- home
- Advanced Search
- Energy Research
- Closed Access
- Energy Research
- Closed Access
description Publicationkeyboard_double_arrow_right Article 2023 SingaporePublisher:Elsevier BV Mo Wang; Ming Liu; Dongqing Zhang; Jinda Qi; Weicong Fu; Yu Zhang; Qiuyi Rao; Amin E. Bakhshipour; Soon Keat Tan;Climate change has led to the increased intensity and frequency of extreme meteorological events, threatening the drainage capacity in urban catchments and densely built-up cities. To alleviate urban flooding disasters, strategies coupled with green and grey infrastructure have been proposed to support urban stormwater management. However, most strategies rely largely on diachronic rainfall data and ignore long-term climate change impacts. This study described a novel framework to assess and to identify the optimal solution in response to uncertainties following climate change. The assessment framework consists of three components: (1) assess and process climate data to generate long-term time series of meteorological parameters under different climate conditions; (2) optimise the design of Grey-Green infrastructure systems to establish the optimal design solutions; and (3) perform a multi-criteria assessment of economic and hydrological performance to support decision-making. A case study in Guangzhou, China was carried out to demonstrate the usability and application processes of the framework. The results of the case study illustrated that the optimised Grey-Green infrastructure could save life cycle costs and reduce total outflow (56-66%), peak flow (22-85%), and TSS (more than 60%) compared to the fully centralised grey infrastructure system, indicating its high superior in economic competitiveness and hydrological performance under climate uncertainties. In terms of spatial configuration, the contribution of green infrastructure appeared not as critical as the adoption of decentralisation of the drainage networks. Furthermore, under extreme drought scenarios, the decentralised infrastructure system exhibited an exceptionally high degree of removal performance for non-point source pollutants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2023.119720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2023.119720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SingaporePublisher:Elsevier BV Yuning Cheng; Soon Keat Tan; Mo Wang; Mo Wang; Dongqing Zhang;The effectiveness of porous pavement (PP) and bio-retention cells (BCs) under the influence of potential climate change was investigated based on representative concentration pathways (RCPs). A case study of a test catchment in Guangzhou illustrated changes of peak runoff under various climate scenarios. There were distinct increases in runoff volume and peak discharge in response to RCP8.5 but only marginal increases in response to RCP2.6 (compared with present conditions). The performance of PP and BCs in terms of percentage reduction of runoff volume and peak discharge was examined for 1-, 10-, and 100-year return period and 1- and 6-h-duration storms under various climate scenarios. The effectiveness of PP and BCs varied non-linearly with the extent of PP and BCs adopted. In general, the fluctuation of hydrological performance of PP is greater than that of BCs in RCP2.6 and RCP8.5 (e.g., peak flow reductions range from -60% to 69% and from -22% to 9%, for 5% area of PP and BCs, respectively). And PP is more cost-effective for frequent storms using life cycle costing analysis. We find that PP and BCs could significantly reduce runoff volume and peak discharge in response to rainfall events with short return period, but not for heavy storms with longer return period.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.05.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.05.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 SingaporePublisher:Elsevier BV Mo Wang; Ming Liu; Dongqing Zhang; Jinda Qi; Weicong Fu; Yu Zhang; Qiuyi Rao; Amin E. Bakhshipour; Soon Keat Tan;Climate change has led to the increased intensity and frequency of extreme meteorological events, threatening the drainage capacity in urban catchments and densely built-up cities. To alleviate urban flooding disasters, strategies coupled with green and grey infrastructure have been proposed to support urban stormwater management. However, most strategies rely largely on diachronic rainfall data and ignore long-term climate change impacts. This study described a novel framework to assess and to identify the optimal solution in response to uncertainties following climate change. The assessment framework consists of three components: (1) assess and process climate data to generate long-term time series of meteorological parameters under different climate conditions; (2) optimise the design of Grey-Green infrastructure systems to establish the optimal design solutions; and (3) perform a multi-criteria assessment of economic and hydrological performance to support decision-making. A case study in Guangzhou, China was carried out to demonstrate the usability and application processes of the framework. The results of the case study illustrated that the optimised Grey-Green infrastructure could save life cycle costs and reduce total outflow (56-66%), peak flow (22-85%), and TSS (more than 60%) compared to the fully centralised grey infrastructure system, indicating its high superior in economic competitiveness and hydrological performance under climate uncertainties. In terms of spatial configuration, the contribution of green infrastructure appeared not as critical as the adoption of decentralisation of the drainage networks. Furthermore, under extreme drought scenarios, the decentralised infrastructure system exhibited an exceptionally high degree of removal performance for non-point source pollutants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2023.119720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2023.119720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SingaporePublisher:Elsevier BV Yuning Cheng; Soon Keat Tan; Mo Wang; Mo Wang; Dongqing Zhang;The effectiveness of porous pavement (PP) and bio-retention cells (BCs) under the influence of potential climate change was investigated based on representative concentration pathways (RCPs). A case study of a test catchment in Guangzhou illustrated changes of peak runoff under various climate scenarios. There were distinct increases in runoff volume and peak discharge in response to RCP8.5 but only marginal increases in response to RCP2.6 (compared with present conditions). The performance of PP and BCs in terms of percentage reduction of runoff volume and peak discharge was examined for 1-, 10-, and 100-year return period and 1- and 6-h-duration storms under various climate scenarios. The effectiveness of PP and BCs varied non-linearly with the extent of PP and BCs adopted. In general, the fluctuation of hydrological performance of PP is greater than that of BCs in RCP2.6 and RCP8.5 (e.g., peak flow reductions range from -60% to 69% and from -22% to 9%, for 5% area of PP and BCs, respectively). And PP is more cost-effective for frequent storms using life cycle costing analysis. We find that PP and BCs could significantly reduce runoff volume and peak discharge in response to rainfall events with short return period, but not for heavy storms with longer return period.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.05.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.05.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu