- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 NetherlandsPublisher:Wiley Funded by:EC | GEMexEC| GEMexBékési, Eszter; Fokker, Peter A.; Martins, Joana E.; Limberger, Jon; Bonté, Damien; van Wees, Jan-Diederik;doi: 10.1155/2019/2306092
Surface deformation due to fluid extraction can be detected by satellite-based geodetic sensors, providing important insights on subsurface geomechanical properties. In this study, we use Differential Interferometric Synthetic Aperture Radar (DInSAR) observations to measure ground deformation due to fluid extraction at the Los Humeros Geothermal Field (Puebla, Mexico). Our main goal is to reveal the pressure distribution in the reservoir and to identify reservoir compartmentalization, which can be important aspects for optimizing the production of the field. The result of the PS-InSAR (Persistent Scatterer by Synthetic Aperture Radar Interferometry) analysis shows that the subsidence at the LHGF was up to 8 mm/year between April 2003 and March 2007, which is small relative to the produced volume of5×106 m3/year. The subsidence pattern indicates that the geothermal field is controlled by sealing faults separating the reservoir into several blocks. To assess if this is the case, we relate surface movements with volume changes in the reservoir through analytical solutions for different types of nuclei of strain. We constrain our models with the movements of the PS points as target observations. Our models imply small volume changes in the reservoir, and the different nuclei of strain solutions differ only slightly. These findings suggest that the pressure within the reservoir is well supported and that reservoir recharge is taking place.
Geofluids arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2019/2306092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 10 Powered bymore_vert Geofluids arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2019/2306092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Netherlands, Italy, ItalyPublisher:Copernicus GmbH Funded by:EC | IMAGEEC| IMAGELimberger J.[1]; Calcagno P. [2]; Manzella A.[3]; Trumpy E.[3]; Boxem T. [4]; Pluymackers M.[4]; Van Wess J. [1; 4];handle: 20.500.14243/255723
<p><strong>Abstract.</strong> In this study the resource base for EGS (enhanced geothermal systems) in Europe was quantified and economically constrained, applying a discounted cash-flow model to different techno-economic scenarios for future EGS in 2020, 2030, and 2050. Temperature is a critical parameter that controls the amount of thermal energy available in the subsurface. Therefore, the first step in assessing the European resource base for EGS is the construction of a subsurface temperature model of onshore Europe. Subsurface temperatures were computed to a depth of 10 km below ground level for a regular 3-D hexahedral grid with a horizontal resolution of 10 km and a vertical resolution of 250 m. Vertical conductive heat transport was considered as the main heat transfer mechanism. Surface temperature and basal heat flow were used as boundary conditions for the top and bottom of the model, respectively. If publicly available, the most recent and comprehensive regional temperature models, based on data from wells, were incorporated. <br><br> With the modeled subsurface temperatures and future technical and economic scenarios, the technical potential and minimum levelized cost of energy (LCOE) were calculated for each grid cell of the temperature model. Calculations for a typical EGS scenario yield costs of EUR 215 MWh<sup>−1</sup> in 2020, EUR 127 MWh<sup>−1</sup> in 2030, and EUR 70 MWh<sup>−1</sup> in 2050. Cutoff values of EUR 200 MWh<sup>−1</sup> in 2020, EUR 150 MWh<sup>−1</sup> in 2030, and EUR 100 MWh<sup>−1</sup> in 2050 are imposed to the calculated LCOE values in each grid cell to limit the technical potential, resulting in an economic potential for Europe of 19 GW<sub>e</sub> in 2020, 22 GW<sub>e</sub> in 2030, and 522 GW<sub>e</sub> in 2050. The results of our approach do not only provide an indication of prospective areas for future EGS in Europe, but also show a more realistic cost determined and depth-dependent distribution of the technical potential by applying different well cost models for 2020, 2030, and 2050.</p>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gtes-2-55-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gtes-2-55-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Authors: Jon Limberger; Larissa P. Nogueira; Francesco Dalla Longa; Jan-Diederik van Wees; +2 AuthorsJon Limberger; Larissa P. Nogueira; Francesco Dalla Longa; Jan-Diederik van Wees; Bob van der Zwaan; Bob van der Zwaan;The use of geothermal energy in Europe is expected to grow rapidly over the next decades, since this energy resource is generally abundant, ubiquitous, versatile, low-carbon, and non-intermittent. We have expanded and adapted the integrated assessment model TIAM-ECN to more adequately reflect geothermal energy potentials and to better represent the various sectors in which geothermal energy could possibly be used. With the updated version of TIAM-ECN, we quantify how large the share of geothermal energy in Europe could grow until 2050, and analyze how this expansion could be stimulated by climate policy and technological progress. We investigate geothermal energy's two main applications: power and heat production. For the former, we project an increase to around 100-210 TWh/yr in 2050, depending on assumptions regarding climate ambition and cost reductions for enhanced geothermal resource systems. For the latter, with applications in residential, commercial, industrial, and agricultural sectors, we anticipate under the same assumptions a rise to about 880-1050 TWh/yr in 2050. We estimate that by the middle of the century geothermal energy plants could contribute approximately 4-7% to European electricity generation. We foresee a European geothermal energy investment market (supply plus demand side) possibly worth about 160-210 billion US/yr by mid-century.
Energy arrow_drop_down EnergyArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy arrow_drop_down EnergyArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Journal , Other literature type 2018 Italy, Germany, Italy, Netherlands, FrancePublisher:Elsevier BV Funded by:EC | IMAGEEC| IMAGELimberger J.[1]; Boxem T.[2]; Pluymaekers M.[2]; Bruhn D.[3; 4]; Manzella A.[5]; Calcagno P.[6]; Beekman F.[1]; Cloetingh S.[1]; van Wees J.-D.[1; 2];handle: 20.500.14243/424547
In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a volumetric heat-in-place method to improve current global geothermal resource base estimates for direct heat applications. The amount of thermal energy stored within aquifers depends on the Earth's heat flow, aquifer volume, and thermal properties. We assess the thermal energy available by estimating subsurface temperatures up to a depth of three kilometer depending on aquifer thickness. The distribution of geothermal resources is displayed in a series of maps and the depth of the minimum production temperature is used as an indicator of performance and technical feasibility. Suitable aquifers underlay 16% of the Earth's land surface and store an estimated 4·105 to 5·106 EJ that could theoretically be used for direct heat applications. Even with a conservative recovery factor of 1% and an assumed lifetime of 30 years, the annual recoverable geothermal energy is in the same order as the world final energy consumption of 363.5 EJ yr−1. Although the amount of geothermal energy stored in aquifers is vast, geothermal direct heat applications are currently underdeveloped with less than one thousandth of their technical potential used.
GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsReview . 2018Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsArticle . 2018License: CC BYData sources: Pure Utrecht UniversityGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018License: CC BYData sources: GFZ German Research Centre for Geoscienceshttp://dx.doi.org/10.1016/j.rs...Other literature typeData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryReview . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.09.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 193 citations 193 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 12visibility views 12 download downloads 15 Powered bymore_vert GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsReview . 2018Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsArticle . 2018License: CC BYData sources: Pure Utrecht UniversityGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018License: CC BYData sources: GFZ German Research Centre for Geoscienceshttp://dx.doi.org/10.1016/j.rs...Other literature typeData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryReview . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.09.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 NetherlandsPublisher:Wiley Funded by:EC | GEMexEC| GEMexBékési, Eszter; Fokker, Peter A.; Martins, Joana E.; Limberger, Jon; Bonté, Damien; van Wees, Jan-Diederik;doi: 10.1155/2019/2306092
Surface deformation due to fluid extraction can be detected by satellite-based geodetic sensors, providing important insights on subsurface geomechanical properties. In this study, we use Differential Interferometric Synthetic Aperture Radar (DInSAR) observations to measure ground deformation due to fluid extraction at the Los Humeros Geothermal Field (Puebla, Mexico). Our main goal is to reveal the pressure distribution in the reservoir and to identify reservoir compartmentalization, which can be important aspects for optimizing the production of the field. The result of the PS-InSAR (Persistent Scatterer by Synthetic Aperture Radar Interferometry) analysis shows that the subsidence at the LHGF was up to 8 mm/year between April 2003 and March 2007, which is small relative to the produced volume of5×106 m3/year. The subsidence pattern indicates that the geothermal field is controlled by sealing faults separating the reservoir into several blocks. To assess if this is the case, we relate surface movements with volume changes in the reservoir through analytical solutions for different types of nuclei of strain. We constrain our models with the movements of the PS points as target observations. Our models imply small volume changes in the reservoir, and the different nuclei of strain solutions differ only slightly. These findings suggest that the pressure within the reservoir is well supported and that reservoir recharge is taking place.
Geofluids arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2019/2306092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 10 Powered bymore_vert Geofluids arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2019/2306092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Netherlands, Italy, ItalyPublisher:Copernicus GmbH Funded by:EC | IMAGEEC| IMAGELimberger J.[1]; Calcagno P. [2]; Manzella A.[3]; Trumpy E.[3]; Boxem T. [4]; Pluymackers M.[4]; Van Wess J. [1; 4];handle: 20.500.14243/255723
<p><strong>Abstract.</strong> In this study the resource base for EGS (enhanced geothermal systems) in Europe was quantified and economically constrained, applying a discounted cash-flow model to different techno-economic scenarios for future EGS in 2020, 2030, and 2050. Temperature is a critical parameter that controls the amount of thermal energy available in the subsurface. Therefore, the first step in assessing the European resource base for EGS is the construction of a subsurface temperature model of onshore Europe. Subsurface temperatures were computed to a depth of 10 km below ground level for a regular 3-D hexahedral grid with a horizontal resolution of 10 km and a vertical resolution of 250 m. Vertical conductive heat transport was considered as the main heat transfer mechanism. Surface temperature and basal heat flow were used as boundary conditions for the top and bottom of the model, respectively. If publicly available, the most recent and comprehensive regional temperature models, based on data from wells, were incorporated. <br><br> With the modeled subsurface temperatures and future technical and economic scenarios, the technical potential and minimum levelized cost of energy (LCOE) were calculated for each grid cell of the temperature model. Calculations for a typical EGS scenario yield costs of EUR 215 MWh<sup>−1</sup> in 2020, EUR 127 MWh<sup>−1</sup> in 2030, and EUR 70 MWh<sup>−1</sup> in 2050. Cutoff values of EUR 200 MWh<sup>−1</sup> in 2020, EUR 150 MWh<sup>−1</sup> in 2030, and EUR 100 MWh<sup>−1</sup> in 2050 are imposed to the calculated LCOE values in each grid cell to limit the technical potential, resulting in an economic potential for Europe of 19 GW<sub>e</sub> in 2020, 22 GW<sub>e</sub> in 2030, and 522 GW<sub>e</sub> in 2050. The results of our approach do not only provide an indication of prospective areas for future EGS in Europe, but also show a more realistic cost determined and depth-dependent distribution of the technical potential by applying different well cost models for 2020, 2030, and 2050.</p>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gtes-2-55-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gtes-2-55-2014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Authors: Jon Limberger; Larissa P. Nogueira; Francesco Dalla Longa; Jan-Diederik van Wees; +2 AuthorsJon Limberger; Larissa P. Nogueira; Francesco Dalla Longa; Jan-Diederik van Wees; Bob van der Zwaan; Bob van der Zwaan;The use of geothermal energy in Europe is expected to grow rapidly over the next decades, since this energy resource is generally abundant, ubiquitous, versatile, low-carbon, and non-intermittent. We have expanded and adapted the integrated assessment model TIAM-ECN to more adequately reflect geothermal energy potentials and to better represent the various sectors in which geothermal energy could possibly be used. With the updated version of TIAM-ECN, we quantify how large the share of geothermal energy in Europe could grow until 2050, and analyze how this expansion could be stimulated by climate policy and technological progress. We investigate geothermal energy's two main applications: power and heat production. For the former, we project an increase to around 100-210 TWh/yr in 2050, depending on assumptions regarding climate ambition and cost reductions for enhanced geothermal resource systems. For the latter, with applications in residential, commercial, industrial, and agricultural sectors, we anticipate under the same assumptions a rise to about 880-1050 TWh/yr in 2050. We estimate that by the middle of the century geothermal energy plants could contribute approximately 4-7% to European electricity generation. We foresee a European geothermal energy investment market (supply plus demand side) possibly worth about 160-210 billion US/yr by mid-century.
Energy arrow_drop_down EnergyArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy arrow_drop_down EnergyArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Journal , Other literature type 2018 Italy, Germany, Italy, Netherlands, FrancePublisher:Elsevier BV Funded by:EC | IMAGEEC| IMAGELimberger J.[1]; Boxem T.[2]; Pluymaekers M.[2]; Bruhn D.[3; 4]; Manzella A.[5]; Calcagno P.[6]; Beekman F.[1]; Cloetingh S.[1]; van Wees J.-D.[1; 2];handle: 20.500.14243/424547
In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a volumetric heat-in-place method to improve current global geothermal resource base estimates for direct heat applications. The amount of thermal energy stored within aquifers depends on the Earth's heat flow, aquifer volume, and thermal properties. We assess the thermal energy available by estimating subsurface temperatures up to a depth of three kilometer depending on aquifer thickness. The distribution of geothermal resources is displayed in a series of maps and the depth of the minimum production temperature is used as an indicator of performance and technical feasibility. Suitable aquifers underlay 16% of the Earth's land surface and store an estimated 4·105 to 5·106 EJ that could theoretically be used for direct heat applications. Even with a conservative recovery factor of 1% and an assumed lifetime of 30 years, the annual recoverable geothermal energy is in the same order as the world final energy consumption of 363.5 EJ yr−1. Although the amount of geothermal energy stored in aquifers is vast, geothermal direct heat applications are currently underdeveloped with less than one thousandth of their technical potential used.
GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsReview . 2018Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsArticle . 2018License: CC BYData sources: Pure Utrecht UniversityGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018License: CC BYData sources: GFZ German Research Centre for Geoscienceshttp://dx.doi.org/10.1016/j.rs...Other literature typeData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryReview . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.09.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 193 citations 193 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 12visibility views 12 download downloads 15 Powered bymore_vert GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsReview . 2018Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsArticle . 2018License: CC BYData sources: Pure Utrecht UniversityGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018License: CC BYData sources: GFZ German Research Centre for Geoscienceshttp://dx.doi.org/10.1016/j.rs...Other literature typeData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryReview . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.09.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu