3 m depth at 143 kg d-1. The new leakage monitoring tool predicts that 91 kg d-1 of CO2 escaped across the seafloor, and that 51 kg d-1 of CO2 were retained in the sediment, in agreement with independent field estimates. The new approach relies mostly on field data collected from ship-deployed technology (towed sensors, Acoustic Doppler current profiler—ADCP), which makes it a promising tool to monitor existing and upcoming offshore CO2 storage sites and to detect and quantify potential CO2 leakage.
NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSAnita Flohr; Anita Flohr; Soeren Ahmerkamp; Dirk de Beer; Marit R. van Erk; Moritz Holtappels; Anna Lichtschlag; Matthias Haeckel; James Asa Strong;Abstract We investigated the effect of an artificial CO2 vent (0.0015−0.037 mol s−1), simulating a leak from a reservoir for carbon capture and storage (CCS), on the sediment geochemistry. CO2 was injected 3 m deep into the seafloor at 120 m depth. With increasing mass flow an increasing number of vents were observed, distributed over an area of approximately 3 m. In situ profiling with microsensors for pH, T, O2 and ORP showed the geochemical effects are localized in a small area around the vents and highly variable. In measurements remote from the vent, the pH reached a value of 7.6 at a depth of 0.06 m. In a CO2 venting channel, pH reduced to below 5. Steep temperature profiles were indicative of a heat source inside the sediment. Elevated total alkalinity and Ca2+ levels showed calcite dissolution. Venting decreased sulfate reduction rates, but not aerobic respiration. A transport-reaction model confirmed that a large fraction of the injected CO2 is transported laterally into the sediment and that the reactions between CO2 and sediment generate enough heat to elevate the temperature significantly. A CO2 leak will have only local consequences for sediment biogeochemistry, and only a small fraction of the escaped CO2 will reach the sediment surface.
NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 7 Powered bymore_vert NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSAnita Flohr; Anita Flohr; Soeren Ahmerkamp; Dirk de Beer; Marit R. van Erk; Moritz Holtappels; Anna Lichtschlag; Matthias Haeckel; James Asa Strong;Abstract We investigated the effect of an artificial CO2 vent (0.0015−0.037 mol s−1), simulating a leak from a reservoir for carbon capture and storage (CCS), on the sediment geochemistry. CO2 was injected 3 m deep into the seafloor at 120 m depth. With increasing mass flow an increasing number of vents were observed, distributed over an area of approximately 3 m. In situ profiling with microsensors for pH, T, O2 and ORP showed the geochemical effects are localized in a small area around the vents and highly variable. In measurements remote from the vent, the pH reached a value of 7.6 at a depth of 0.06 m. In a CO2 venting channel, pH reduced to below 5. Steep temperature profiles were indicative of a heat source inside the sediment. Elevated total alkalinity and Ca2+ levels showed calcite dissolution. Venting decreased sulfate reduction rates, but not aerobic respiration. A transport-reaction model confirmed that a large fraction of the injected CO2 is transported laterally into the sediment and that the reactions between CO2 and sediment generate enough heat to elevate the temperature significantly. A CO2 leak will have only local consequences for sediment biogeochemistry, and only a small fraction of the escaped CO2 will reach the sediment surface.
NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 7 Powered bymore_vert NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Marine LTSS: Climate Link..., EC | STEMM-CCS, RCN | Bayesian monitoring desig...UKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,EC| STEMM-CCS ,RCN| Bayesian monitoring design.Jerry Blackford; Umer Saleem; Jianghui Li; Anita Flohr; Ben Roche; Allison Schaap; Marius Dewar; Marius Dewar; Jonathan M. Bull; Baixin Chen; James A. Strong;Abstract Carbon storage is required to keep rising global temperatures below 2°C, meanwhile, storage reservoirs monitoring is required for assurance of early detection of potential leakages. Projects such as QICS and STEMM-CCS have used small in-situ experiments to develop detection techniques, tools, and strategies. Given the expense of experiments it is crucial to develop accurate simulation models that replicate observed behaviours and can be extrapolated to many different scenarios. However, anomalies occur between modelled and experimental data, and a key question has been how can the models be improved? This has been approached through the development of a complex modelling system to include the effects of coastal hydrodynamics on very localised experiments, with a new multi-phase leakage model – PLUME, integrated into a high-resolution hydrodynamic model, and linked to a carbonate system for CO2 analysis. The resolution of the nested domains range from 2.5 km at the boundaries to approximately 0.5 - 1.0 m at the release sites. The efficacy of the PLUME model is demonstrated with application to the STEMM-CCS and QICS experimental sites in 120 and 9-12 m water depths respectively. Results show that the newly developed model can predict observed pCO2 and pH changes within acceptable errors. Local effects are shown to be affected greatly by both the resolution and the water currents, with momentary spikes in pCO2 and reductions in pH caused by tidal oscillation. The spatial impacts of the releases are shown to move with the tide, covering a far greater area over a tidal cycle.
NERC Open Research A... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Marine LTSS: Climate Link..., EC | STEMM-CCS, RCN | Bayesian monitoring desig...UKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,EC| STEMM-CCS ,RCN| Bayesian monitoring design.Jerry Blackford; Umer Saleem; Jianghui Li; Anita Flohr; Ben Roche; Allison Schaap; Marius Dewar; Marius Dewar; Jonathan M. Bull; Baixin Chen; James A. Strong;Abstract Carbon storage is required to keep rising global temperatures below 2°C, meanwhile, storage reservoirs monitoring is required for assurance of early detection of potential leakages. Projects such as QICS and STEMM-CCS have used small in-situ experiments to develop detection techniques, tools, and strategies. Given the expense of experiments it is crucial to develop accurate simulation models that replicate observed behaviours and can be extrapolated to many different scenarios. However, anomalies occur between modelled and experimental data, and a key question has been how can the models be improved? This has been approached through the development of a complex modelling system to include the effects of coastal hydrodynamics on very localised experiments, with a new multi-phase leakage model – PLUME, integrated into a high-resolution hydrodynamic model, and linked to a carbonate system for CO2 analysis. The resolution of the nested domains range from 2.5 km at the boundaries to approximately 0.5 - 1.0 m at the release sites. The efficacy of the PLUME model is demonstrated with application to the STEMM-CCS and QICS experimental sites in 120 and 9-12 m water depths respectively. Results show that the newly developed model can predict observed pCO2 and pH changes within acceptable errors. Local effects are shown to be affected greatly by both the resolution and the water currents, with momentary spikes in pCO2 and reductions in pH caused by tidal oscillation. The spatial impacts of the releases are shown to move with the tide, covering a far greater area over a tidal cycle.
NERC Open Research A... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, Germany, United Kingdom, NorwayPublisher:Elsevier BV Funded by:UKRI | Marine LTSS: Climate Link..., RCN | Bayesian monitoring desig..., UKRI | Carbonate Chemistry Auton... +2 projectsUKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,RCN| Bayesian monitoring design. ,UKRI| Carbonate Chemistry Autonomous Sensor System (CarCASS) ,EC| STEMM-CCS ,UKRI| SPITFIRE - the Southampton Partnership for Innovative Training of Future Investigators Researching the EnvironmentSteve Widdicombe; Elke Kossel; Stefan Sommer; Matthew C. Mowlem; Matthew C. Mowlem; María Martínez-Cabanas; Umer Saleem; Matthias Haeckel; Jianghui Li; Mark Schmidt; Amine Gana; Kevin Saw; Marius Dewar; Marius Dewar; Dirk Koopmans; Anna Oleynik; Jan P. Fischer; Christoph Böttner; Jonathan M. Bull; C. M. Sands; Jack Triest; Ben Roche; Juerg M. Matter; Hannah L. Wright; David Paxton; Anita Flohr; Anita Flohr; Dirk de Beer; Henry A. Ruhl; Henry A. Ruhl; Jerry Blackford; Robert Euan Wilson; Eric P. Achterberg; Birgit Ungerböck; Saskia Elsen; John Walk; Brett Hosking; Marcella Dean; Rachael H. James; Rudolf Hanz; Jennifer M. Durden; Christian Berndt; Veerle A.I. Huvenne; Sergey M. Borisov; Peter Linke; Allison Schaap; Socratis Loucaides; Moritz Holtappels; Timothy G. Leighton; Christian Deusner; Guttorm Alendal; Stathys Papadimitriou; Paul R. White; Mario Esposito; Anna Lichtschlag; Martin Arundell; Liam Carter; Jonas Gros; Christopher R. Pearce; Kate Peel; Baixin Chen; Robin Brown; Michael Faggetter; Thomas Mesher; James Wyatt; James Asa Strong; Samuel Monk; Samuel Monk; Andrew W. Dale; Douglas P. Connelly;Abstract Carbon capture and storage (CCS) is a key technology to reduce carbon dioxide (CO2) emissions from industrial processes in a feasible, substantial, and timely manner. For geological CO2 storage to be safe, reliable, and accepted by society, robust strategies for CO2 leakage detection, quantification and management are crucial. The STEMM-CCS (Strategies for Environmental Monitoring of Marine Carbon Capture and Storage) project aimed to provide techniques and understanding to enable and inform cost-effective monitoring of CCS sites in the marine environment. A controlled CO2 release experiment was carried out in the central North Sea, designed to mimic an unintended emission of CO2 from a subsurface CO2 storage site to the seafloor. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor), at flow rates between 6 and 143 kg/d. A combination of novel techniques, adapted versions of existing techniques, and well-proven standard techniques were used to detect, characterise and quantify gaseous and dissolved CO2 in the sediments and the overlying seawater. This paper provides an overview of this ambitious field experiment. We describe the preparatory work prior to the release experiment, the experimental layout and procedures, the methods tested, and summarise the main results and the lessons learnt.
NERC Open Research A... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert NERC Open Research A... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, Germany, United Kingdom, NorwayPublisher:Elsevier BV Funded by:UKRI | Marine LTSS: Climate Link..., RCN | Bayesian monitoring desig..., UKRI | Carbonate Chemistry Auton... +2 projectsUKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,RCN| Bayesian monitoring design. ,UKRI| Carbonate Chemistry Autonomous Sensor System (CarCASS) ,EC| STEMM-CCS ,UKRI| SPITFIRE - the Southampton Partnership for Innovative Training of Future Investigators Researching the EnvironmentSteve Widdicombe; Elke Kossel; Stefan Sommer; Matthew C. Mowlem; Matthew C. Mowlem; María Martínez-Cabanas; Umer Saleem; Matthias Haeckel; Jianghui Li; Mark Schmidt; Amine Gana; Kevin Saw; Marius Dewar; Marius Dewar; Dirk Koopmans; Anna Oleynik; Jan P. Fischer; Christoph Böttner; Jonathan M. Bull; C. M. Sands; Jack Triest; Ben Roche; Juerg M. Matter; Hannah L. Wright; David Paxton; Anita Flohr; Anita Flohr; Dirk de Beer; Henry A. Ruhl; Henry A. Ruhl; Jerry Blackford; Robert Euan Wilson; Eric P. Achterberg; Birgit Ungerböck; Saskia Elsen; John Walk; Brett Hosking; Marcella Dean; Rachael H. James; Rudolf Hanz; Jennifer M. Durden; Christian Berndt; Veerle A.I. Huvenne; Sergey M. Borisov; Peter Linke; Allison Schaap; Socratis Loucaides; Moritz Holtappels; Timothy G. Leighton; Christian Deusner; Guttorm Alendal; Stathys Papadimitriou; Paul R. White; Mario Esposito; Anna Lichtschlag; Martin Arundell; Liam Carter; Jonas Gros; Christopher R. Pearce; Kate Peel; Baixin Chen; Robin Brown; Michael Faggetter; Thomas Mesher; James Wyatt; James Asa Strong; Samuel Monk; Samuel Monk; Andrew W. Dale; Douglas P. Connelly;Abstract Carbon capture and storage (CCS) is a key technology to reduce carbon dioxide (CO2) emissions from industrial processes in a feasible, substantial, and timely manner. For geological CO2 storage to be safe, reliable, and accepted by society, robust strategies for CO2 leakage detection, quantification and management are crucial. The STEMM-CCS (Strategies for Environmental Monitoring of Marine Carbon Capture and Storage) project aimed to provide techniques and understanding to enable and inform cost-effective monitoring of CCS sites in the marine environment. A controlled CO2 release experiment was carried out in the central North Sea, designed to mimic an unintended emission of CO2 from a subsurface CO2 storage site to the seafloor. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor), at flow rates between 6 and 143 kg/d. A combination of novel techniques, adapted versions of existing techniques, and well-proven standard techniques were used to detect, characterise and quantify gaseous and dissolved CO2 in the sediments and the overlying seawater. This paper provides an overview of this ambitious field experiment. We describe the preparatory work prior to the release experiment, the experimental layout and procedures, the methods tested, and summarise the main results and the lessons learnt.
NERC Open Research A... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert NERC Open Research A... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCS, RCN | Bayesian monitoring desig...EC| STEMM-CCS ,RCN| Bayesian monitoring design.Blackford, Jerry; Romanak, Katherine; Huvenne, Veerle A.I.; Lichtschlag, Anna; Strong, James Asa; Alendal, Guttorm; Schütz, Sigrid Eskeland; Oleynik, Anna; Dankel, Dorothy J.;Abstract Carbon capture and storage is key for mitigating greenhouse gas emissions, and offshore geological formations provide vast CO2 storage potential. Monitoring of sub-seabed CO2 storage sites requires that anomalies signifying a loss of containment be detected, and if attributed to storage, quantified and their impact assessed. However, monitoring at or above the seabed is only useful if one can reliably differentiate abnormal signals from natural variability. Baseline acquisition is the default option for describing the natural state, however we argue that a comprehensive baseline assessment is likely expensive and time-bound, given the multi-decadal nature of CCS operations and the dynamic heterogeneity of the marine environment. We present an outline of the elements comprising an efficient marine environmental baseline to support offshore monitoring. We demonstrate that many of these elements can be derived from pre-existing and ongoing sources, not necessarily related to CCS project development. We argue that a sufficient baseline can be achieved by identifying key emergent properties of the system rather than assembling an extensive description of the physical, chemical and biological states. Further, that contemporary comparisons between impacted and non-impacted sites are likely to be as valuable as before and after comparisons. However, as these emergent properties may be nuanced between sites and seasons and comparative studies need to be validated by the careful choice of reference site, a site-specific understanding of the scales of heterogeneity will be an invaluable component of a baseline.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCS, RCN | Bayesian monitoring desig...EC| STEMM-CCS ,RCN| Bayesian monitoring design.Blackford, Jerry; Romanak, Katherine; Huvenne, Veerle A.I.; Lichtschlag, Anna; Strong, James Asa; Alendal, Guttorm; Schütz, Sigrid Eskeland; Oleynik, Anna; Dankel, Dorothy J.;Abstract Carbon capture and storage is key for mitigating greenhouse gas emissions, and offshore geological formations provide vast CO2 storage potential. Monitoring of sub-seabed CO2 storage sites requires that anomalies signifying a loss of containment be detected, and if attributed to storage, quantified and their impact assessed. However, monitoring at or above the seabed is only useful if one can reliably differentiate abnormal signals from natural variability. Baseline acquisition is the default option for describing the natural state, however we argue that a comprehensive baseline assessment is likely expensive and time-bound, given the multi-decadal nature of CCS operations and the dynamic heterogeneity of the marine environment. We present an outline of the elements comprising an efficient marine environmental baseline to support offshore monitoring. We demonstrate that many of these elements can be derived from pre-existing and ongoing sources, not necessarily related to CCS project development. We argue that a sufficient baseline can be achieved by identifying key emergent properties of the system rather than assembling an extensive description of the physical, chemical and biological states. Further, that contemporary comparisons between impacted and non-impacted sites are likely to be as valuable as before and after comparisons. However, as these emergent properties may be nuanced between sites and seasons and comparative studies need to be validated by the careful choice of reference site, a site-specific understanding of the scales of heterogeneity will be an invaluable component of a baseline.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103388&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Norway, United Kingdom, Germany, United Kingdom, United Kingdom, Norway, NorwayPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSD.P. Connelly; J.M. Bull; A. Flohr; A. Schaap; D. Koopmans; J.C. Blackford; P.R. White; R.H. James; C. Pearce; A. Lichtschlag; E.P. Achterberg; D. de Beer; B. Roche; J. Li; K. Saw; G. Alendal; H. Avlesen; R. Brown; S.M. Borisov; C. Böttner; P.W. Cazenave; B. Chen; A.W. Dale; M. Dean; M. Dewar; M. Esposito; J. Gros; R. Hanz; M. Haeckel; B. Hosking; V. Huvenne; J. Karstens; T. Le Bas; T.G. Leighton; P. Linke; S. Loucaides; J.M. Matter; S. Monk; M.C. Mowlem; A. Oleynik; A.M. Omar; K. Peel; G. Provenzano; U. Saleem; M. Schmidt; B. Schramm; S. Sommer; J. Strong; I. Falcon Suarez; B. Ungerboeck; S. Widdicombe; H. Wright; E. Yakushev;handle: 11250/3025167 , 11250/3028049 , 11250/3023870
Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes.
NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Norway, United Kingdom, Germany, United Kingdom, United Kingdom, Norway, NorwayPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSD.P. Connelly; J.M. Bull; A. Flohr; A. Schaap; D. Koopmans; J.C. Blackford; P.R. White; R.H. James; C. Pearce; A. Lichtschlag; E.P. Achterberg; D. de Beer; B. Roche; J. Li; K. Saw; G. Alendal; H. Avlesen; R. Brown; S.M. Borisov; C. Böttner; P.W. Cazenave; B. Chen; A.W. Dale; M. Dean; M. Dewar; M. Esposito; J. Gros; R. Hanz; M. Haeckel; B. Hosking; V. Huvenne; J. Karstens; T. Le Bas; T.G. Leighton; P. Linke; S. Loucaides; J.M. Matter; S. Monk; M.C. Mowlem; A. Oleynik; A.M. Omar; K. Peel; G. Provenzano; U. Saleem; M. Schmidt; B. Schramm; S. Sommer; J. Strong; I. Falcon Suarez; B. Ungerboeck; S. Widdicombe; H. Wright; E. Yakushev;handle: 11250/3025167 , 11250/3028049 , 11250/3023870
Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes.
NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NORCE vitenarkiv (Norwegian Research Centre)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3023870Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3025167Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, United Kingdom, United Kingdom, GermanyPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSFlohr, Anita; Matter, Juerg M.; James, Rachael H.; Saw, Kevin; Brown, Robin; Gros, Jonas; Flude, Stephanie; Day, Christopher; Peel, Kate; Connelly, Douglas; Pearce, Christopher R.; Strong, James A.; Lichtschlag, Anna; Hillegonds, Darren J.; Ballentine, Christopher J.; Tyne, Rebecca L.;Abstract To inform cost-effective monitoring of offshore geological storage of carbon dioxide (CO2), a unique field experiment, designed to simulate leakage of CO2 from a sub-seafloor storage reservoir, was carried out in the central North Sea. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor) for 11 days at flow rates between 6 and 143 kg d-1. A set of natural, inherent tracers (13C, 18O) of injected CO2 and added, non-toxic tracer gases (octafluoropropane, sulfur hexafluoride, krypton, methane) were used to test their applicability for CO2 leakage attribution and quantification in the marine environment. All tracers except 18O were capable of attributing the CO2 source. Tracer analyses indicate that CO2 dissolution in sediment pore waters ranged from 35 % at the lowest injection rate to 41% at the highest injection rate. Direct measurements of gas released from the sediment into the water column suggest that 22 % to 48 % of the injected CO2 exited the seafloor at, respectively, the lowest and the highest injection rate. The remainder of injected CO2 accumulated in gas pockets in the sediment. The methodologies can be used to rapidly confirm the source of leaking CO2 once seabed samples are retrieved.
NERC Open Research A... arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, United Kingdom, United Kingdom, GermanyPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSFlohr, Anita; Matter, Juerg M.; James, Rachael H.; Saw, Kevin; Brown, Robin; Gros, Jonas; Flude, Stephanie; Day, Christopher; Peel, Kate; Connelly, Douglas; Pearce, Christopher R.; Strong, James A.; Lichtschlag, Anna; Hillegonds, Darren J.; Ballentine, Christopher J.; Tyne, Rebecca L.;Abstract To inform cost-effective monitoring of offshore geological storage of carbon dioxide (CO2), a unique field experiment, designed to simulate leakage of CO2 from a sub-seafloor storage reservoir, was carried out in the central North Sea. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor) for 11 days at flow rates between 6 and 143 kg d-1. A set of natural, inherent tracers (13C, 18O) of injected CO2 and added, non-toxic tracer gases (octafluoropropane, sulfur hexafluoride, krypton, methane) were used to test their applicability for CO2 leakage attribution and quantification in the marine environment. All tracers except 18O were capable of attributing the CO2 source. Tracer analyses indicate that CO2 dissolution in sediment pore waters ranged from 35 % at the lowest injection rate to 41% at the highest injection rate. Direct measurements of gas released from the sediment into the water column suggest that 22 % to 48 % of the injected CO2 exited the seafloor at, respectively, the lowest and the highest injection rate. The remainder of injected CO2 accumulated in gas pockets in the sediment. The methodologies can be used to rapidly confirm the source of leaking CO2 once seabed samples are retrieved.
NERC Open Research A... arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down StrathprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSStefan Sommer; María Martínez-Cabanas; Klaus Wallmann; Kevin Saw; Anita Flohr; Anita Flohr; Jack Triest; Andrew W. Dale; Dirk Koopmans; Jonathan M. Bull; Joseph Fone; Ben Roche; Robin Brown; Jonas Gros; Peter Linke; James A. Strong; Mark Schmidt; Mario Esposito; Saskia Dötsch;Abstract According to many prognostic scenarios by the Intergovernmental Panel on Climate Change (IPCC), a scaling-up of carbon dioxide (CO2) capture and storage (CCS) by several orders-of-magnitude is necessary to meet the target of ≤2 °C global warming by 2100 relative to preindustrial levels. Since a large fraction of the predicted CO2 storage capacity lies offshore, there is a pressing need to develop field-tested methods to detect and quantify potential leaks in the marine environment. Here, we combine field measurements with numerical models to determine the flow rate of a controlled release of CO2 in a shallow marine setting at about 119 m water depth in the North Sea. In this experiment, CO2 was injected into the sediment at 3 m depth at 143 kg d-1. The new leakage monitoring tool predicts that 91 kg d-1 of CO2 escaped across the seafloor, and that 51 kg d-1 of CO2 were retained in the sediment, in agreement with independent field estimates. The new approach relies mostly on field data collected from ship-deployed technology (towed sensors, Acoustic Doppler current profiler—ADCP), which makes it a promising tool to monitor existing and upcoming offshore CO2 storage sites and to detect and quantify potential CO2 leakage.
NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSStefan Sommer; María Martínez-Cabanas; Klaus Wallmann; Kevin Saw; Anita Flohr; Anita Flohr; Jack Triest; Andrew W. Dale; Dirk Koopmans; Jonathan M. Bull; Joseph Fone; Ben Roche; Robin Brown; Jonas Gros; Peter Linke; James A. Strong; Mark Schmidt; Mario Esposito; Saskia Dötsch;Abstract According to many prognostic scenarios by the Intergovernmental Panel on Climate Change (IPCC), a scaling-up of carbon dioxide (CO2) capture and storage (CCS) by several orders-of-magnitude is necessary to meet the target of ≤2 °C global warming by 2100 relative to preindustrial levels. Since a large fraction of the predicted CO2 storage capacity lies offshore, there is a pressing need to develop field-tested methods to detect and quantify potential leaks in the marine environment. Here, we combine field measurements with numerical models to determine the flow rate of a controlled release of CO2 in a shallow marine setting at about 119 m water depth in the North Sea. In this experiment, CO2 was injected into the sediment at 3 m depth at 143 kg d-1. The new leakage monitoring tool predicts that 91 kg d-1 of CO2 escaped across the seafloor, and that 51 kg d-1 of CO2 were retained in the sediment, in agreement with independent field estimates. The new approach relies mostly on field data collected from ship-deployed technology (towed sensors, Acoustic Doppler current profiler—ADCP), which makes it a promising tool to monitor existing and upcoming offshore CO2 storage sites and to detect and quantify potential CO2 leakage.
NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSAnita Flohr; Anita Flohr; Soeren Ahmerkamp; Dirk de Beer; Marit R. van Erk; Moritz Holtappels; Anna Lichtschlag; Matthias Haeckel; James Asa Strong;Abstract We investigated the effect of an artificial CO2 vent (0.0015−0.037 mol s−1), simulating a leak from a reservoir for carbon capture and storage (CCS), on the sediment geochemistry. CO2 was injected 3 m deep into the seafloor at 120 m depth. With increasing mass flow an increasing number of vents were observed, distributed over an area of approximately 3 m. In situ profiling with microsensors for pH, T, O2 and ORP showed the geochemical effects are localized in a small area around the vents and highly variable. In measurements remote from the vent, the pH reached a value of 7.6 at a depth of 0.06 m. In a CO2 venting channel, pH reduced to below 5. Steep temperature profiles were indicative of a heat source inside the sediment. Elevated total alkalinity and Ca2+ levels showed calcite dissolution. Venting decreased sulfate reduction rates, but not aerobic respiration. A transport-reaction model confirmed that a large fraction of the injected CO2 is transported laterally into the sediment and that the reactions between CO2 and sediment generate enough heat to elevate the temperature significantly. A CO2 leak will have only local consequences for sediment biogeochemistry, and only a small fraction of the escaped CO2 will reach the sediment surface.
NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 7 Powered bymore_vert NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United Kingdom, United KingdomPublisher:Elsevier BV Funded by:EC | STEMM-CCSEC| STEMM-CCSAnita Flohr; Anita Flohr; Soeren Ahmerkamp; Dirk de Beer; Marit R. van Erk; Moritz Holtappels; Anna Lichtschlag; Matthias Haeckel; James Asa Strong;Abstract We investigated the effect of an artificial CO2 vent (0.0015−0.037 mol s−1), simulating a leak from a reservoir for carbon capture and storage (CCS), on the sediment geochemistry. CO2 was injected 3 m deep into the seafloor at 120 m depth. With increasing mass flow an increasing number of vents were observed, distributed over an area of approximately 3 m. In situ profiling with microsensors for pH, T, O2 and ORP showed the geochemical effects are localized in a small area around the vents and highly variable. In measurements remote from the vent, the pH reached a value of 7.6 at a depth of 0.06 m. In a CO2 venting channel, pH reduced to below 5. Steep temperature profiles were indicative of a heat source inside the sediment. Elevated total alkalinity and Ca2+ levels showed calcite dissolution. Venting decreased sulfate reduction rates, but not aerobic respiration. A transport-reaction model confirmed that a large fraction of the injected CO2 is transported laterally into the sediment and that the reactions between CO2 and sediment generate enough heat to elevate the temperature significantly. A CO2 leak will have only local consequences for sediment biogeochemistry, and only a small fraction of the escaped CO2 will reach the sediment surface.
NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 7 Powered bymore_vert NERC Open Research A... arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Marine LTSS: Climate Link..., EC | STEMM-CCS, RCN | Bayesian monitoring desig...UKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,EC| STEMM-CCS ,RCN| Bayesian monitoring design.Jerry Blackford; Umer Saleem; Jianghui Li; Anita Flohr; Ben Roche; Allison Schaap; Marius Dewar; Marius Dewar; Jonathan M. Bull; Baixin Chen; James A. Strong;Abstract Carbon storage is required to keep rising global temperatures below 2°C, meanwhile, storage reservoirs monitoring is required for assurance of early detection of potential leakages. Projects such as QICS and STEMM-CCS have used small in-situ experiments to develop detection techniques, tools, and strategies. Given the expense of experiments it is crucial to develop accurate simulation models that replicate observed behaviours and can be extrapolated to many different scenarios. However, anomalies occur between modelled and experimental data, and a key question has been how can the models be improved? This has been approached through the development of a complex modelling system to include the effects of coastal hydrodynamics on very localised experiments, with a new multi-phase leakage model – PLUME, integrated into a high-resolution hydrodynamic model, and linked to a carbonate system for CO2 analysis. The resolution of the nested domains range from 2.5 km at the boundaries to approximately 0.5 - 1.0 m at the release sites. The efficacy of the PLUME model is demonstrated with application to the STEMM-CCS and QICS experimental sites in 120 and 9-12 m water depths respectively. Results show that the newly developed model can predict observed pCO2 and pH changes within acceptable errors. Local effects are shown to be affected greatly by both the resolution and the water currents, with momentary spikes in pCO2 and reductions in pH caused by tidal oscillation. The spatial impacts of the releases are shown to move with the tide, covering a far greater area over a tidal cycle.
NERC Open Research A... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Marine LTSS: Climate Link..., EC | STEMM-CCS, RCN | Bayesian monitoring desig...UKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,EC| STEMM-CCS ,RCN| Bayesian monitoring design.Jerry Blackford; Umer Saleem; Jianghui Li; Anita Flohr; Ben Roche; Allison Schaap; Marius Dewar; Marius Dewar; Jonathan M. Bull; Baixin Chen; James A. Strong;Abstract Carbon storage is required to keep rising global temperatures below 2°C, meanwhile, storage reservoirs monitoring is required for assurance of early detection of potential leakages. Projects such as QICS and STEMM-CCS have used small in-situ experiments to develop detection techniques, tools, and strategies. Given the expense of experiments it is crucial to develop accurate simulation models that replicate observed behaviours and can be extrapolated to many different scenarios. However, anomalies occur between modelled and experimental data, and a key question has been how can the models be improved? This has been approached through the development of a complex modelling system to include the effects of coastal hydrodynamics on very localised experiments, with a new multi-phase leakage model – PLUME, integrated into a high-resolution hydrodynamic model, and linked to a carbonate system for CO2 analysis. The resolution of the nested domains range from 2.5 km at the boundaries to approximately 0.5 - 1.0 m at the release sites. The efficacy of the PLUME model is demonstrated with application to the STEMM-CCS and QICS experimental sites in 120 and 9-12 m water depths respectively. Results show that the newly developed model can predict observed pCO2 and pH changes within acceptable errors. Local effects are shown to be affected greatly by both the resolution and the water currents, with momentary spikes in pCO2 and reductions in pH caused by tidal oscillation. The spatial impacts of the releases are shown to move with the tide, covering a far greater area over a tidal cycle.
NERC Open Research A... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2021.103441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, Germany, United Kingdom, NorwayPublisher:Elsevier BV Funded by:UKRI | Marine LTSS: Climate Link..., RCN | Bayesian monitoring desig..., UKRI | Carbonate Chemistry Auton... +2 projectsUKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,RCN| Bayesian monitoring design. ,UKRI| Carbonate Chemistry Autonomous Sensor System (CarCASS) ,EC| STEMM-CCS ,UKRI| SPITFIRE - the Southampton Partnership for Innovative Training of Future Investigators Researching the EnvironmentSteve Widdicombe; Elke Kossel; Stefan Sommer; Matthew C. Mowlem; Matthew C. Mowlem; María Martínez-Cabanas; Umer Saleem; Matthias Haeckel; Jianghui Li; Mark Schmidt; Amine Gana; Kevin Saw; Marius Dewar; Marius Dewar; Dirk Koopmans; Anna Oleynik; Jan P. Fischer; Christoph Böttner; Jonathan M. Bull; C. M. Sands; Jack Triest; Ben Roche; Juerg M. Matter; Hannah L. Wright; David Paxton; Anita Flohr; Anita Flohr; Dirk de Beer; Henry A. Ruhl; Henry A. Ruhl; Jerry Blackford; Robert Euan Wilson; Eric P. Achterberg; Birgit Ungerböck; Saskia Elsen; John Walk; Brett Hosking; Marcella Dean; Rachael H. James; Rudolf Hanz; Jennifer M. Durden; Christian Berndt; Veerle A.I. Huvenne; Sergey M. Borisov; Peter Linke; Allison Schaap; Socratis Loucaides; Moritz Holtappels; Timothy G. Leighton; Christian Deusner; Guttorm Alendal; Stathys Papadimitriou; Paul R. White; Mario Esposito; Anna Lichtschlag; Martin Arundell; Liam Carter; Jonas Gros; Christopher R. Pearce; Kate Peel; Baixin Chen; Robin Brown; Michael Faggetter; Thomas Mesher; James Wyatt; James Asa Strong; Samuel Monk; Samuel Monk; Andrew W. Dale; Douglas P. Connelly;Abstract Carbon capture and storage (CCS) is a key technology to reduce carbon dioxide (CO2) emissions from industrial processes in a feasible, substantial, and timely manner. For geological CO2 storage to be safe, reliable, and accepted by society, robust strategies for CO2 leakage detection, quantification and management are crucial. The STEMM-CCS (Strategies for Environmental Monitoring of Marine Carbon Capture and Storage) project aimed to provide techniques and understanding to enable and inform cost-effective monitoring of CCS sites in the marine environment. A controlled CO2 release experiment was carried out in the central North Sea, designed to mimic an unintended emission of CO2 from a subsurface CO2 storage site to the seafloor. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor), at flow rates between 6 and 143 kg/d. A combination of novel techniques, adapted versions of existing techniques, and well-proven standard techniques were used to detect, characterise and quantify gaseous and dissolved CO2 in the sediments and the overlying seawater. This paper provides an overview of this ambitious field experiment. We describe the preparatory work prior to the release experiment, the experimental layout and procedures, the methods tested, and summarise the main results and the lessons learnt.
NERC Open Research A... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert NERC Open Research A... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, Germany, United Kingdom, NorwayPublisher:Elsevier BV Funded by:UKRI | Marine LTSS: Climate Link..., RCN | Bayesian monitoring desig..., UKRI | Carbonate Chemistry Auton... +2 projectsUKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,RCN| Bayesian monitoring design. ,UKRI| Carbonate Chemistry Autonomous Sensor System (CarCASS) ,EC| STEMM-CCS ,UKRI| SPITFIRE - the Southampton Partnership for Innovative Training of Future Investigators Researching the EnvironmentSteve Widdicombe; Elke Kossel; Stefan Sommer; Matthew C. Mowlem; Matthew C. Mowlem; María Martínez-Cabanas; Umer Saleem; Matthias Haeckel; Jianghui Li; Mark Schmidt; Amine Gana; Kevin Saw; Marius Dewar; Marius Dewar; Dirk Koopmans; Anna Oleynik; Jan P. Fischer; Christoph Böttner; Jonathan M. Bull; C. M. Sands; Jack Triest; Ben Roche; Juerg M. Matter; Hannah L. Wright; David Paxton; Anita Flohr; Anita Flohr; Dirk de Beer; Henry A. Ruhl; Henry A. Ruhl; Jerry Blackford; Robert Euan Wilson; Eric P. Achterberg; Birgit Ungerböck; Saskia Elsen; John Walk; Brett Hosking; Marcella Dean; Rachael H. James; Rudolf Hanz; Jennifer M. Durden; Christian Berndt; Veerle A.I. Huvenne; Sergey M. Borisov; Peter Linke; Allison Schaap; Socratis Loucaides; Moritz Holtappels; Timothy G. Leighton; Christian Deusner; Guttorm Alendal; Stathys Papadimitriou; Paul R. White; Mario Esposito; Anna Lichtschlag; Martin Arundell; Liam Carter; Jonas Gros; Christopher R. Pearce; Kate Peel; Baixin Chen; Robin Brown; Michael Faggetter; Thomas Mesher; James Wyatt; James Asa Strong; Samuel Monk; Samuel Monk; Andrew W. Dale; Douglas P. Connelly;Abstract Carbon capture and storage (CCS) is a key technology to reduce carbon dioxide (CO2) emissions from industrial processes in a feasible, substantial, and timely manner. For geological CO2 storage to be safe, reliable, and accepted by society, robust strategies for CO2 leakage detection, quantification and management are crucial. The STEMM-CCS (Strategies for Environmental Monitoring of Marine Carbon Capture and Storage) project aimed to provide techniques and understanding to enable and inform cost-effective monitoring of CCS sites in the marine environment. A controlled CO2 release experiment was carried out in the central North Sea, designed to mimic an unintended emission of CO2 from a subsurface CO2 storage site to the seafloor. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor), at flow rates between 6 and 143 kg/d. A combination of novel techniques, adapted versions of existing techniques, and well-proven standard techniques were used to detect, characterise and quantify gaseous and dissolved CO2 in the sediments and the overlying seawater. This paper provides an overview of this ambitious field experiment. We describe the preparatory work prior to the release experiment, the experimental layout and procedures, the methods tested, and summarise the main results and the lessons learnt.
NERC Open Research A... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert NERC Open Research A... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2992008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefElectronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInternational Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu