- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Authors: Tarek O. Abdul Fattah; Janet Jacobs; Vladimir P. Markevich; Nikolay V. Abrosimov; +3 AuthorsTarek O. Abdul Fattah; Janet Jacobs; Vladimir P. Markevich; Nikolay V. Abrosimov; Matthew P. Halsall; Iain F. Crowe; Anthony R. Peaker;Before lower purity, lower cost silicon (Si) materials, such as compensated Si, can play a role in the terawatt-level (TW) capacity of photovoltaics, a better understanding of the fundamental properties of impurities in compensated Si is essential. In this work, high-resolution photoluminescence (PL) has been used to study the charge carrier radiative recombination through Donor-Acceptor pairs (DAPs) in phosphorus (P) and gallium (Ga) co-doped Si material grown for solar cell applications. The high spectral resolution of our PL system, 0.06 meV, enables us to overcome hitherto prior issues of overlapping spectral lines, giving access to extremely fine structures associated with DA pair (DAP) recombination. Our results confirm the presence of three broad bands and a discrete line structure related to DAP luminescence. The comparison of the discrete line structure due to DAPs recombination in the PL spectra with the theoretically predicted one allows the accurate determination of the Ga ionization energy. Temperature-dependent PL is then used to understand the thermally-induced changes in the DAP luminescence. In particular, we observe that the radiative recombination channel remains active for distant DAPs up to ∼40 K, unlike that for close-range DAPs for which the radiative channel is quenched after only slight increases in the temperature range 10–25 K. Furthermore, the analysis of the temperature dependent changes in the PL intensity of the broad DAP bands up to ∼200 K is used to derive the ionization energy of P donors in compensated Si material. In light of this important information, the significance of using high resolution PL to analyse spectral features in compensated Si is demonstrated.
Journal of Science: ... arrow_drop_down Journal of Science: Advanced Materials and DevicesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsamd.2023.100629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Science: ... arrow_drop_down Journal of Science: Advanced Materials and DevicesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsamd.2023.100629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Authors: Tarek O. Abdul Fattah; Janet Jacobs; Vladimir P. Markevich; Nikolay V. Abrosimov; +3 AuthorsTarek O. Abdul Fattah; Janet Jacobs; Vladimir P. Markevich; Nikolay V. Abrosimov; Matthew P. Halsall; Iain F. Crowe; Anthony R. Peaker;Before lower purity, lower cost silicon (Si) materials, such as compensated Si, can play a role in the terawatt-level (TW) capacity of photovoltaics, a better understanding of the fundamental properties of impurities in compensated Si is essential. In this work, high-resolution photoluminescence (PL) has been used to study the charge carrier radiative recombination through Donor-Acceptor pairs (DAPs) in phosphorus (P) and gallium (Ga) co-doped Si material grown for solar cell applications. The high spectral resolution of our PL system, 0.06 meV, enables us to overcome hitherto prior issues of overlapping spectral lines, giving access to extremely fine structures associated with DA pair (DAP) recombination. Our results confirm the presence of three broad bands and a discrete line structure related to DAP luminescence. The comparison of the discrete line structure due to DAPs recombination in the PL spectra with the theoretically predicted one allows the accurate determination of the Ga ionization energy. Temperature-dependent PL is then used to understand the thermally-induced changes in the DAP luminescence. In particular, we observe that the radiative recombination channel remains active for distant DAPs up to ∼40 K, unlike that for close-range DAPs for which the radiative channel is quenched after only slight increases in the temperature range 10–25 K. Furthermore, the analysis of the temperature dependent changes in the PL intensity of the broad DAP bands up to ∼200 K is used to derive the ionization energy of P donors in compensated Si material. In light of this important information, the significance of using high resolution PL to analyse spectral features in compensated Si is demonstrated.
Journal of Science: ... arrow_drop_down Journal of Science: Advanced Materials and DevicesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsamd.2023.100629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Science: ... arrow_drop_down Journal of Science: Advanced Materials and DevicesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsamd.2023.100629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu