- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:EC | TECNIOspring PLUSEC| TECNIOspring PLUSA. Inés Fernández; Aida Villalba; Camila Barreneche; Camila Barreneche; Marc Martín;Fatty acids are promising organic phase change materials (PCMs) for thermal energy storage (TES) in buildings because of their high storage capacity, non-toxic nature and little subcooling. Their phase change temperatures make them suitable for heating, ventilating and air conditioning (HVAC) applications in the building sector. However, one of their main drawbacks is their poor thermal conductivity which limits their application. In the present study two fatty acids within the building application temperature range, capric acid (CA) and capric-myristic acid (CA-MA) eutectic mixture, were nano-enhanced throughout silicon dioxide nanoparticles (nSiO2) addition (0.5 wt.%, 1.0 wt.% and 1.5 wt.%). Main properties of the nano-enhanced phase change materials (NEPCM) obtained were characterized by means of differential scanning calorimetry (DSC), Hot wire technique, Fourier transformed infrared (FT-IR) spectroscopy, thermogravimetric analyses (TGA), scanning electron microscopy (SEM), and rheological measurements. Furthermore, their long-term performance was evaluated after 2000 cycles by means of cycling stability tests. The NEPCM obtained showed high thermal conductivity and specific heat capacity. Additionally, both are thermally stable within their working temperature range and ensure a long-term performance.
Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 54visibility views 54 download downloads 231 Powered bymore_vert Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:EC | TECNIOspring PLUSEC| TECNIOspring PLUSA. Inés Fernández; Aida Villalba; Camila Barreneche; Camila Barreneche; Marc Martín;Fatty acids are promising organic phase change materials (PCMs) for thermal energy storage (TES) in buildings because of their high storage capacity, non-toxic nature and little subcooling. Their phase change temperatures make them suitable for heating, ventilating and air conditioning (HVAC) applications in the building sector. However, one of their main drawbacks is their poor thermal conductivity which limits their application. In the present study two fatty acids within the building application temperature range, capric acid (CA) and capric-myristic acid (CA-MA) eutectic mixture, were nano-enhanced throughout silicon dioxide nanoparticles (nSiO2) addition (0.5 wt.%, 1.0 wt.% and 1.5 wt.%). Main properties of the nano-enhanced phase change materials (NEPCM) obtained were characterized by means of differential scanning calorimetry (DSC), Hot wire technique, Fourier transformed infrared (FT-IR) spectroscopy, thermogravimetric analyses (TGA), scanning electron microscopy (SEM), and rheological measurements. Furthermore, their long-term performance was evaluated after 2000 cycles by means of cycling stability tests. The NEPCM obtained showed high thermal conductivity and specific heat capacity. Additionally, both are thermally stable within their working temperature range and ensure a long-term performance.
Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 54visibility views 54 download downloads 231 Powered bymore_vert Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Royal Society of Chemistry (RSC) Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEMercè Balcells; Luisa F. Cabeza; Pau Gallart-Sirvent; Aran Solé; Camila Barrenche; Camila Barrenche; Marc Martín; Gemma Villorbina; Ramon Canela-Garayoa;doi: 10.1039/c7ra03845c
handle: 10459.1/60009
Non-edible animal fat waste as a source of phase change materials.
RSC Advances arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume IResearch Repository of CataloniaArticleLicense: CC BY NCData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ra03845c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 37 Powered bymore_vert RSC Advances arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume IResearch Repository of CataloniaArticleLicense: CC BY NCData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ra03845c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Royal Society of Chemistry (RSC) Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEMercè Balcells; Luisa F. Cabeza; Pau Gallart-Sirvent; Aran Solé; Camila Barrenche; Camila Barrenche; Marc Martín; Gemma Villorbina; Ramon Canela-Garayoa;doi: 10.1039/c7ra03845c
handle: 10459.1/60009
Non-edible animal fat waste as a source of phase change materials.
RSC Advances arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume IResearch Repository of CataloniaArticleLicense: CC BY NCData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ra03845c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 37 Powered bymore_vert RSC Advances arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume IResearch Repository of CataloniaArticleLicense: CC BY NCData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ra03845c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 SpainPublisher:MDPI AG Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEJaume Gasia; Marc Martin; Aran Solé; Camila Barreneche; Luisa Cabeza;doi: 10.3390/app7070722
handle: 10459.1/60111
In some processes, latent heat thermal energy storage (TES) systems might work under partial load operating conditions (the available thermal energy source is discontinuous or insufficient to completely charge the phase change material (PCM)). Therefore, there is a need to study how these conditions affect the discharge process to design a control strategy that can benefit the user of these systems. The aim of this paper is to show and perform at laboratory scale the selection of a PCM, with a phase change temperature between 120 and 200 °C, which will be further used in an experimental facility. Beyond the typical PCM properties, sixteen PCMs are studied here from the cycling and thermal stability point of view, as well as from the health hazard point of view. After 100 melting and freezing cycles, seven candidates out of the sixteen present a suitable cycling stability behaviour and five of them show a maximum thermal-stable temperature higher than 200 °C. Two final candidates for the partial loads approach are found in this temperature range, named high density polyethylene (HDPE) and adipic acid.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: Multidisciplinary Digital Publishing InstituteApplied SciencesArticleLicense: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app7070722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 24 Powered bymore_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: Multidisciplinary Digital Publishing InstituteApplied SciencesArticleLicense: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app7070722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 SpainPublisher:MDPI AG Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEJaume Gasia; Marc Martin; Aran Solé; Camila Barreneche; Luisa Cabeza;doi: 10.3390/app7070722
handle: 10459.1/60111
In some processes, latent heat thermal energy storage (TES) systems might work under partial load operating conditions (the available thermal energy source is discontinuous or insufficient to completely charge the phase change material (PCM)). Therefore, there is a need to study how these conditions affect the discharge process to design a control strategy that can benefit the user of these systems. The aim of this paper is to show and perform at laboratory scale the selection of a PCM, with a phase change temperature between 120 and 200 °C, which will be further used in an experimental facility. Beyond the typical PCM properties, sixteen PCMs are studied here from the cycling and thermal stability point of view, as well as from the health hazard point of view. After 100 melting and freezing cycles, seven candidates out of the sixteen present a suitable cycling stability behaviour and five of them show a maximum thermal-stable temperature higher than 200 °C. Two final candidates for the partial loads approach are found in this temperature range, named high density polyethylene (HDPE) and adipic acid.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: Multidisciplinary Digital Publishing InstituteApplied SciencesArticleLicense: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app7070722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 24 Powered bymore_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: Multidisciplinary Digital Publishing InstituteApplied SciencesArticleLicense: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app7070722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 SpainPublisher:MDPI AG Funded by:EC | TECNIOspring PLUSEC| TECNIOspring PLUSMarc Martín; Jaume Calvo-de la Rosa; Marc Majó; Camila Barreneche; Camila Barreneche; A. Inés Fernández;The use of adequate thermal energy storage (TES) systems is an opportunity to increase energy efficiency in the building sector, and so decrease both commercial and residential energy consumptions. Nano-enhanced phase change materials (NEPCM) have attracted attention to address one of the crucial barriers (i.e. low thermal conductivity) to the adoption of phase change materials (PCM) in this sector. In the present study two PCM based on fatty acids, capric and palmitic acid, were nano-enhanced with low contents (1.0 wt.%, 1.5 wt.% and 3.0 wt.%) of copper (II) oxide (CuO) nanoparticles. Copper (II) oxide (CuO) was synthesized via coprecipitation method obtaining 60–120 nm diameter sized nanoparticles. Thermal stability and high thermal conductivity were observed for the nano-enhanced phase change materials (NEPCM) obtained. Experimental results revealed remarkable increments in NEPCM thermal conductivity, for instance palmitic acid thermal conductivity was increased up to 60% with the addition of 3 wt.% CuO nanoparticles. Moreover, CuO nanoparticles sedimentation velocity decreases when increasing its content.
Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: Multidisciplinary Digital Publishing InstituteMoleculesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: SygmaDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24071232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 62visibility views 62 download downloads 66 Powered bymore_vert Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: Multidisciplinary Digital Publishing InstituteMoleculesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: SygmaDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24071232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 SpainPublisher:MDPI AG Funded by:EC | TECNIOspring PLUSEC| TECNIOspring PLUSMarc Martín; Jaume Calvo-de la Rosa; Marc Majó; Camila Barreneche; Camila Barreneche; A. Inés Fernández;The use of adequate thermal energy storage (TES) systems is an opportunity to increase energy efficiency in the building sector, and so decrease both commercial and residential energy consumptions. Nano-enhanced phase change materials (NEPCM) have attracted attention to address one of the crucial barriers (i.e. low thermal conductivity) to the adoption of phase change materials (PCM) in this sector. In the present study two PCM based on fatty acids, capric and palmitic acid, were nano-enhanced with low contents (1.0 wt.%, 1.5 wt.% and 3.0 wt.%) of copper (II) oxide (CuO) nanoparticles. Copper (II) oxide (CuO) was synthesized via coprecipitation method obtaining 60–120 nm diameter sized nanoparticles. Thermal stability and high thermal conductivity were observed for the nano-enhanced phase change materials (NEPCM) obtained. Experimental results revealed remarkable increments in NEPCM thermal conductivity, for instance palmitic acid thermal conductivity was increased up to 60% with the addition of 3 wt.% CuO nanoparticles. Moreover, CuO nanoparticles sedimentation velocity decreases when increasing its content.
Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: Multidisciplinary Digital Publishing InstituteMoleculesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: SygmaDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24071232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 62visibility views 62 download downloads 66 Powered bymore_vert Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: Multidisciplinary Digital Publishing InstituteMoleculesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: SygmaDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24071232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Funded by:EC | INNOSTORAGE, EC | INPATH-TESEC| INNOSTORAGE ,EC| INPATH-TESGallart-Sirvent, Pau; Martín, Marc; Solé, Aran; Villorbina, Gemma; Balcells, Mercè; Cabeza, Luisa F.; Canela-Garayoa, Ramon;handle: 10459.1/60476
"Formerly known as Journal of Molecular Catalysis A: Chemical" The thermal properties of various alkyl threo-9, 10-dihydroxystearates (DHSEs) prepared from non-edible fat were studied. Non-edible animal fat was hydrolyzed in a 93% yield with R. oryzae resting cells. Crude unsaturated fatty acids were recovered from the matter liquor resulting from a crystallization performed to achieve the saturated fatty acids. These unsaturated free fatty acids were epoxidized with 30% H2O2 using immobilized Candida antarctica Lipase-B (CAL-B) as biocatalyst. The epoxy ring was cleaved with hot water in the presence of tert-butanol (t-BuOH). Pure threo-9, 10-dihydroxystearic acid (DHSA) from animal fat was recovered by crystallization (51% yield). Subsequently, DHSA was esterified in alpha-limonene using biocatalysts yielding twelve DHSEs (58-90% yield). Differential scanning calorimetry (DSC) analysis of these esters revealed potential latent heats ranging from 136.83 kJ kg−1 to 234.22 kJ kg−1 and melting temperatures from 52.45 ◦C to 76.88 ◦C. Finally, the compounds with enthalpies above 200 kJ kg−1 were subjected to 100 and 1000 thermal cycles. These experiments showed that these products present good thermal reliability. GREA and DBA are certified agents TECNIO in the category of technology developers from the Government of Catalonia. We thanks to Subproductos Cárnicos Echevarria y Asociados S.L (Cervera, Spain) for supplying the non-edible fat. Moreover, the research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement no PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 research and innovation program under grant agreement no 657466 (INPATH-TES). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups GREA (2014 SGR 123) and Agricultural Biotechnology Research Group (2014 SGR 1296). This work has been partially funded by the Spanish government (CTQ2015-70982-C3-1-R (MINECO/FEDER) and ENE2015-64117-C5-1-R (MINECO/FEDER). Aran Solé would like to thank Ministerio de Economía y Competitividad de España for Grant Juan de la Cierva, FJCI-2015-25741.
Molecular Catalysis arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRepositori Institucional de la Universitat Jaume IArticle . 2018Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mcat.2017.10.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 24visibility views 24 Powered bymore_vert Molecular Catalysis arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRepositori Institucional de la Universitat Jaume IArticle . 2018Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mcat.2017.10.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Funded by:EC | INNOSTORAGE, EC | INPATH-TESEC| INNOSTORAGE ,EC| INPATH-TESGallart-Sirvent, Pau; Martín, Marc; Solé, Aran; Villorbina, Gemma; Balcells, Mercè; Cabeza, Luisa F.; Canela-Garayoa, Ramon;handle: 10459.1/60476
"Formerly known as Journal of Molecular Catalysis A: Chemical" The thermal properties of various alkyl threo-9, 10-dihydroxystearates (DHSEs) prepared from non-edible fat were studied. Non-edible animal fat was hydrolyzed in a 93% yield with R. oryzae resting cells. Crude unsaturated fatty acids were recovered from the matter liquor resulting from a crystallization performed to achieve the saturated fatty acids. These unsaturated free fatty acids were epoxidized with 30% H2O2 using immobilized Candida antarctica Lipase-B (CAL-B) as biocatalyst. The epoxy ring was cleaved with hot water in the presence of tert-butanol (t-BuOH). Pure threo-9, 10-dihydroxystearic acid (DHSA) from animal fat was recovered by crystallization (51% yield). Subsequently, DHSA was esterified in alpha-limonene using biocatalysts yielding twelve DHSEs (58-90% yield). Differential scanning calorimetry (DSC) analysis of these esters revealed potential latent heats ranging from 136.83 kJ kg−1 to 234.22 kJ kg−1 and melting temperatures from 52.45 ◦C to 76.88 ◦C. Finally, the compounds with enthalpies above 200 kJ kg−1 were subjected to 100 and 1000 thermal cycles. These experiments showed that these products present good thermal reliability. GREA and DBA are certified agents TECNIO in the category of technology developers from the Government of Catalonia. We thanks to Subproductos Cárnicos Echevarria y Asociados S.L (Cervera, Spain) for supplying the non-edible fat. Moreover, the research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement no PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 research and innovation program under grant agreement no 657466 (INPATH-TES). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups GREA (2014 SGR 123) and Agricultural Biotechnology Research Group (2014 SGR 1296). This work has been partially funded by the Spanish government (CTQ2015-70982-C3-1-R (MINECO/FEDER) and ENE2015-64117-C5-1-R (MINECO/FEDER). Aran Solé would like to thank Ministerio de Economía y Competitividad de España for Grant Juan de la Cierva, FJCI-2015-25741.
Molecular Catalysis arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRepositori Institucional de la Universitat Jaume IArticle . 2018Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mcat.2017.10.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 24visibility views 24 Powered bymore_vert Molecular Catalysis arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRepositori Institucional de la Universitat Jaume IArticle . 2018Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mcat.2017.10.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 SpainPublisher:MDPI AG Funded by:EC | TECNIOspring PLUS, EC | Innova MicroSolarEC| TECNIOspring PLUS ,EC| Innova MicroSolarJosé Maldonado; Margalida Fullana-Puig; Marc Martín; Aran Solé; Ángel Fernández; Alvaro De Gracia; Luisa Cabeza;doi: 10.3390/en11040861
handle: 10459.1/63086
The improvement of thermal energy storage systems implemented in solar technologies increases not only their performance but also their dispatchability and competitiveness in the energy market. Latent heat thermal energy storage systems are one of those storing methods. Therefore, the need of finding the best materials for each application becomes an appealing research subject. The main goal of this paper is to find suitable and economically viable materials able to work as phase change material (PCM) within the temperature range of 210–270 °C and endure daily loading and unloading processes in a system with Fresnel collector and an organic Rankine cycle (ORC). Twenty-six materials have been tested and characterized in terms of their thermophysical conditions, thermal and cycling stability, and health hazard. Two materials out of the 26 candidates achieved the last stage of the selection process. However, one of the two finalists would require an inert working atmosphere, which would highly increase the cost for the real scale application. This leads to a unique suitable material, solar salt (40 wt % KNO3/60 wt % NaNO3).
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 SpainPublisher:MDPI AG Funded by:EC | TECNIOspring PLUS, EC | Innova MicroSolarEC| TECNIOspring PLUS ,EC| Innova MicroSolarJosé Maldonado; Margalida Fullana-Puig; Marc Martín; Aran Solé; Ángel Fernández; Alvaro De Gracia; Luisa Cabeza;doi: 10.3390/en11040861
handle: 10459.1/63086
The improvement of thermal energy storage systems implemented in solar technologies increases not only their performance but also their dispatchability and competitiveness in the energy market. Latent heat thermal energy storage systems are one of those storing methods. Therefore, the need of finding the best materials for each application becomes an appealing research subject. The main goal of this paper is to find suitable and economically viable materials able to work as phase change material (PCM) within the temperature range of 210–270 °C and endure daily loading and unloading processes in a system with Fresnel collector and an organic Rankine cycle (ORC). Twenty-six materials have been tested and characterized in terms of their thermophysical conditions, thermal and cycling stability, and health hazard. Two materials out of the 26 candidates achieved the last stage of the selection process. However, one of the two finalists would require an inert working atmosphere, which would highly increase the cost for the real scale application. This leads to a unique suitable material, solar salt (40 wt % KNO3/60 wt % NaNO3).
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:WTWTLidia Navarro; Aran Solé; Marc Martín; Camila Barreneche; Lorenzo Olivieri; José Antonio Tenorio; Luisa F. Cabeza;handle: 10261/210604
Nowadays, there is an increasing interest in more efficient building materials and new technologies to accomplish the objectives defined by energy policies. The combination of energy efficient building designs and integration of renewable energies makes the use of thermal energy storage (TES) necessary. Within this context, the improvement of building envelopes by the use of phase change materials (PCM) has been widely studied. The PCM selection should fulfil the requirements of the specific application. In this study, a benchmarking of PCM available in the market was performed to undertake a material selection for a specific building application. The incorporation of PCM into a radiant wall technology present several requirements with especial interest on long-term thermal stability. A complete laboratory-scale characterization has been carried out considering the following properties: temperature of phase change, specific heat capacity, thermal conductivity, and stability. Financiado por el proyecto RTC-2015-3583-5 (INPHASE) del Ministerio de Economía y Competitividad, dentro del Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, y ha sido cofinanciado con FONDOS FEDER, con el objetivo de promover el desarrollo tecnológico, la innovación y una investigación de calidad. The work is partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER) and ENE2015-64117-C5-2-R (MINECO/FEDER)). The authors would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537 and 2017 SGR 188). GREiA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. Camila Barreneche would like to thank ACCIO for her Grant TecnioSpring Plus TECSPR17-1-0071. Aran Solé would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva FJCI-2015-25741.
Energy and Buildings arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 48visibility views 48 download downloads 34 Powered bymore_vert Energy and Buildings arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:WTWTLidia Navarro; Aran Solé; Marc Martín; Camila Barreneche; Lorenzo Olivieri; José Antonio Tenorio; Luisa F. Cabeza;handle: 10261/210604
Nowadays, there is an increasing interest in more efficient building materials and new technologies to accomplish the objectives defined by energy policies. The combination of energy efficient building designs and integration of renewable energies makes the use of thermal energy storage (TES) necessary. Within this context, the improvement of building envelopes by the use of phase change materials (PCM) has been widely studied. The PCM selection should fulfil the requirements of the specific application. In this study, a benchmarking of PCM available in the market was performed to undertake a material selection for a specific building application. The incorporation of PCM into a radiant wall technology present several requirements with especial interest on long-term thermal stability. A complete laboratory-scale characterization has been carried out considering the following properties: temperature of phase change, specific heat capacity, thermal conductivity, and stability. Financiado por el proyecto RTC-2015-3583-5 (INPHASE) del Ministerio de Economía y Competitividad, dentro del Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, y ha sido cofinanciado con FONDOS FEDER, con el objetivo de promover el desarrollo tecnológico, la innovación y una investigación de calidad. The work is partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER) and ENE2015-64117-C5-2-R (MINECO/FEDER)). The authors would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537 and 2017 SGR 188). GREiA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. Camila Barreneche would like to thank ACCIO for her Grant TecnioSpring Plus TECSPR17-1-0071. Aran Solé would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva FJCI-2015-25741.
Energy and Buildings arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 48visibility views 48 download downloads 34 Powered bymore_vert Energy and Buildings arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:EC | TECNIOspring PLUSEC| TECNIOspring PLUSA. Inés Fernández; Aida Villalba; Camila Barreneche; Camila Barreneche; Marc Martín;Fatty acids are promising organic phase change materials (PCMs) for thermal energy storage (TES) in buildings because of their high storage capacity, non-toxic nature and little subcooling. Their phase change temperatures make them suitable for heating, ventilating and air conditioning (HVAC) applications in the building sector. However, one of their main drawbacks is their poor thermal conductivity which limits their application. In the present study two fatty acids within the building application temperature range, capric acid (CA) and capric-myristic acid (CA-MA) eutectic mixture, were nano-enhanced throughout silicon dioxide nanoparticles (nSiO2) addition (0.5 wt.%, 1.0 wt.% and 1.5 wt.%). Main properties of the nano-enhanced phase change materials (NEPCM) obtained were characterized by means of differential scanning calorimetry (DSC), Hot wire technique, Fourier transformed infrared (FT-IR) spectroscopy, thermogravimetric analyses (TGA), scanning electron microscopy (SEM), and rheological measurements. Furthermore, their long-term performance was evaluated after 2000 cycles by means of cycling stability tests. The NEPCM obtained showed high thermal conductivity and specific heat capacity. Additionally, both are thermally stable within their working temperature range and ensure a long-term performance.
Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 54visibility views 54 download downloads 231 Powered bymore_vert Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:EC | TECNIOspring PLUSEC| TECNIOspring PLUSA. Inés Fernández; Aida Villalba; Camila Barreneche; Camila Barreneche; Marc Martín;Fatty acids are promising organic phase change materials (PCMs) for thermal energy storage (TES) in buildings because of their high storage capacity, non-toxic nature and little subcooling. Their phase change temperatures make them suitable for heating, ventilating and air conditioning (HVAC) applications in the building sector. However, one of their main drawbacks is their poor thermal conductivity which limits their application. In the present study two fatty acids within the building application temperature range, capric acid (CA) and capric-myristic acid (CA-MA) eutectic mixture, were nano-enhanced throughout silicon dioxide nanoparticles (nSiO2) addition (0.5 wt.%, 1.0 wt.% and 1.5 wt.%). Main properties of the nano-enhanced phase change materials (NEPCM) obtained were characterized by means of differential scanning calorimetry (DSC), Hot wire technique, Fourier transformed infrared (FT-IR) spectroscopy, thermogravimetric analyses (TGA), scanning electron microscopy (SEM), and rheological measurements. Furthermore, their long-term performance was evaluated after 2000 cycles by means of cycling stability tests. The NEPCM obtained showed high thermal conductivity and specific heat capacity. Additionally, both are thermally stable within their working temperature range and ensure a long-term performance.
Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 54visibility views 54 download downloads 231 Powered bymore_vert Diposit Digital de l... arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BY NC NDData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Royal Society of Chemistry (RSC) Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEMercè Balcells; Luisa F. Cabeza; Pau Gallart-Sirvent; Aran Solé; Camila Barrenche; Camila Barrenche; Marc Martín; Gemma Villorbina; Ramon Canela-Garayoa;doi: 10.1039/c7ra03845c
handle: 10459.1/60009
Non-edible animal fat waste as a source of phase change materials.
RSC Advances arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume IResearch Repository of CataloniaArticleLicense: CC BY NCData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ra03845c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 37 Powered bymore_vert RSC Advances arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume IResearch Repository of CataloniaArticleLicense: CC BY NCData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ra03845c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Royal Society of Chemistry (RSC) Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEMercè Balcells; Luisa F. Cabeza; Pau Gallart-Sirvent; Aran Solé; Camila Barrenche; Camila Barrenche; Marc Martín; Gemma Villorbina; Ramon Canela-Garayoa;doi: 10.1039/c7ra03845c
handle: 10459.1/60009
Non-edible animal fat waste as a source of phase change materials.
RSC Advances arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume IResearch Repository of CataloniaArticleLicense: CC BY NCData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ra03845c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 37 Powered bymore_vert RSC Advances arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY NCData sources: Repositori Institucional de la Universitat Jaume IResearch Repository of CataloniaArticleLicense: CC BY NCData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ra03845c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 SpainPublisher:MDPI AG Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEJaume Gasia; Marc Martin; Aran Solé; Camila Barreneche; Luisa Cabeza;doi: 10.3390/app7070722
handle: 10459.1/60111
In some processes, latent heat thermal energy storage (TES) systems might work under partial load operating conditions (the available thermal energy source is discontinuous or insufficient to completely charge the phase change material (PCM)). Therefore, there is a need to study how these conditions affect the discharge process to design a control strategy that can benefit the user of these systems. The aim of this paper is to show and perform at laboratory scale the selection of a PCM, with a phase change temperature between 120 and 200 °C, which will be further used in an experimental facility. Beyond the typical PCM properties, sixteen PCMs are studied here from the cycling and thermal stability point of view, as well as from the health hazard point of view. After 100 melting and freezing cycles, seven candidates out of the sixteen present a suitable cycling stability behaviour and five of them show a maximum thermal-stable temperature higher than 200 °C. Two final candidates for the partial loads approach are found in this temperature range, named high density polyethylene (HDPE) and adipic acid.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: Multidisciplinary Digital Publishing InstituteApplied SciencesArticleLicense: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app7070722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 24 Powered bymore_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: Multidisciplinary Digital Publishing InstituteApplied SciencesArticleLicense: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app7070722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 SpainPublisher:MDPI AG Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEJaume Gasia; Marc Martin; Aran Solé; Camila Barreneche; Luisa Cabeza;doi: 10.3390/app7070722
handle: 10459.1/60111
In some processes, latent heat thermal energy storage (TES) systems might work under partial load operating conditions (the available thermal energy source is discontinuous or insufficient to completely charge the phase change material (PCM)). Therefore, there is a need to study how these conditions affect the discharge process to design a control strategy that can benefit the user of these systems. The aim of this paper is to show and perform at laboratory scale the selection of a PCM, with a phase change temperature between 120 and 200 °C, which will be further used in an experimental facility. Beyond the typical PCM properties, sixteen PCMs are studied here from the cycling and thermal stability point of view, as well as from the health hazard point of view. After 100 melting and freezing cycles, seven candidates out of the sixteen present a suitable cycling stability behaviour and five of them show a maximum thermal-stable temperature higher than 200 °C. Two final candidates for the partial loads approach are found in this temperature range, named high density polyethylene (HDPE) and adipic acid.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: Multidisciplinary Digital Publishing InstituteApplied SciencesArticleLicense: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app7070722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 24 Powered bymore_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: Multidisciplinary Digital Publishing InstituteApplied SciencesArticleLicense: CC BYFull-Text: http://www.mdpi.com/2076-3417/7/7/722/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2017License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app7070722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 SpainPublisher:MDPI AG Funded by:EC | TECNIOspring PLUSEC| TECNIOspring PLUSMarc Martín; Jaume Calvo-de la Rosa; Marc Majó; Camila Barreneche; Camila Barreneche; A. Inés Fernández;The use of adequate thermal energy storage (TES) systems is an opportunity to increase energy efficiency in the building sector, and so decrease both commercial and residential energy consumptions. Nano-enhanced phase change materials (NEPCM) have attracted attention to address one of the crucial barriers (i.e. low thermal conductivity) to the adoption of phase change materials (PCM) in this sector. In the present study two PCM based on fatty acids, capric and palmitic acid, were nano-enhanced with low contents (1.0 wt.%, 1.5 wt.% and 3.0 wt.%) of copper (II) oxide (CuO) nanoparticles. Copper (II) oxide (CuO) was synthesized via coprecipitation method obtaining 60–120 nm diameter sized nanoparticles. Thermal stability and high thermal conductivity were observed for the nano-enhanced phase change materials (NEPCM) obtained. Experimental results revealed remarkable increments in NEPCM thermal conductivity, for instance palmitic acid thermal conductivity was increased up to 60% with the addition of 3 wt.% CuO nanoparticles. Moreover, CuO nanoparticles sedimentation velocity decreases when increasing its content.
Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: Multidisciplinary Digital Publishing InstituteMoleculesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: SygmaDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24071232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 62visibility views 62 download downloads 66 Powered bymore_vert Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: Multidisciplinary Digital Publishing InstituteMoleculesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: SygmaDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24071232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 SpainPublisher:MDPI AG Funded by:EC | TECNIOspring PLUSEC| TECNIOspring PLUSMarc Martín; Jaume Calvo-de la Rosa; Marc Majó; Camila Barreneche; Camila Barreneche; A. Inés Fernández;The use of adequate thermal energy storage (TES) systems is an opportunity to increase energy efficiency in the building sector, and so decrease both commercial and residential energy consumptions. Nano-enhanced phase change materials (NEPCM) have attracted attention to address one of the crucial barriers (i.e. low thermal conductivity) to the adoption of phase change materials (PCM) in this sector. In the present study two PCM based on fatty acids, capric and palmitic acid, were nano-enhanced with low contents (1.0 wt.%, 1.5 wt.% and 3.0 wt.%) of copper (II) oxide (CuO) nanoparticles. Copper (II) oxide (CuO) was synthesized via coprecipitation method obtaining 60–120 nm diameter sized nanoparticles. Thermal stability and high thermal conductivity were observed for the nano-enhanced phase change materials (NEPCM) obtained. Experimental results revealed remarkable increments in NEPCM thermal conductivity, for instance palmitic acid thermal conductivity was increased up to 60% with the addition of 3 wt.% CuO nanoparticles. Moreover, CuO nanoparticles sedimentation velocity decreases when increasing its content.
Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: Multidisciplinary Digital Publishing InstituteMoleculesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: SygmaDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24071232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 62visibility views 62 download downloads 66 Powered bymore_vert Molecules arrow_drop_down MoleculesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: Multidisciplinary Digital Publishing InstituteMoleculesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1420-3049/24/7/1232/pdfData sources: SygmaDiposit Digital de la Universitat de BarcelonaArticle . 2019License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules24071232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Funded by:EC | INNOSTORAGE, EC | INPATH-TESEC| INNOSTORAGE ,EC| INPATH-TESGallart-Sirvent, Pau; Martín, Marc; Solé, Aran; Villorbina, Gemma; Balcells, Mercè; Cabeza, Luisa F.; Canela-Garayoa, Ramon;handle: 10459.1/60476
"Formerly known as Journal of Molecular Catalysis A: Chemical" The thermal properties of various alkyl threo-9, 10-dihydroxystearates (DHSEs) prepared from non-edible fat were studied. Non-edible animal fat was hydrolyzed in a 93% yield with R. oryzae resting cells. Crude unsaturated fatty acids were recovered from the matter liquor resulting from a crystallization performed to achieve the saturated fatty acids. These unsaturated free fatty acids were epoxidized with 30% H2O2 using immobilized Candida antarctica Lipase-B (CAL-B) as biocatalyst. The epoxy ring was cleaved with hot water in the presence of tert-butanol (t-BuOH). Pure threo-9, 10-dihydroxystearic acid (DHSA) from animal fat was recovered by crystallization (51% yield). Subsequently, DHSA was esterified in alpha-limonene using biocatalysts yielding twelve DHSEs (58-90% yield). Differential scanning calorimetry (DSC) analysis of these esters revealed potential latent heats ranging from 136.83 kJ kg−1 to 234.22 kJ kg−1 and melting temperatures from 52.45 ◦C to 76.88 ◦C. Finally, the compounds with enthalpies above 200 kJ kg−1 were subjected to 100 and 1000 thermal cycles. These experiments showed that these products present good thermal reliability. GREA and DBA are certified agents TECNIO in the category of technology developers from the Government of Catalonia. We thanks to Subproductos Cárnicos Echevarria y Asociados S.L (Cervera, Spain) for supplying the non-edible fat. Moreover, the research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement no PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 research and innovation program under grant agreement no 657466 (INPATH-TES). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups GREA (2014 SGR 123) and Agricultural Biotechnology Research Group (2014 SGR 1296). This work has been partially funded by the Spanish government (CTQ2015-70982-C3-1-R (MINECO/FEDER) and ENE2015-64117-C5-1-R (MINECO/FEDER). Aran Solé would like to thank Ministerio de Economía y Competitividad de España for Grant Juan de la Cierva, FJCI-2015-25741.
Molecular Catalysis arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRepositori Institucional de la Universitat Jaume IArticle . 2018Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mcat.2017.10.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 24visibility views 24 Powered bymore_vert Molecular Catalysis arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRepositori Institucional de la Universitat Jaume IArticle . 2018Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mcat.2017.10.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Funded by:EC | INNOSTORAGE, EC | INPATH-TESEC| INNOSTORAGE ,EC| INPATH-TESGallart-Sirvent, Pau; Martín, Marc; Solé, Aran; Villorbina, Gemma; Balcells, Mercè; Cabeza, Luisa F.; Canela-Garayoa, Ramon;handle: 10459.1/60476
"Formerly known as Journal of Molecular Catalysis A: Chemical" The thermal properties of various alkyl threo-9, 10-dihydroxystearates (DHSEs) prepared from non-edible fat were studied. Non-edible animal fat was hydrolyzed in a 93% yield with R. oryzae resting cells. Crude unsaturated fatty acids were recovered from the matter liquor resulting from a crystallization performed to achieve the saturated fatty acids. These unsaturated free fatty acids were epoxidized with 30% H2O2 using immobilized Candida antarctica Lipase-B (CAL-B) as biocatalyst. The epoxy ring was cleaved with hot water in the presence of tert-butanol (t-BuOH). Pure threo-9, 10-dihydroxystearic acid (DHSA) from animal fat was recovered by crystallization (51% yield). Subsequently, DHSA was esterified in alpha-limonene using biocatalysts yielding twelve DHSEs (58-90% yield). Differential scanning calorimetry (DSC) analysis of these esters revealed potential latent heats ranging from 136.83 kJ kg−1 to 234.22 kJ kg−1 and melting temperatures from 52.45 ◦C to 76.88 ◦C. Finally, the compounds with enthalpies above 200 kJ kg−1 were subjected to 100 and 1000 thermal cycles. These experiments showed that these products present good thermal reliability. GREA and DBA are certified agents TECNIO in the category of technology developers from the Government of Catalonia. We thanks to Subproductos Cárnicos Echevarria y Asociados S.L (Cervera, Spain) for supplying the non-edible fat. Moreover, the research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement no PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 research and innovation program under grant agreement no 657466 (INPATH-TES). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups GREA (2014 SGR 123) and Agricultural Biotechnology Research Group (2014 SGR 1296). This work has been partially funded by the Spanish government (CTQ2015-70982-C3-1-R (MINECO/FEDER) and ENE2015-64117-C5-1-R (MINECO/FEDER). Aran Solé would like to thank Ministerio de Economía y Competitividad de España for Grant Juan de la Cierva, FJCI-2015-25741.
Molecular Catalysis arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRepositori Institucional de la Universitat Jaume IArticle . 2018Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mcat.2017.10.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 24visibility views 24 Powered bymore_vert Molecular Catalysis arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRepositori Institucional de la Universitat Jaume IArticle . 2018Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mcat.2017.10.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 SpainPublisher:MDPI AG Funded by:EC | TECNIOspring PLUS, EC | Innova MicroSolarEC| TECNIOspring PLUS ,EC| Innova MicroSolarJosé Maldonado; Margalida Fullana-Puig; Marc Martín; Aran Solé; Ángel Fernández; Alvaro De Gracia; Luisa Cabeza;doi: 10.3390/en11040861
handle: 10459.1/63086
The improvement of thermal energy storage systems implemented in solar technologies increases not only their performance but also their dispatchability and competitiveness in the energy market. Latent heat thermal energy storage systems are one of those storing methods. Therefore, the need of finding the best materials for each application becomes an appealing research subject. The main goal of this paper is to find suitable and economically viable materials able to work as phase change material (PCM) within the temperature range of 210–270 °C and endure daily loading and unloading processes in a system with Fresnel collector and an organic Rankine cycle (ORC). Twenty-six materials have been tested and characterized in terms of their thermophysical conditions, thermal and cycling stability, and health hazard. Two materials out of the 26 candidates achieved the last stage of the selection process. However, one of the two finalists would require an inert working atmosphere, which would highly increase the cost for the real scale application. This leads to a unique suitable material, solar salt (40 wt % KNO3/60 wt % NaNO3).
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 SpainPublisher:MDPI AG Funded by:EC | TECNIOspring PLUS, EC | Innova MicroSolarEC| TECNIOspring PLUS ,EC| Innova MicroSolarJosé Maldonado; Margalida Fullana-Puig; Marc Martín; Aran Solé; Ángel Fernández; Alvaro De Gracia; Luisa Cabeza;doi: 10.3390/en11040861
handle: 10459.1/63086
The improvement of thermal energy storage systems implemented in solar technologies increases not only their performance but also their dispatchability and competitiveness in the energy market. Latent heat thermal energy storage systems are one of those storing methods. Therefore, the need of finding the best materials for each application becomes an appealing research subject. The main goal of this paper is to find suitable and economically viable materials able to work as phase change material (PCM) within the temperature range of 210–270 °C and endure daily loading and unloading processes in a system with Fresnel collector and an organic Rankine cycle (ORC). Twenty-six materials have been tested and characterized in terms of their thermophysical conditions, thermal and cycling stability, and health hazard. Two materials out of the 26 candidates achieved the last stage of the selection process. However, one of the two finalists would require an inert working atmosphere, which would highly increase the cost for the real scale application. This leads to a unique suitable material, solar salt (40 wt % KNO3/60 wt % NaNO3).
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/861/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040861&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:WTWTLidia Navarro; Aran Solé; Marc Martín; Camila Barreneche; Lorenzo Olivieri; José Antonio Tenorio; Luisa F. Cabeza;handle: 10261/210604
Nowadays, there is an increasing interest in more efficient building materials and new technologies to accomplish the objectives defined by energy policies. The combination of energy efficient building designs and integration of renewable energies makes the use of thermal energy storage (TES) necessary. Within this context, the improvement of building envelopes by the use of phase change materials (PCM) has been widely studied. The PCM selection should fulfil the requirements of the specific application. In this study, a benchmarking of PCM available in the market was performed to undertake a material selection for a specific building application. The incorporation of PCM into a radiant wall technology present several requirements with especial interest on long-term thermal stability. A complete laboratory-scale characterization has been carried out considering the following properties: temperature of phase change, specific heat capacity, thermal conductivity, and stability. Financiado por el proyecto RTC-2015-3583-5 (INPHASE) del Ministerio de Economía y Competitividad, dentro del Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, y ha sido cofinanciado con FONDOS FEDER, con el objetivo de promover el desarrollo tecnológico, la innovación y una investigación de calidad. The work is partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER) and ENE2015-64117-C5-2-R (MINECO/FEDER)). The authors would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537 and 2017 SGR 188). GREiA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. Camila Barreneche would like to thank ACCIO for her Grant TecnioSpring Plus TECSPR17-1-0071. Aran Solé would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva FJCI-2015-25741.
Energy and Buildings arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 48visibility views 48 download downloads 34 Powered bymore_vert Energy and Buildings arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:WTWTLidia Navarro; Aran Solé; Marc Martín; Camila Barreneche; Lorenzo Olivieri; José Antonio Tenorio; Luisa F. Cabeza;handle: 10261/210604
Nowadays, there is an increasing interest in more efficient building materials and new technologies to accomplish the objectives defined by energy policies. The combination of energy efficient building designs and integration of renewable energies makes the use of thermal energy storage (TES) necessary. Within this context, the improvement of building envelopes by the use of phase change materials (PCM) has been widely studied. The PCM selection should fulfil the requirements of the specific application. In this study, a benchmarking of PCM available in the market was performed to undertake a material selection for a specific building application. The incorporation of PCM into a radiant wall technology present several requirements with especial interest on long-term thermal stability. A complete laboratory-scale characterization has been carried out considering the following properties: temperature of phase change, specific heat capacity, thermal conductivity, and stability. Financiado por el proyecto RTC-2015-3583-5 (INPHASE) del Ministerio de Economía y Competitividad, dentro del Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, y ha sido cofinanciado con FONDOS FEDER, con el objetivo de promover el desarrollo tecnológico, la innovación y una investigación de calidad. The work is partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER) and ENE2015-64117-C5-2-R (MINECO/FEDER)). The authors would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537 and 2017 SGR 188). GREiA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. Camila Barreneche would like to thank ACCIO for her Grant TecnioSpring Plus TECSPR17-1-0071. Aran Solé would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva FJCI-2015-25741.
Energy and Buildings arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 48visibility views 48 download downloads 34 Powered bymore_vert Energy and Buildings arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2019Data sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu