- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 Belgium, Germany, France, GermanyPublisher:Wiley Yaxing Wei; Yongwen Liu; Yongwen Liu; Daniel J. Hayes; Ning Zeng; Daniel S. Goll; Joshua B. Fisher; Anna M. Michalak; Qiuan Zhu; Qiuan Zhu; Ivan A. Janssens; Akihiko Ito; Akihiko Ito; Philippe Ciais; Kai Wang; Sara Vicca; Josep Peñuelas; Campioli Matteo; M. Altaf Arain; Xiangyi Li; Christopher R. Schwalm; Christopher R. Schwalm; Atul K. Jain; Daniel M. Ricciuto; Xiaoying Shi; Benjamin Poulter; Kevin Schaefer; Yuanyuan Fang; Deborah N. Huntzinger; Jiafu Mao; Hanqin Tian; Yue He; Shushi Peng; Dahe Qin; Dahe Qin; Changhui Peng; Changhui Peng;AbstractPlants use only a fraction of their photosynthetically derived carbon for biomass production (BP). The biomass production efficiency (BPE), defined as the ratio of BP to photosynthesis, and its variation across and within vegetation types is poorly understood, which hinders our capacity to accurately estimate carbon turnover times and carbon sinks. Here, we present a new global estimation of BPE obtained by combining field measurements from 113 sites with 14 carbon cycle models. Our best estimate of global BPE is 0.41 ± 0.05, excluding cropland. The largest BPE is found in boreal forests (0.48 ± 0.06) and the lowest in tropical forests (0.40 ± 0.04). Carbon cycle models overestimate BPE, although models with carbon–nitrogen interactions tend to be more realistic. Using observation‐based estimates of global photosynthesis, we quantify the global BP of non‐cropland ecosystems of 41 ± 6 Pg C/year. This flux is less than net primary production as it does not contain carbon allocated to symbionts, used for exudates or volatile carbon compound emissions to the atmosphere. Our study reveals a positive bias of 24 ± 11% in the model‐estimated BP (10 of 14 models). When correcting models for this bias while leaving modeled carbon turnover times unchanged, we found that the global ecosystem carbon storage change during the last century is decreased by 67% (or 58 Pg C).
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit AntwerpenUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit AntwerpenUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Zhiqiang Xiao; Ning Zeng; Mengtian Huang; Jiafu Mao; Ben Poulter; Guodong Yin; Shilong Piao; Shilong Piao; Zhenzhong Zeng; Ronggao Liu; Yue Li; Shushi Peng; Ying-Ping Wang; Xiaoying Shi; Jianguang Tan; Lei Cheng; Ranga B. Myneni;doi: 10.1111/gcb.12795
pmid: 25369401
AbstractThe reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite‐derived Leaf Area Index (LAI) datasets for detection as well as five different process‐based ecosystem models for attribution. Rising atmospheric CO2 concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing‐season LAI trend (LAIGS) estimated by satellite datasets (average trend of 0.0070 yr−1, ranging from 0.0035 yr−1 to 0.0127 yr−1), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAIGS at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai–Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAIGS (P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGS trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO2 concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 702 citations 702 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:IOP Publishing Jiafu Mao; Xiaoying Shi; P. E. Thornton; Shilong Piao; Xuhui Wang;El Community Land Model versión 4 (CLM4) se aplica para explorar los patrones espacio-temporales de las tendencias de crecimiento de la vegetación de primavera (abril-mayo) en las latitudes medias-altas del norte (NMH) (>25°N) entre 1982 y 2004. Durante la temporada de primavera hasta el período de 23 años, tanto las anomalías del índice de vegetación de diferencia normalizada (NDVI) derivadas de satélites como las simuladas muestran una correlación estadísticamente significativa y una tendencia general de reverdecimiento dentro del área de estudio. De manera consistente con la relación NDVI-temperatura observada, el CLM4 NDVI muestra una asociación positiva significativa con la anomalía de temperatura de primavera para el NMH, América del Norte y Eurasia. Las grandes áreas de estudio experimentan discontinuidad de temperatura asociada con tendencias contrastantes de NDVI. Antes y después del punto de inflexión (TP) de las tendencias de temperatura, la variabilidad climática juega un papel dominante, mientras que los otros factores ambientales ejercen efectos menores en las tendencias de NDVI. El crecimiento simulado de la vegetación se ve ampliamente estimulado por el aumento del CO2 atmosférico. Las tendencias muestran que la deposición de nitrógeno aumenta el NDVI principalmente en el sureste de China y disminuye el NDVI principalmente en el oeste de Rusia después de la temperatura TP. Además, las tendencias de NDVI inducidas por el uso de la tierra varían aproximadamente con los cambios respectivos en las prácticas de gestión de la tierra (áreas de cultivo y cobertura forestal). Nuestros resultados destacan cómo los factores no climáticos mitigan o exacerban el impacto de la temperatura en el crecimiento de la vegetación primaveral, particularmente en las regiones con actividad humana intensiva. Le modèle de terres communautaires version 4 (CLM4) est appliqué pour explorer les modèles spatio-temporels des tendances de croissance de la végétation printanière (avril-mai) sur les latitudes moyennes-élevées du nord (>25°N) entre 1982 et 2004. Au cours de la saison printanière jusqu'à la période de 23 ans, les anomalies de l'indice de végétation normalisé dérivé des satellites et simulé (NDVI) montrent une corrélation statistiquement significative et une tendance générale au verdissement dans la zone d'étude. Conformément à la relation NDVI-température observée, le CLM4 NDVI montre une association positive significative avec l'anomalie de température de printemps pour le NMH, l'Amérique du Nord et l'Eurasie. Les grandes zones d'étude connaissent une discontinuité de température associée à des tendances contrastées de l'IVDN. Avant et après le point tournant (TP) des tendances de température, la variabilité climatique joue un rôle dominant, tandis que les autres facteurs environnementaux exercent des effets mineurs sur les tendances NDVI. La croissance de la végétation simulée est largement stimulée par l'augmentation du CO2 atmosphérique. Les tendances montrent que les dépôts d'azote augmentent l'IVDN principalement dans le sud-est de la Chine et diminuent l'IVDN principalement dans l'ouest de la Russie après la température TP. En outre, les tendances de l'IVDN induites par l'utilisation des terres varient à peu près en fonction des changements respectifs dans les pratiques de gestion des terres (superficies cultivées et couverture forestière). Nos résultats soulignent comment les facteurs non climatiques atténuent ou exacerbent l'impact de la température sur la croissance de la végétation printanière, en particulier dans les régions où l'activité humaine est intense. The Community Land Model version 4 (CLM4) is applied to explore the spatial–temporal patterns of spring (April–May) vegetation growth trends over the northern mid–high latitudes (NMH) (>25°N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI–temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experience temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity. يتم تطبيق الإصدار 4 من نموذج أراضي المجتمع (CLM4) لاستكشاف الأنماط المكانية والزمانية لاتجاهات نمو الغطاء النباتي في الربيع (أبريل- مايو) عبر خطوط العرض الشمالية المتوسطة والعالية (>25درجةشمالًا) بين عامي 1982 و 2004. خلال موسم الربيع خلال فترة 23 عامًا، تُظهر كل من الانحرافات في مؤشر الاختلاف المعياري للغطاء النباتي (NDVI) المستمدة من الأقمار الصناعية والمحاكاة ارتباطًا ذا دلالة إحصائية واتجاهًا عامًا للتخضير داخل منطقة الدراسة. تماشيًا مع العلاقة المرصودة بين NDVI ودرجة الحرارة، يُظهر CLM4 NDVI ارتباطًا إيجابيًا كبيرًا مع شذوذ درجة حرارة الربيع لـ NMH وأمريكا الشمالية وأوراسيا. تشهد مناطق الدراسة الكبيرة انقطاعًا في درجة الحرارة مرتبطًا باتجاهات NDVI المتناقضة. قبل وبعد نقطة التحول (TP) لاتجاهات درجة الحرارة، يلعب التقلب المناخي دورًا مهيمنًا، في حين أن العوامل البيئية الأخرى لها تأثيرات طفيفة على اتجاهات NDVI. يتم تحفيز نمو الغطاء النباتي المحاكي على نطاق واسع من خلال زيادة ثاني أكسيد الكربون في الغلاف الجوي. تشير الاتجاهات إلى أن ترسب النيتروجين يزيد من مؤشر NDVI في الغالب في جنوب شرق الصين، وينخفض مؤشر NDVI بشكل رئيسي في غرب روسيا بعد درجة الحرارة TP. علاوة على ذلك، تختلف اتجاهات المؤشر الوطني للرؤية الرقمية للأراضي الناجمة عن استخدام الأراضي تقريبًا مع التغييرات ذات الصلة في ممارسات إدارة الأراضي (مناطق المحاصيل والتغطية الحرجية). تسلط نتائجنا الضوء على كيفية قيام العوامل غير المناخية بتخفيف أو تفاقم تأثير درجة الحرارة على نمو الغطاء النباتي في الربيع، لا سيما عبر المناطق ذات النشاط البشري المكثف.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/7/1/014010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/7/1/014010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Copernicus GmbH Shilong Piao; Akihiko Ito; S. Li; Yao Huang; Philippe Ciais; X. Wang; Shushi Peng; R. J. Andres; Jingyun Fang; Sujong Jeong; Jiafu Mao; Anwar Mohammat; Hiroyuki Muraoka; Huijuan Nan; Changhui Peng; Philippe Peylin; Xiaoying Shi; Stephen Sitch; Shengli Tao; Hanqin Tian; Mingjie Xu; Guanghui Yu; Ning Zeng; Biao Zhu;Abstract. This REgional Carbon Cycle Assessment and Processes regional study provides a synthesis of the carbon balance of terrestrial ecosystems in East Asia, a region comprised of China, Japan, North- and South-Korea, and Mongolia. We estimate the current terrestrial carbon balance of East Asia and its driving mechanisms during 1990–2009 using three different approaches: inventories combined with satellite greenness measurements, terrestrial ecosystem carbon cycle models and atmospheric inversion models. The magnitudes of East Asia's natural carbon sink from these three approaches are comparable: −0.264 ± 0.033 Pg C yr−1 from inventory-remote sensing model-data fusion approach, −0.393 ± 0.141 Pg C yr−1 (not considering biofuel emissions) or −0.204 ± 0.141 Pg C yr−1 (considering biofuel emissions) for carbon cycle models, and −0.270 ± 0.507 Pg C yr−1 for atmospheric inverse models. The ensemble of ecosystem modeling based analyses further suggests that at the regional scale, climate change and rising atmospheric CO2 together resulted in a carbon sink of −0.289 ± 0.135 Pg C yr−1, while land use change and nitrogen deposition had a contribution of −0.013 ± 0.029 Pg C yr−1 and −0.107 ± 0.025 Pg C yr−1, respectively. Although the magnitude of climate change effects on the carbon balance varies among different models, all models agree that in response to climate change alone, southern China experienced an increase in carbon storage from 1990 to 2009, while northern East Asia including Mongolia and north China showed a decrease in carbon storage. Overall, our results suggest that about 13–26% of East Asia's CO2 emissions from fossil fuel burning have been offset by carbon accumulation in its terrestrial ecosystems over the period from 1990 to 2009. The underlying mechanisms of carbon sink over East Asia still remain largely uncertain, given the diversity and intensity of land management processes, and the regional conjunction of many drivers such as nutrient deposition, climate, atmospheric pollution and CO2 changes, which cannot be considered as independent for their effects on carbon storage.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-4025-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-4025-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 FrancePublisher:Elsevier BV Xiaoying Shi; Mingzhou Jin; Mengdi Gao; P. Ciais; Anping Chen; Daniel M. Ricciuto; Shilong Piao; Rongyun Tang; Rongyun Tang; Xiran Li; Xiran Li; Sam Rabin; Chao Yue; Jiafu Mao;Le feu est un type majeur de perturbation qui a des influences importantes sur la dynamique des écosystèmes et les cycles du carbone. Pourtant, notre compréhension des incendies d'écosystèmes et de leurs conséquences sur le cycle du carbone est encore limitée, en grande partie en raison de la difficulté de la surveillance des incendies à grande échelle et des interactions complexes entre le feu, la végétation, le climat et les facteurs anthropiques. Ici, à l'aide de données d'observations d'incendies dérivées de satellites et de simulations de modèles d'écosystèmes, nous avons mené une enquête approfondie sur la dynamique spatiale et temporelle des perturbations des incendies des écosystèmes chinois et de leurs émissions de carbone au cours des deux dernières décennies (1997–2016). Les résultats obtenus par satellite ont montré qu'en moyenne, environ 3,47 à 4,53 × 104 km2 de terres étaient brûlées chaque année au cours des deux dernières décennies, dont une superficie annuelle de forêt brûlée d'environ 0,81 à 1,25 × 104 km2, représentant 0,33 à 0,51 % de la superficie forestière en Chine. La combustion de la biomasse émet environ 23,02 TgC par an. Par rapport aux produits satellitaires, les simulations du modèle terrestre du système terrestre Energy Exascale (ELM) ont fortement surestimé la zone brûlée de la Chine et les émissions de carbone induites par le feu. La superficie brûlée annuelle et les émissions de carbone causées par les incendies étaient élevées pour la forêt boréale dans la région de Daxing'anling, dans le nord-est de la Chine, et la forêt sèche subtropicale dans le sud du Yunnan, comme le révèlent à la fois le produit satellite et les simulations du modèle. Nos résultats suggèrent que les facteurs climatiques et anthropiques jouent un rôle essentiel dans le contrôle de la distribution spatiale et saisonnière des perturbations des incendies dans les écosystèmes chinois. Nos résultats soulignent l'importance de multiples approches complémentaires dans l'évaluation de la perturbation des incendies dans les écosystèmes et de ses conséquences sur le carbone. D'autres études sont nécessaires pour améliorer les méthodes d'observation et de modélisation des perturbations des incendies dans les écosystèmes chinois, ce qui fournira des informations précieuses pour la gestion des incendies et la durabilité des écosystèmes à une époque où les activités humaines et l'environnement naturel évoluent rapidement. El fuego es un tipo importante de perturbación que tiene importantes influencias en la dinámica de los ecosistemas y los ciclos del carbono. Sin embargo, nuestra comprensión de los incendios en los ecosistemas y sus consecuencias en el ciclo del carbono sigue siendo limitada, en gran parte debido a la dificultad del monitoreo de incendios a gran escala y las complejas interacciones entre el fuego, la vegetación, el clima y los factores antropogénicos. Aquí, utilizando datos de observaciones de incendios derivadas de satélites y simulaciones de modelos de ecosistemas, realizamos una investigación exhaustiva de la dinámica espacial y temporal de las perturbaciones de incendios en los ecosistemas de China y sus emisiones de carbono en las últimas dos décadas (1997–2016). Los resultados obtenidos por satélite mostraron que, en promedio, aproximadamente 3,47 - 4,53 × 104 km2 de tierra se quemaron anualmente durante las últimas dos décadas, entre los cuales el área de bosque quemado anual fue de aproximadamente 0,81 - 1,25 × 104 km2, lo que representa el 0,33-0,51% del área forestal en China. La quema de biomasa emitió alrededor de 23.02 TgC por año. En comparación con los productos satelitales, las simulaciones del Energy Exascale Earth System Land Model (ELM) sobreestimaron en gran medida el área quemada de China y las emisiones de carbono inducidas por el fuego. El área quemada anual y las emisiones de carbono inducidas por el fuego fueron altas para el bosque boreal en la región Daxing'anling del noreste de China y el bosque seco subtropical en el sur de Yunnan, según lo revelado tanto por el producto satelital como por las simulaciones del modelo. Nuestros resultados sugieren que el clima y los factores antropogénicos desempeñan un papel fundamental en el control de la distribución espacial y estacional de las perturbaciones por incendios en los ecosistemas de China. Nuestros hallazgos resaltan la importancia de múltiples enfoques complementarios en la evaluación de la perturbación de incendios en el ecosistema y sus consecuencias de carbono. Se requieren más estudios para mejorar los métodos de observación y modelado de las perturbaciones de incendios en los ecosistemas de China, lo que proporcionará información valiosa para la gestión de incendios y la sostenibilidad de los ecosistemas en una era en la que tanto las actividades humanas como el entorno natural están cambiando rápidamente. Fire is a major type of disturbance that has important influences on ecosystem dynamics and carbon cycles. Yet our understanding of ecosystem fires and their carbon cycle consequences is still limited, largely due to the difficulty of large-scale fire monitoring and the complex interactions between fire, vegetation, climate, and anthropogenic factors. Here, using data from satellite-derived fire observations and ecosystem model simulations, we performed a comprehensive investigation of the spatial and temporal dynamics of China's ecosystem fire disturbances and their carbon emissions over the past two decades (1997–2016). Satellite-derived results showed that on average about 3.47 - 4.53 × 104 km2 of the land was burned annually during the past two decades, among which annual burned forest area was about 0.81 - 1.25 × 104 km2, accounting for 0.33-0.51% of the forest area in China. Biomass burning emitted about 23.02 TgC per year. Compared to satellite products, simulations from the Energy Exascale Earth System Land Model (ELM) strongly overestimated China's burned area and fire-induced carbon emissions. Annual burned area and fire-induced carbon emissions were high for boreal forest in Northeast China's Daxing'anling region and subtropical dry forest in South Yunnan, as revealed by both the satellite product and the model simulations. Our results suggest that climate and anthropogenic factors play critical roles in controlling the spatial and seasonal distribution of China's ecosystem fire disturbances. Our findings highlight the importance of multiple complementary approaches in assessing ecosystem fire disturbance and its carbon consequences. Further studies are required to improve the methods of observing and modelling China's ecosystem fire disturbances, which will provide valuable information for fire management and ecosystem sustainability in an era when both human activities and the natural environment are rapidly changing. الحريق هو نوع رئيسي من الاضطرابات التي لها تأثيرات مهمة على ديناميكيات النظام البيئي ودورات الكربون. ومع ذلك، لا يزال فهمنا لحرائق النظم الإيكولوجية وعواقبها على دورة الكربون محدودًا، ويرجع ذلك إلى حد كبير إلى صعوبة مراقبة الحرائق على نطاق واسع والتفاعلات المعقدة بين الحرائق والغطاء النباتي والمناخ والعوامل البشرية المنشأ. هنا، باستخدام بيانات من ملاحظات الحرائق المشتقة من الأقمار الصناعية ومحاكاة نموذج النظام الإيكولوجي، أجرينا تحقيقًا شاملاً في الديناميكيات المكانية والزمنية لاضطرابات حرائق النظام الإيكولوجي في الصين وانبعاثاتها الكربونية على مدى العقدين الماضيين (1997–2016). أظهرت النتائج المستمدة من الأقمار الصناعية أنه في المتوسط تم حرق حوالي 3.47 - 4.53 × 104 كم 2 من الأرض سنويًا خلال العقدين الماضيين، ومن بينها كانت مساحة الغابات المحترقة السنوية حوالي 0.81 - 1.25 × 104 كم 2، وهو ما يمثل 0.33-0.51 ٪ من مساحة الغابات في الصين. ينبعث من حرق الكتلة الحيوية حوالي 23.02 تيراغرام في السنة. وبالمقارنة مع منتجات الأقمار الصناعية، فإن عمليات المحاكاة من نموذج الأرض لنظام الطاقة Exascale (ELM) بالغت بشدة في تقدير المنطقة المحروقة في الصين وانبعاثات الكربون الناجمة عن الحرائق. كانت المساحة السنوية المحروقة وانبعاثات الكربون الناجمة عن الحرائق مرتفعة بالنسبة للغابات الشمالية في منطقة داشينغ آنلينغ شمال شرق الصين والغابات الجافة شبه الاستوائية في جنوب يونان، كما كشف كل من منتج الأقمار الصناعية ونماذج المحاكاة. تشير نتائجنا إلى أن المناخ والعوامل البشرية تلعب أدوارًا حاسمة في التحكم في التوزيع المكاني والموسمي لاضطرابات حرائق النظام البيئي في الصين. تسلط النتائج التي توصلنا إليها الضوء على أهمية النهج التكميلية المتعددة في تقييم اضطراب حرائق النظام الإيكولوجي وعواقبه الكربونية. هناك حاجة إلى مزيد من الدراسات لتحسين طرق مراقبة ونمذجة اضطرابات حرائق النظام الإيكولوجي في الصين، والتي ستوفر معلومات قيمة لإدارة الحرائق واستدامة النظام الإيكولوجي في عصر تتغير فيه الأنشطة البشرية والبيئة الطبيعية بسرعة.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04229960Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04229960Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geosus.2020.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04229960Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04229960Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geosus.2020.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Proceedings of the National Academy of Sciences Daniel M. Ricciuto; Lin Meng; Jiafu Mao; Peter E. Thornton; Xuhui Lee; Xuhui Lee; Gensuo Jia; Xiaoying Shi; Andrew D. Richardson; Yuyu Zhou; Xuecao Li; Yongjiu Dai;Significance Cities and their associated urban heat islands are ideal natural laboratories for evaluating the response of plant phenology to warming conditions. In this study, we demonstrate that the satellite-derived start of season for plants occurred earlier but showed less covariation with temperature in most of the large 85 cities across the conterminous United States for the period 2001–2014. The results show a reduction in the response of urban phenology to temperature and imply that, in nonurban environments, the onset of spring phenology will likely advance but will slow down as the general trend toward warming continues.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1911117117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 137 citations 137 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1911117117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Austria, Spain, France, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PShilong Piao; Shilong Piao; Frédéric Chevallier; Andreas Stohl; Ivan A. Janssens; Zaichun Zhu; Anders Ahlström; Shushi Peng; John F. Burkhart; Tao Wang; John B. Miller; John B. Miller; Josep Peñuelas; Zhuo Liu; Anwar Mohammat; Philippe Ciais; Pieter P. Tans; Mengtian Huang; Jiafu Mao; Xiaoying Shi; Yitong Yao; Su-Jong Jeong; Xin Lin; Ranga B. Myneni;Les mesures de la concentration atmosphérique de CO2 à Barrow, en Alaska, ainsi que les modèles couplés de transport atmosphérique et d'écosystème terrestre montrent une baisse de la réponse de la productivité primaire nette printanière à la température aux hautes latitudes. Le réchauffement printanier en cours permet à la saison de croissance de commencer plus tôt, ce qui améliore l'absorption de carbone dans les écosystèmes nordiques1,2,3. Ici, nous utilisons 34 années de mesures de la concentration atmosphérique de CO2 à Barrow, en Alaska (BRW, 71° N) pour montrer que la relation interannuelle entre la température du printemps et l'absorption du carbone a récemment changé. Nous utilisons deux indicateurs : la date de passage par zéro du CO2 atmosphérique (SZC) au printemps et l'ampleur du prélèvement de CO2 entre mai et juin (SCC). La forte corrélation précédemment rapportée entre le SZC, le SCC et la température du sol au printemps (ST) a été trouvée au cours des 17 premières années de mesures, mais a disparu au cours des 17 dernières années. En conséquence, la sensibilité du SZC et du SCC au réchauffement a diminué. Les simulations avec un modèle de transport atmosphérique4 couplé à un modèle d'écosystème terrestre5 suggèrent que la corrélation interannuelle affaiblie du SZC et du SCC avec le ST au cours des 17 dernières années est attribuable à la diminution de la réponse en température de la productivité primaire nette (NPP) printanière plutôt qu'à des changements dans la respiration hétérotrophique ou dans les modèles de transport atmosphérique. La réduction du refroidissement pendant la dormance et la limitation de la lumière émergente sont des mécanismes possibles qui peuvent avoir contribué à la perte de la réponse de la centrale nucléaire à la ST. Nos résultats remettent donc en question le mécanisme « plus chaud du puits à ressort ». Las mediciones de concentración de CO2 atmosférico en Barrow, Alaska, junto con el transporte atmosférico acoplado y los modelos de ecosistemas terrestres, muestran una disminución de la respuesta de la productividad primaria neta de primavera a la temperatura en altas latitudes. El calentamiento continuo de la primavera permite que la temporada de crecimiento comience antes, lo que mejora la absorción de carbono en los ecosistemas del norte1,2,3. Aquí utilizamos 34 años de mediciones de concentración de CO2 atmosférico en Barrow, Alaska (BRW, 71° N) para mostrar que la relación interanual entre la temperatura de primavera y la absorción de carbono ha cambiado recientemente. Utilizamos dos indicadores: la fecha de paso por cero de primavera del CO2 atmosférico (SZC) y la magnitud de la reducción de CO2 entre mayo y junio (SCC). La fuerte correlación previamente informada entre SZC, SCC y la temperatura de la tierra de primavera (ST) se encontró en los primeros 17 años de mediciones, pero desapareció en los últimos 17 años. Como resultado, la sensibilidad tanto de SZC como de SCC al calentamiento disminuyó. Las simulaciones con un modelo de transporte atmosférico4 acoplado a un modelo de ecosistema terrestre5 sugieren que la correlación interanual debilitada de SZC y SCC con ST en los últimos 17 años es atribuible a la disminución de la respuesta de temperatura de la productividad primaria neta de primavera (NPP) en lugar de a cambios en la respiración heterotrófica o en los patrones de transporte atmosférico. La reducción del enfriamiento durante la latencia y la limitación de la luz emergente son posibles mecanismos que pueden haber contribuido a la pérdida de la respuesta de la NPP a ST. Nuestros resultados desafían así el mecanismo del "sumidero más grande y más cálido". Atmospheric CO2 concentration measurements at Barrow, Alaska, together with coupled atmospheric transport and terrestrial ecosystem models show a declining spring net primary productivity response to temperature at high latitudes. Ongoing spring warming allows the growing season to begin earlier, enhancing carbon uptake in northern ecosystems1,2,3. Here we use 34 years of atmospheric CO2 concentration measurements at Barrow, Alaska (BRW, 71° N) to show that the interannual relationship between spring temperature and carbon uptake has recently shifted. We use two indicators: the spring zero-crossing date of atmospheric CO2 (SZC) and the magnitude of CO2 drawdown between May and June (SCC). The previously reported strong correlation between SZC, SCC and spring land temperature (ST) was found in the first 17 years of measurements, but disappeared in the last 17 years. As a result, the sensitivity of both SZC and SCC to warming decreased. Simulations with an atmospheric transport model4 coupled to a terrestrial ecosystem model5 suggest that the weakened interannual correlation of SZC and SCC with ST in the last 17 years is attributable to the declining temperature response of spring net primary productivity (NPP) rather than to changes in heterotrophic respiration or in atmospheric transport patterns. Reduced chilling during dormancy and emerging light limitation are possible mechanisms that may have contributed to the loss of NPP response to ST. Our results thus challenge the 'warmer spring–bigger sink' mechanism. تُظهر قياسات تركيز ثاني أكسيد الكربون في الغلاف الجوي في بارو، ألاسكا، جنبًا إلى جنب مع النقل الجوي المقترن ونماذج النظام الإيكولوجي الأرضي، انخفاضًا في صافي استجابة الإنتاجية الأولية لدرجات الحرارة عند خطوط العرض العالية. يسمح الاحترار الربيعي المستمر لموسم النمو بالبدء في وقت مبكر، مما يعزز امتصاص الكربون في النظم الإيكولوجية الشمالية 1،2،3. هنا نستخدم 34 عامًا من قياسات تركيز ثاني أكسيد الكربون في الغلاف الجوي في بارو، ألاسكا (BRW، 71درجة شمالًا) لإظهار أن العلاقة السنوية بين درجة حرارة الربيع وامتصاص الكربون قد تغيرت مؤخرًا. نستخدم مؤشرين: تاريخ الصفر الربيعي لثاني أكسيد الكربون في الغلاف الجوي (SZC) وحجم انخفاض ثاني أكسيد الكربون بين مايو ويونيو (SCC). تم العثور على العلاقة القوية التي تم الإبلاغ عنها سابقًا بين درجة حرارة الأرض في ال 17 عامًا الأولى من القياسات، ولكنها اختفت في السنوات ال 17 الماضية. ونتيجة لذلك، انخفضت حساسية كل من SZC وSCC للاحترار. تشير عمليات المحاكاة باستخدام نموذج النقل الجوي 4 المقترن بنموذج النظام الإيكولوجي الأرضي 5 إلى أن ضعف الارتباط بين السنوات بين SZC و SCC مع ST في السنوات الـ 17 الماضية يعزى إلى انخفاض استجابة درجة الحرارة للإنتاجية الأولية لصافي الربيع (NPP) بدلاً من التغيرات في التنفس غير المتجانس أو في أنماط النقل الجوي. يعد تقليل التبريد أثناء السكون والحد من الضوء الناشئ من الآليات المحتملة التي ربما ساهمت في فقدان استجابة NPP لـ St. وبالتالي فإن نتائجنا تتحدى آلية "حوض الربيع الأكبر الأكثر دفئًا".
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01584218Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01584218Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017Data sources: Diposit Digital de Documents de la UABINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/ncli...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 210 citations 210 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01584218Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01584218Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017Data sources: Diposit Digital de Documents de la UABINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/ncli...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Rachel M. Pilla; Natalie A. Griffiths; Lianhong Gu; Shih‐Chieh Kao; Ryan McManamay; Daniel M. Ricciuto; Xiaoying Shi;doi: 10.1111/gcb.16324
pmid: 35856254
AbstractInland waters serve as important hydrological connections between the terrestrial landscape and oceans but are often overlooked in global carbon (C) budgets and Earth System Models. Terrestrially derived C entering inland waters from the watershed can be transported to oceans but over 83% is either buried in sediments or emitted to the atmosphere before reaching oceans. Anthropogenic pressures such as climate and landscape changes are altering the magnitude of these C fluxes in inland waters. Here, we synthesize the most recent estimates of C fluxes and the differential contributions across inland waterbody types (rivers, streams, lakes, reservoirs, and ponds), including recent measurements that incorporate improved sampling methods, small waterbodies, and dried areas. Across all inland waters, we report a global C emission estimate of 4.40 Pg C/year (95% confidence interval: 3.95–4.85 Pg C/year), representing a 13% increase from the most recent estimate. We also review the mechanisms by which the most globally widespread anthropogenically driven climate and landscape changes influence inland water C fluxes. The majority of these drivers are expected to influence terrestrial C inputs to inland waters due to alterations in terrestrial C quality and quantity, hydrological pathways, and biogeochemical processing. We recommend four research priorities for the future study of anthropogenic alterations to inland water C fluxes: (1) before‐and‐after measurements of C fluxes associated with climate change events and landscape changes, (2) better quantification of C input from land, (3) improved assessment of spatial coverage and contributions of small inland waterbodies to C fluxes, and (4) integration of dried and drawdown areas to global C flux estimates. Improved measurements of inland water C fluxes and quantification of uncertainty in these estimates will be vital to understanding both terrestrial C losses and the “moving target” of inland water C emissions in response to rapid and complex anthropogenic pressures.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:IOP Publishing Yutao Wang; Atul K. Jain; Shih-Chieh Kao; Joshua B. Fisher; Yuanyuan Fang; Akihiko Ito; Peter E. Thornton; Daniel J. Hayes; Shilong Piao; Shilong Piao; Shilong Piao; Whitney L. Forbes; Whitney L. Forbes; Xiaoying Shi; Mingzhou Jin; Forrest M. Hoffman; Ben Poulter; Hanqin Tian; Aurélien Ribes; Daniel M. Riccuito; Wenting Fu; Christopher R. Schwalm; Christopher R. Schwalm; Jiafu Mao; Tianbao Zhao;Abstract Runoff in the United States is changing, and this study finds that the measured change is dependent on the geographic region and varies seasonally. Specifically, observed annual total runoff had an insignificant increasing trend in the US between 1950 and 2010, but this insignificance was due to regional heterogeneity with both significant and insignificant increases in the eastern, northern, and southern US, and a greater significant decrease in the western US. Trends for seasonal mean runoff also differed across regions. By region, the season with the largest observed trend was autumn for the east (positive), spring for the north (positive), winter for the south (positive), winter for the west (negative), and autumn for the US as a whole (positive). Based on the detection and attribution analysis using gridded WaterWatch runoff observations along with semi-factorial land surface model simulations from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), we found that while the roles of CO2 concentration, nitrogen deposition, and land use and land cover were inconsistent regionally and seasonally, the effect of climatic variations was detected for all regions and seasons, and the change in runoff could be attributed to climate change in summer and autumn in the south and in autumn in the west. We also found that the climate-only and historical transient simulations consistently underestimated the runoff trends, possibly due to precipitation bias in the MsTMIP driver or within the models themselves.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aabb41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aabb41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Wiley Funded by:NSERCNSERCLei Cheng; Shushi Peng; Shushi Peng; Mengtian Huang; Philippe Ciais; Hui Yang; Yitong Yao; Jiafu Mao; Shilong Piao; Shilong Piao; Ben Poulter; Xiaoying Shi; Ying-Ping Wang; Zhenzhong Zeng;doi: 10.1111/gcb.13180
pmid: 26663766
AbstractEcosystem water‐use efficiency (EWUE) is an indicator of carbon–water interactions and is defined as the ratio of carbon assimilation (GPP) to evapotranspiration (ET). Previous research suggests an increasing long‐term trend in annual EWUE over many regions and is largely attributed to the physiological effects of rising CO2. The seasonal trends in EWUE, however, have not yet been analyzed. In this study, we investigate seasonal EWUE trends and responses to various drivers during 1982–2008. The seasonal cycle for two variants of EWUE, water‐use efficiency (WUE, GPP/ET), and transpiration‐based WUE (WUEt, the ratio of GPP and transpiration), is analyzed from 0.5° gridded fields from four process‐based models and satellite‐based products, as well as a network of 63 local flux tower observations. WUE derived from flux tower observations shows moderate seasonal variation for most latitude bands, which is in agreement with satellite‐based products. In contrast, the seasonal EWUE trends are not well captured by the same satellite‐based products. Trend analysis, based on process‐model factorial simulations separating effects of climate, CO2, and nitrogen deposition (NDEP), further suggests that the seasonal EWUE trends are mainly associated with seasonal trends of climate, whereas CO2 and NDEP do not show obvious seasonal difference in EWUE trends. About 66% grid cells show positive annual WUE trends, mainly over mid‐ and high northern latitudes. In these regions, spring climate change has amplified the effect of CO2 in increasing WUE by more than 0.005 gC m−2 mm−1 yr−1 for 41% pixels. Multiple regression analysis further shows that the increase in springtime WUE in the northern hemisphere is the result of GPP increasing faster than ET because of the higher temperature sensitivity of GPP relative to ET. The partitioning of annual EWUE to seasonal components provides new insight into the relative sensitivities of GPP and ET to climate, CO2, and NDEP.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 129 citations 129 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 Belgium, Germany, France, GermanyPublisher:Wiley Yaxing Wei; Yongwen Liu; Yongwen Liu; Daniel J. Hayes; Ning Zeng; Daniel S. Goll; Joshua B. Fisher; Anna M. Michalak; Qiuan Zhu; Qiuan Zhu; Ivan A. Janssens; Akihiko Ito; Akihiko Ito; Philippe Ciais; Kai Wang; Sara Vicca; Josep Peñuelas; Campioli Matteo; M. Altaf Arain; Xiangyi Li; Christopher R. Schwalm; Christopher R. Schwalm; Atul K. Jain; Daniel M. Ricciuto; Xiaoying Shi; Benjamin Poulter; Kevin Schaefer; Yuanyuan Fang; Deborah N. Huntzinger; Jiafu Mao; Hanqin Tian; Yue He; Shushi Peng; Dahe Qin; Dahe Qin; Changhui Peng; Changhui Peng;AbstractPlants use only a fraction of their photosynthetically derived carbon for biomass production (BP). The biomass production efficiency (BPE), defined as the ratio of BP to photosynthesis, and its variation across and within vegetation types is poorly understood, which hinders our capacity to accurately estimate carbon turnover times and carbon sinks. Here, we present a new global estimation of BPE obtained by combining field measurements from 113 sites with 14 carbon cycle models. Our best estimate of global BPE is 0.41 ± 0.05, excluding cropland. The largest BPE is found in boreal forests (0.48 ± 0.06) and the lowest in tropical forests (0.40 ± 0.04). Carbon cycle models overestimate BPE, although models with carbon–nitrogen interactions tend to be more realistic. Using observation‐based estimates of global photosynthesis, we quantify the global BP of non‐cropland ecosystems of 41 ± 6 Pg C/year. This flux is less than net primary production as it does not contain carbon allocated to symbionts, used for exudates or volatile carbon compound emissions to the atmosphere. Our study reveals a positive bias of 24 ± 11% in the model‐estimated BP (10 of 14 models). When correcting models for this bias while leaving modeled carbon turnover times unchanged, we found that the global ecosystem carbon storage change during the last century is decreased by 67% (or 58 Pg C).
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit AntwerpenUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit AntwerpenUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Zhiqiang Xiao; Ning Zeng; Mengtian Huang; Jiafu Mao; Ben Poulter; Guodong Yin; Shilong Piao; Shilong Piao; Zhenzhong Zeng; Ronggao Liu; Yue Li; Shushi Peng; Ying-Ping Wang; Xiaoying Shi; Jianguang Tan; Lei Cheng; Ranga B. Myneni;doi: 10.1111/gcb.12795
pmid: 25369401
AbstractThe reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite‐derived Leaf Area Index (LAI) datasets for detection as well as five different process‐based ecosystem models for attribution. Rising atmospheric CO2 concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing‐season LAI trend (LAIGS) estimated by satellite datasets (average trend of 0.0070 yr−1, ranging from 0.0035 yr−1 to 0.0127 yr−1), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAIGS at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai–Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAIGS (P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGS trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO2 concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 702 citations 702 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:IOP Publishing Jiafu Mao; Xiaoying Shi; P. E. Thornton; Shilong Piao; Xuhui Wang;El Community Land Model versión 4 (CLM4) se aplica para explorar los patrones espacio-temporales de las tendencias de crecimiento de la vegetación de primavera (abril-mayo) en las latitudes medias-altas del norte (NMH) (>25°N) entre 1982 y 2004. Durante la temporada de primavera hasta el período de 23 años, tanto las anomalías del índice de vegetación de diferencia normalizada (NDVI) derivadas de satélites como las simuladas muestran una correlación estadísticamente significativa y una tendencia general de reverdecimiento dentro del área de estudio. De manera consistente con la relación NDVI-temperatura observada, el CLM4 NDVI muestra una asociación positiva significativa con la anomalía de temperatura de primavera para el NMH, América del Norte y Eurasia. Las grandes áreas de estudio experimentan discontinuidad de temperatura asociada con tendencias contrastantes de NDVI. Antes y después del punto de inflexión (TP) de las tendencias de temperatura, la variabilidad climática juega un papel dominante, mientras que los otros factores ambientales ejercen efectos menores en las tendencias de NDVI. El crecimiento simulado de la vegetación se ve ampliamente estimulado por el aumento del CO2 atmosférico. Las tendencias muestran que la deposición de nitrógeno aumenta el NDVI principalmente en el sureste de China y disminuye el NDVI principalmente en el oeste de Rusia después de la temperatura TP. Además, las tendencias de NDVI inducidas por el uso de la tierra varían aproximadamente con los cambios respectivos en las prácticas de gestión de la tierra (áreas de cultivo y cobertura forestal). Nuestros resultados destacan cómo los factores no climáticos mitigan o exacerban el impacto de la temperatura en el crecimiento de la vegetación primaveral, particularmente en las regiones con actividad humana intensiva. Le modèle de terres communautaires version 4 (CLM4) est appliqué pour explorer les modèles spatio-temporels des tendances de croissance de la végétation printanière (avril-mai) sur les latitudes moyennes-élevées du nord (>25°N) entre 1982 et 2004. Au cours de la saison printanière jusqu'à la période de 23 ans, les anomalies de l'indice de végétation normalisé dérivé des satellites et simulé (NDVI) montrent une corrélation statistiquement significative et une tendance générale au verdissement dans la zone d'étude. Conformément à la relation NDVI-température observée, le CLM4 NDVI montre une association positive significative avec l'anomalie de température de printemps pour le NMH, l'Amérique du Nord et l'Eurasie. Les grandes zones d'étude connaissent une discontinuité de température associée à des tendances contrastées de l'IVDN. Avant et après le point tournant (TP) des tendances de température, la variabilité climatique joue un rôle dominant, tandis que les autres facteurs environnementaux exercent des effets mineurs sur les tendances NDVI. La croissance de la végétation simulée est largement stimulée par l'augmentation du CO2 atmosphérique. Les tendances montrent que les dépôts d'azote augmentent l'IVDN principalement dans le sud-est de la Chine et diminuent l'IVDN principalement dans l'ouest de la Russie après la température TP. En outre, les tendances de l'IVDN induites par l'utilisation des terres varient à peu près en fonction des changements respectifs dans les pratiques de gestion des terres (superficies cultivées et couverture forestière). Nos résultats soulignent comment les facteurs non climatiques atténuent ou exacerbent l'impact de la température sur la croissance de la végétation printanière, en particulier dans les régions où l'activité humaine est intense. The Community Land Model version 4 (CLM4) is applied to explore the spatial–temporal patterns of spring (April–May) vegetation growth trends over the northern mid–high latitudes (NMH) (>25°N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI–temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experience temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity. يتم تطبيق الإصدار 4 من نموذج أراضي المجتمع (CLM4) لاستكشاف الأنماط المكانية والزمانية لاتجاهات نمو الغطاء النباتي في الربيع (أبريل- مايو) عبر خطوط العرض الشمالية المتوسطة والعالية (>25درجةشمالًا) بين عامي 1982 و 2004. خلال موسم الربيع خلال فترة 23 عامًا، تُظهر كل من الانحرافات في مؤشر الاختلاف المعياري للغطاء النباتي (NDVI) المستمدة من الأقمار الصناعية والمحاكاة ارتباطًا ذا دلالة إحصائية واتجاهًا عامًا للتخضير داخل منطقة الدراسة. تماشيًا مع العلاقة المرصودة بين NDVI ودرجة الحرارة، يُظهر CLM4 NDVI ارتباطًا إيجابيًا كبيرًا مع شذوذ درجة حرارة الربيع لـ NMH وأمريكا الشمالية وأوراسيا. تشهد مناطق الدراسة الكبيرة انقطاعًا في درجة الحرارة مرتبطًا باتجاهات NDVI المتناقضة. قبل وبعد نقطة التحول (TP) لاتجاهات درجة الحرارة، يلعب التقلب المناخي دورًا مهيمنًا، في حين أن العوامل البيئية الأخرى لها تأثيرات طفيفة على اتجاهات NDVI. يتم تحفيز نمو الغطاء النباتي المحاكي على نطاق واسع من خلال زيادة ثاني أكسيد الكربون في الغلاف الجوي. تشير الاتجاهات إلى أن ترسب النيتروجين يزيد من مؤشر NDVI في الغالب في جنوب شرق الصين، وينخفض مؤشر NDVI بشكل رئيسي في غرب روسيا بعد درجة الحرارة TP. علاوة على ذلك، تختلف اتجاهات المؤشر الوطني للرؤية الرقمية للأراضي الناجمة عن استخدام الأراضي تقريبًا مع التغييرات ذات الصلة في ممارسات إدارة الأراضي (مناطق المحاصيل والتغطية الحرجية). تسلط نتائجنا الضوء على كيفية قيام العوامل غير المناخية بتخفيف أو تفاقم تأثير درجة الحرارة على نمو الغطاء النباتي في الربيع، لا سيما عبر المناطق ذات النشاط البشري المكثف.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/7/1/014010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/7/1/014010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Copernicus GmbH Shilong Piao; Akihiko Ito; S. Li; Yao Huang; Philippe Ciais; X. Wang; Shushi Peng; R. J. Andres; Jingyun Fang; Sujong Jeong; Jiafu Mao; Anwar Mohammat; Hiroyuki Muraoka; Huijuan Nan; Changhui Peng; Philippe Peylin; Xiaoying Shi; Stephen Sitch; Shengli Tao; Hanqin Tian; Mingjie Xu; Guanghui Yu; Ning Zeng; Biao Zhu;Abstract. This REgional Carbon Cycle Assessment and Processes regional study provides a synthesis of the carbon balance of terrestrial ecosystems in East Asia, a region comprised of China, Japan, North- and South-Korea, and Mongolia. We estimate the current terrestrial carbon balance of East Asia and its driving mechanisms during 1990–2009 using three different approaches: inventories combined with satellite greenness measurements, terrestrial ecosystem carbon cycle models and atmospheric inversion models. The magnitudes of East Asia's natural carbon sink from these three approaches are comparable: −0.264 ± 0.033 Pg C yr−1 from inventory-remote sensing model-data fusion approach, −0.393 ± 0.141 Pg C yr−1 (not considering biofuel emissions) or −0.204 ± 0.141 Pg C yr−1 (considering biofuel emissions) for carbon cycle models, and −0.270 ± 0.507 Pg C yr−1 for atmospheric inverse models. The ensemble of ecosystem modeling based analyses further suggests that at the regional scale, climate change and rising atmospheric CO2 together resulted in a carbon sink of −0.289 ± 0.135 Pg C yr−1, while land use change and nitrogen deposition had a contribution of −0.013 ± 0.029 Pg C yr−1 and −0.107 ± 0.025 Pg C yr−1, respectively. Although the magnitude of climate change effects on the carbon balance varies among different models, all models agree that in response to climate change alone, southern China experienced an increase in carbon storage from 1990 to 2009, while northern East Asia including Mongolia and north China showed a decrease in carbon storage. Overall, our results suggest that about 13–26% of East Asia's CO2 emissions from fossil fuel burning have been offset by carbon accumulation in its terrestrial ecosystems over the period from 1990 to 2009. The underlying mechanisms of carbon sink over East Asia still remain largely uncertain, given the diversity and intensity of land management processes, and the regional conjunction of many drivers such as nutrient deposition, climate, atmospheric pollution and CO2 changes, which cannot be considered as independent for their effects on carbon storage.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-4025-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-4025-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 FrancePublisher:Elsevier BV Xiaoying Shi; Mingzhou Jin; Mengdi Gao; P. Ciais; Anping Chen; Daniel M. Ricciuto; Shilong Piao; Rongyun Tang; Rongyun Tang; Xiran Li; Xiran Li; Sam Rabin; Chao Yue; Jiafu Mao;Le feu est un type majeur de perturbation qui a des influences importantes sur la dynamique des écosystèmes et les cycles du carbone. Pourtant, notre compréhension des incendies d'écosystèmes et de leurs conséquences sur le cycle du carbone est encore limitée, en grande partie en raison de la difficulté de la surveillance des incendies à grande échelle et des interactions complexes entre le feu, la végétation, le climat et les facteurs anthropiques. Ici, à l'aide de données d'observations d'incendies dérivées de satellites et de simulations de modèles d'écosystèmes, nous avons mené une enquête approfondie sur la dynamique spatiale et temporelle des perturbations des incendies des écosystèmes chinois et de leurs émissions de carbone au cours des deux dernières décennies (1997–2016). Les résultats obtenus par satellite ont montré qu'en moyenne, environ 3,47 à 4,53 × 104 km2 de terres étaient brûlées chaque année au cours des deux dernières décennies, dont une superficie annuelle de forêt brûlée d'environ 0,81 à 1,25 × 104 km2, représentant 0,33 à 0,51 % de la superficie forestière en Chine. La combustion de la biomasse émet environ 23,02 TgC par an. Par rapport aux produits satellitaires, les simulations du modèle terrestre du système terrestre Energy Exascale (ELM) ont fortement surestimé la zone brûlée de la Chine et les émissions de carbone induites par le feu. La superficie brûlée annuelle et les émissions de carbone causées par les incendies étaient élevées pour la forêt boréale dans la région de Daxing'anling, dans le nord-est de la Chine, et la forêt sèche subtropicale dans le sud du Yunnan, comme le révèlent à la fois le produit satellite et les simulations du modèle. Nos résultats suggèrent que les facteurs climatiques et anthropiques jouent un rôle essentiel dans le contrôle de la distribution spatiale et saisonnière des perturbations des incendies dans les écosystèmes chinois. Nos résultats soulignent l'importance de multiples approches complémentaires dans l'évaluation de la perturbation des incendies dans les écosystèmes et de ses conséquences sur le carbone. D'autres études sont nécessaires pour améliorer les méthodes d'observation et de modélisation des perturbations des incendies dans les écosystèmes chinois, ce qui fournira des informations précieuses pour la gestion des incendies et la durabilité des écosystèmes à une époque où les activités humaines et l'environnement naturel évoluent rapidement. El fuego es un tipo importante de perturbación que tiene importantes influencias en la dinámica de los ecosistemas y los ciclos del carbono. Sin embargo, nuestra comprensión de los incendios en los ecosistemas y sus consecuencias en el ciclo del carbono sigue siendo limitada, en gran parte debido a la dificultad del monitoreo de incendios a gran escala y las complejas interacciones entre el fuego, la vegetación, el clima y los factores antropogénicos. Aquí, utilizando datos de observaciones de incendios derivadas de satélites y simulaciones de modelos de ecosistemas, realizamos una investigación exhaustiva de la dinámica espacial y temporal de las perturbaciones de incendios en los ecosistemas de China y sus emisiones de carbono en las últimas dos décadas (1997–2016). Los resultados obtenidos por satélite mostraron que, en promedio, aproximadamente 3,47 - 4,53 × 104 km2 de tierra se quemaron anualmente durante las últimas dos décadas, entre los cuales el área de bosque quemado anual fue de aproximadamente 0,81 - 1,25 × 104 km2, lo que representa el 0,33-0,51% del área forestal en China. La quema de biomasa emitió alrededor de 23.02 TgC por año. En comparación con los productos satelitales, las simulaciones del Energy Exascale Earth System Land Model (ELM) sobreestimaron en gran medida el área quemada de China y las emisiones de carbono inducidas por el fuego. El área quemada anual y las emisiones de carbono inducidas por el fuego fueron altas para el bosque boreal en la región Daxing'anling del noreste de China y el bosque seco subtropical en el sur de Yunnan, según lo revelado tanto por el producto satelital como por las simulaciones del modelo. Nuestros resultados sugieren que el clima y los factores antropogénicos desempeñan un papel fundamental en el control de la distribución espacial y estacional de las perturbaciones por incendios en los ecosistemas de China. Nuestros hallazgos resaltan la importancia de múltiples enfoques complementarios en la evaluación de la perturbación de incendios en el ecosistema y sus consecuencias de carbono. Se requieren más estudios para mejorar los métodos de observación y modelado de las perturbaciones de incendios en los ecosistemas de China, lo que proporcionará información valiosa para la gestión de incendios y la sostenibilidad de los ecosistemas en una era en la que tanto las actividades humanas como el entorno natural están cambiando rápidamente. Fire is a major type of disturbance that has important influences on ecosystem dynamics and carbon cycles. Yet our understanding of ecosystem fires and their carbon cycle consequences is still limited, largely due to the difficulty of large-scale fire monitoring and the complex interactions between fire, vegetation, climate, and anthropogenic factors. Here, using data from satellite-derived fire observations and ecosystem model simulations, we performed a comprehensive investigation of the spatial and temporal dynamics of China's ecosystem fire disturbances and their carbon emissions over the past two decades (1997–2016). Satellite-derived results showed that on average about 3.47 - 4.53 × 104 km2 of the land was burned annually during the past two decades, among which annual burned forest area was about 0.81 - 1.25 × 104 km2, accounting for 0.33-0.51% of the forest area in China. Biomass burning emitted about 23.02 TgC per year. Compared to satellite products, simulations from the Energy Exascale Earth System Land Model (ELM) strongly overestimated China's burned area and fire-induced carbon emissions. Annual burned area and fire-induced carbon emissions were high for boreal forest in Northeast China's Daxing'anling region and subtropical dry forest in South Yunnan, as revealed by both the satellite product and the model simulations. Our results suggest that climate and anthropogenic factors play critical roles in controlling the spatial and seasonal distribution of China's ecosystem fire disturbances. Our findings highlight the importance of multiple complementary approaches in assessing ecosystem fire disturbance and its carbon consequences. Further studies are required to improve the methods of observing and modelling China's ecosystem fire disturbances, which will provide valuable information for fire management and ecosystem sustainability in an era when both human activities and the natural environment are rapidly changing. الحريق هو نوع رئيسي من الاضطرابات التي لها تأثيرات مهمة على ديناميكيات النظام البيئي ودورات الكربون. ومع ذلك، لا يزال فهمنا لحرائق النظم الإيكولوجية وعواقبها على دورة الكربون محدودًا، ويرجع ذلك إلى حد كبير إلى صعوبة مراقبة الحرائق على نطاق واسع والتفاعلات المعقدة بين الحرائق والغطاء النباتي والمناخ والعوامل البشرية المنشأ. هنا، باستخدام بيانات من ملاحظات الحرائق المشتقة من الأقمار الصناعية ومحاكاة نموذج النظام الإيكولوجي، أجرينا تحقيقًا شاملاً في الديناميكيات المكانية والزمنية لاضطرابات حرائق النظام الإيكولوجي في الصين وانبعاثاتها الكربونية على مدى العقدين الماضيين (1997–2016). أظهرت النتائج المستمدة من الأقمار الصناعية أنه في المتوسط تم حرق حوالي 3.47 - 4.53 × 104 كم 2 من الأرض سنويًا خلال العقدين الماضيين، ومن بينها كانت مساحة الغابات المحترقة السنوية حوالي 0.81 - 1.25 × 104 كم 2، وهو ما يمثل 0.33-0.51 ٪ من مساحة الغابات في الصين. ينبعث من حرق الكتلة الحيوية حوالي 23.02 تيراغرام في السنة. وبالمقارنة مع منتجات الأقمار الصناعية، فإن عمليات المحاكاة من نموذج الأرض لنظام الطاقة Exascale (ELM) بالغت بشدة في تقدير المنطقة المحروقة في الصين وانبعاثات الكربون الناجمة عن الحرائق. كانت المساحة السنوية المحروقة وانبعاثات الكربون الناجمة عن الحرائق مرتفعة بالنسبة للغابات الشمالية في منطقة داشينغ آنلينغ شمال شرق الصين والغابات الجافة شبه الاستوائية في جنوب يونان، كما كشف كل من منتج الأقمار الصناعية ونماذج المحاكاة. تشير نتائجنا إلى أن المناخ والعوامل البشرية تلعب أدوارًا حاسمة في التحكم في التوزيع المكاني والموسمي لاضطرابات حرائق النظام البيئي في الصين. تسلط النتائج التي توصلنا إليها الضوء على أهمية النهج التكميلية المتعددة في تقييم اضطراب حرائق النظام الإيكولوجي وعواقبه الكربونية. هناك حاجة إلى مزيد من الدراسات لتحسين طرق مراقبة ونمذجة اضطرابات حرائق النظام الإيكولوجي في الصين، والتي ستوفر معلومات قيمة لإدارة الحرائق واستدامة النظام الإيكولوجي في عصر تتغير فيه الأنشطة البشرية والبيئة الطبيعية بسرعة.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04229960Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04229960Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geosus.2020.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04229960Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04229960Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geosus.2020.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Proceedings of the National Academy of Sciences Daniel M. Ricciuto; Lin Meng; Jiafu Mao; Peter E. Thornton; Xuhui Lee; Xuhui Lee; Gensuo Jia; Xiaoying Shi; Andrew D. Richardson; Yuyu Zhou; Xuecao Li; Yongjiu Dai;Significance Cities and their associated urban heat islands are ideal natural laboratories for evaluating the response of plant phenology to warming conditions. In this study, we demonstrate that the satellite-derived start of season for plants occurred earlier but showed less covariation with temperature in most of the large 85 cities across the conterminous United States for the period 2001–2014. The results show a reduction in the response of urban phenology to temperature and imply that, in nonurban environments, the onset of spring phenology will likely advance but will slow down as the general trend toward warming continues.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1911117117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 137 citations 137 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1911117117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Austria, Spain, France, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-PEC| IMBALANCE-PShilong Piao; Shilong Piao; Frédéric Chevallier; Andreas Stohl; Ivan A. Janssens; Zaichun Zhu; Anders Ahlström; Shushi Peng; John F. Burkhart; Tao Wang; John B. Miller; John B. Miller; Josep Peñuelas; Zhuo Liu; Anwar Mohammat; Philippe Ciais; Pieter P. Tans; Mengtian Huang; Jiafu Mao; Xiaoying Shi; Yitong Yao; Su-Jong Jeong; Xin Lin; Ranga B. Myneni;Les mesures de la concentration atmosphérique de CO2 à Barrow, en Alaska, ainsi que les modèles couplés de transport atmosphérique et d'écosystème terrestre montrent une baisse de la réponse de la productivité primaire nette printanière à la température aux hautes latitudes. Le réchauffement printanier en cours permet à la saison de croissance de commencer plus tôt, ce qui améliore l'absorption de carbone dans les écosystèmes nordiques1,2,3. Ici, nous utilisons 34 années de mesures de la concentration atmosphérique de CO2 à Barrow, en Alaska (BRW, 71° N) pour montrer que la relation interannuelle entre la température du printemps et l'absorption du carbone a récemment changé. Nous utilisons deux indicateurs : la date de passage par zéro du CO2 atmosphérique (SZC) au printemps et l'ampleur du prélèvement de CO2 entre mai et juin (SCC). La forte corrélation précédemment rapportée entre le SZC, le SCC et la température du sol au printemps (ST) a été trouvée au cours des 17 premières années de mesures, mais a disparu au cours des 17 dernières années. En conséquence, la sensibilité du SZC et du SCC au réchauffement a diminué. Les simulations avec un modèle de transport atmosphérique4 couplé à un modèle d'écosystème terrestre5 suggèrent que la corrélation interannuelle affaiblie du SZC et du SCC avec le ST au cours des 17 dernières années est attribuable à la diminution de la réponse en température de la productivité primaire nette (NPP) printanière plutôt qu'à des changements dans la respiration hétérotrophique ou dans les modèles de transport atmosphérique. La réduction du refroidissement pendant la dormance et la limitation de la lumière émergente sont des mécanismes possibles qui peuvent avoir contribué à la perte de la réponse de la centrale nucléaire à la ST. Nos résultats remettent donc en question le mécanisme « plus chaud du puits à ressort ». Las mediciones de concentración de CO2 atmosférico en Barrow, Alaska, junto con el transporte atmosférico acoplado y los modelos de ecosistemas terrestres, muestran una disminución de la respuesta de la productividad primaria neta de primavera a la temperatura en altas latitudes. El calentamiento continuo de la primavera permite que la temporada de crecimiento comience antes, lo que mejora la absorción de carbono en los ecosistemas del norte1,2,3. Aquí utilizamos 34 años de mediciones de concentración de CO2 atmosférico en Barrow, Alaska (BRW, 71° N) para mostrar que la relación interanual entre la temperatura de primavera y la absorción de carbono ha cambiado recientemente. Utilizamos dos indicadores: la fecha de paso por cero de primavera del CO2 atmosférico (SZC) y la magnitud de la reducción de CO2 entre mayo y junio (SCC). La fuerte correlación previamente informada entre SZC, SCC y la temperatura de la tierra de primavera (ST) se encontró en los primeros 17 años de mediciones, pero desapareció en los últimos 17 años. Como resultado, la sensibilidad tanto de SZC como de SCC al calentamiento disminuyó. Las simulaciones con un modelo de transporte atmosférico4 acoplado a un modelo de ecosistema terrestre5 sugieren que la correlación interanual debilitada de SZC y SCC con ST en los últimos 17 años es atribuible a la disminución de la respuesta de temperatura de la productividad primaria neta de primavera (NPP) en lugar de a cambios en la respiración heterotrófica o en los patrones de transporte atmosférico. La reducción del enfriamiento durante la latencia y la limitación de la luz emergente son posibles mecanismos que pueden haber contribuido a la pérdida de la respuesta de la NPP a ST. Nuestros resultados desafían así el mecanismo del "sumidero más grande y más cálido". Atmospheric CO2 concentration measurements at Barrow, Alaska, together with coupled atmospheric transport and terrestrial ecosystem models show a declining spring net primary productivity response to temperature at high latitudes. Ongoing spring warming allows the growing season to begin earlier, enhancing carbon uptake in northern ecosystems1,2,3. Here we use 34 years of atmospheric CO2 concentration measurements at Barrow, Alaska (BRW, 71° N) to show that the interannual relationship between spring temperature and carbon uptake has recently shifted. We use two indicators: the spring zero-crossing date of atmospheric CO2 (SZC) and the magnitude of CO2 drawdown between May and June (SCC). The previously reported strong correlation between SZC, SCC and spring land temperature (ST) was found in the first 17 years of measurements, but disappeared in the last 17 years. As a result, the sensitivity of both SZC and SCC to warming decreased. Simulations with an atmospheric transport model4 coupled to a terrestrial ecosystem model5 suggest that the weakened interannual correlation of SZC and SCC with ST in the last 17 years is attributable to the declining temperature response of spring net primary productivity (NPP) rather than to changes in heterotrophic respiration or in atmospheric transport patterns. Reduced chilling during dormancy and emerging light limitation are possible mechanisms that may have contributed to the loss of NPP response to ST. Our results thus challenge the 'warmer spring–bigger sink' mechanism. تُظهر قياسات تركيز ثاني أكسيد الكربون في الغلاف الجوي في بارو، ألاسكا، جنبًا إلى جنب مع النقل الجوي المقترن ونماذج النظام الإيكولوجي الأرضي، انخفاضًا في صافي استجابة الإنتاجية الأولية لدرجات الحرارة عند خطوط العرض العالية. يسمح الاحترار الربيعي المستمر لموسم النمو بالبدء في وقت مبكر، مما يعزز امتصاص الكربون في النظم الإيكولوجية الشمالية 1،2،3. هنا نستخدم 34 عامًا من قياسات تركيز ثاني أكسيد الكربون في الغلاف الجوي في بارو، ألاسكا (BRW، 71درجة شمالًا) لإظهار أن العلاقة السنوية بين درجة حرارة الربيع وامتصاص الكربون قد تغيرت مؤخرًا. نستخدم مؤشرين: تاريخ الصفر الربيعي لثاني أكسيد الكربون في الغلاف الجوي (SZC) وحجم انخفاض ثاني أكسيد الكربون بين مايو ويونيو (SCC). تم العثور على العلاقة القوية التي تم الإبلاغ عنها سابقًا بين درجة حرارة الأرض في ال 17 عامًا الأولى من القياسات، ولكنها اختفت في السنوات ال 17 الماضية. ونتيجة لذلك، انخفضت حساسية كل من SZC وSCC للاحترار. تشير عمليات المحاكاة باستخدام نموذج النقل الجوي 4 المقترن بنموذج النظام الإيكولوجي الأرضي 5 إلى أن ضعف الارتباط بين السنوات بين SZC و SCC مع ST في السنوات الـ 17 الماضية يعزى إلى انخفاض استجابة درجة الحرارة للإنتاجية الأولية لصافي الربيع (NPP) بدلاً من التغيرات في التنفس غير المتجانس أو في أنماط النقل الجوي. يعد تقليل التبريد أثناء السكون والحد من الضوء الناشئ من الآليات المحتملة التي ربما ساهمت في فقدان استجابة NPP لـ St. وبالتالي فإن نتائجنا تتحدى آلية "حوض الربيع الأكبر الأكثر دفئًا".
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01584218Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01584218Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017Data sources: Diposit Digital de Documents de la UABINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/ncli...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 210 citations 210 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01584218Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01584218Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017Data sources: Diposit Digital de Documents de la UABINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/ncli...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Rachel M. Pilla; Natalie A. Griffiths; Lianhong Gu; Shih‐Chieh Kao; Ryan McManamay; Daniel M. Ricciuto; Xiaoying Shi;doi: 10.1111/gcb.16324
pmid: 35856254
AbstractInland waters serve as important hydrological connections between the terrestrial landscape and oceans but are often overlooked in global carbon (C) budgets and Earth System Models. Terrestrially derived C entering inland waters from the watershed can be transported to oceans but over 83% is either buried in sediments or emitted to the atmosphere before reaching oceans. Anthropogenic pressures such as climate and landscape changes are altering the magnitude of these C fluxes in inland waters. Here, we synthesize the most recent estimates of C fluxes and the differential contributions across inland waterbody types (rivers, streams, lakes, reservoirs, and ponds), including recent measurements that incorporate improved sampling methods, small waterbodies, and dried areas. Across all inland waters, we report a global C emission estimate of 4.40 Pg C/year (95% confidence interval: 3.95–4.85 Pg C/year), representing a 13% increase from the most recent estimate. We also review the mechanisms by which the most globally widespread anthropogenically driven climate and landscape changes influence inland water C fluxes. The majority of these drivers are expected to influence terrestrial C inputs to inland waters due to alterations in terrestrial C quality and quantity, hydrological pathways, and biogeochemical processing. We recommend four research priorities for the future study of anthropogenic alterations to inland water C fluxes: (1) before‐and‐after measurements of C fluxes associated with climate change events and landscape changes, (2) better quantification of C input from land, (3) improved assessment of spatial coverage and contributions of small inland waterbodies to C fluxes, and (4) integration of dried and drawdown areas to global C flux estimates. Improved measurements of inland water C fluxes and quantification of uncertainty in these estimates will be vital to understanding both terrestrial C losses and the “moving target” of inland water C emissions in response to rapid and complex anthropogenic pressures.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:IOP Publishing Yutao Wang; Atul K. Jain; Shih-Chieh Kao; Joshua B. Fisher; Yuanyuan Fang; Akihiko Ito; Peter E. Thornton; Daniel J. Hayes; Shilong Piao; Shilong Piao; Shilong Piao; Whitney L. Forbes; Whitney L. Forbes; Xiaoying Shi; Mingzhou Jin; Forrest M. Hoffman; Ben Poulter; Hanqin Tian; Aurélien Ribes; Daniel M. Riccuito; Wenting Fu; Christopher R. Schwalm; Christopher R. Schwalm; Jiafu Mao; Tianbao Zhao;Abstract Runoff in the United States is changing, and this study finds that the measured change is dependent on the geographic region and varies seasonally. Specifically, observed annual total runoff had an insignificant increasing trend in the US between 1950 and 2010, but this insignificance was due to regional heterogeneity with both significant and insignificant increases in the eastern, northern, and southern US, and a greater significant decrease in the western US. Trends for seasonal mean runoff also differed across regions. By region, the season with the largest observed trend was autumn for the east (positive), spring for the north (positive), winter for the south (positive), winter for the west (negative), and autumn for the US as a whole (positive). Based on the detection and attribution analysis using gridded WaterWatch runoff observations along with semi-factorial land surface model simulations from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), we found that while the roles of CO2 concentration, nitrogen deposition, and land use and land cover were inconsistent regionally and seasonally, the effect of climatic variations was detected for all regions and seasons, and the change in runoff could be attributed to climate change in summer and autumn in the south and in autumn in the west. We also found that the climate-only and historical transient simulations consistently underestimated the runoff trends, possibly due to precipitation bias in the MsTMIP driver or within the models themselves.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aabb41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aabb41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Wiley Funded by:NSERCNSERCLei Cheng; Shushi Peng; Shushi Peng; Mengtian Huang; Philippe Ciais; Hui Yang; Yitong Yao; Jiafu Mao; Shilong Piao; Shilong Piao; Ben Poulter; Xiaoying Shi; Ying-Ping Wang; Zhenzhong Zeng;doi: 10.1111/gcb.13180
pmid: 26663766
AbstractEcosystem water‐use efficiency (EWUE) is an indicator of carbon–water interactions and is defined as the ratio of carbon assimilation (GPP) to evapotranspiration (ET). Previous research suggests an increasing long‐term trend in annual EWUE over many regions and is largely attributed to the physiological effects of rising CO2. The seasonal trends in EWUE, however, have not yet been analyzed. In this study, we investigate seasonal EWUE trends and responses to various drivers during 1982–2008. The seasonal cycle for two variants of EWUE, water‐use efficiency (WUE, GPP/ET), and transpiration‐based WUE (WUEt, the ratio of GPP and transpiration), is analyzed from 0.5° gridded fields from four process‐based models and satellite‐based products, as well as a network of 63 local flux tower observations. WUE derived from flux tower observations shows moderate seasonal variation for most latitude bands, which is in agreement with satellite‐based products. In contrast, the seasonal EWUE trends are not well captured by the same satellite‐based products. Trend analysis, based on process‐model factorial simulations separating effects of climate, CO2, and nitrogen deposition (NDEP), further suggests that the seasonal EWUE trends are mainly associated with seasonal trends of climate, whereas CO2 and NDEP do not show obvious seasonal difference in EWUE trends. About 66% grid cells show positive annual WUE trends, mainly over mid‐ and high northern latitudes. In these regions, spring climate change has amplified the effect of CO2 in increasing WUE by more than 0.005 gC m−2 mm−1 yr−1 for 41% pixels. Multiple regression analysis further shows that the increase in springtime WUE in the northern hemisphere is the result of GPP increasing faster than ET because of the higher temperature sensitivity of GPP relative to ET. The partitioning of annual EWUE to seasonal components provides new insight into the relative sensitivities of GPP and ET to climate, CO2, and NDEP.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 129 citations 129 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu