Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Management
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing performance of porous pavements and bioretention cells for stormwater management in response to probable climatic changes

Authors: Yuning Cheng; Soon Keat Tan; Mo Wang; Mo Wang; Dongqing Zhang;

Assessing performance of porous pavements and bioretention cells for stormwater management in response to probable climatic changes

Abstract

The effectiveness of porous pavement (PP) and bio-retention cells (BCs) under the influence of potential climate change was investigated based on representative concentration pathways (RCPs). A case study of a test catchment in Guangzhou illustrated changes of peak runoff under various climate scenarios. There were distinct increases in runoff volume and peak discharge in response to RCP8.5 but only marginal increases in response to RCP2.6 (compared with present conditions). The performance of PP and BCs in terms of percentage reduction of runoff volume and peak discharge was examined for 1-, 10-, and 100-year return period and 1- and 6-h-duration storms under various climate scenarios. The effectiveness of PP and BCs varied non-linearly with the extent of PP and BCs adopted. In general, the fluctuation of hydrological performance of PP is greater than that of BCs in RCP2.6 and RCP8.5 (e.g., peak flow reductions range from -60% to 69% and from -22% to 9%, for 5% area of PP and BCs, respectively). And PP is more cost-effective for frequent storms using life cycle costing analysis. We find that PP and BCs could significantly reduce runoff volume and peak discharge in response to rainfall events with short return period, but not for heavy storms with longer return period.

Country
Singapore
Related Organizations
Keywords

Climate Change, Rain, Porous Pavement, 333, Water Movements, Engineering::Environmental engineering, Bioretention, Hydrology, Porosity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 1%
Top 10%
Top 1%
Green
bronze