Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
6 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • Authors: Zheng, Min; Liu, Yan-Chen; Xin, Jia; Zuo, Hao; +2 Authors

    Oxidation of ammonia to nitrite rather than nitrate is critical for nitritation process for wastewater treatment. We proposed a promising approach by using controlled ultrasonic treatment to enhance the activity of ammonia-oxidizing bacteria (AOB) and suppress that of nitrite-oxidizing bacteria (NOB). Batch activity assays indicated that when ultrasound was applied, AOB activity reached a peak level and then declined but NOB activity deteriorated continuously as the power intensity of ultrasound increased. Kinetic analysis of relative microbial activity versus ultrasonic energy density was performed to investigate the effect of operational factors (power, sludge concentration, and aeration) on AOB and NOB activities and the test parameters were selected for reactor tests. Laboratory sequential batch reactor (SBR) was further used to test the ultrasonic stimulus with 8 h per day operational cycle and synthetic waste urine as influent. With specific ultrasonic energy density of 0.09 kJ/mg VSS and continuously fed influent containing above 200 mg NH3-N/L, high AOB reproductive activity was achieved and nearly complete conversion of ammonia-N to nitrite was maintained. Microbial structure analysis confirmed that the treatment changed community of AOB, NOB, and heterotrophs. Known AOB Nitrosomonas genus remained at similar level in the biomass while typical NOB Nitrospira genus disappeared in the SBR under ultrasonic treatment and after the treatment was off for 30 days.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    62
    citations62
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • Authors: Zheng, Min; Wu, Weimin; Chi, Lina; Wang, Chengwen;

    Siloxane has become an environmental concern as poly-dimethylsiloxanes are extensively applied. Siloxanes in biogas generated from landfill and anaerobic digestion at wastewater treatment plants must be removed before the biogas is used for electricity generation in case of production of silicon precipitates inside an engine. This paper reviews the updated research results on siloxanes including physical-chemical properties, contaminant sources, migration and transformation in environment, biodegradability, concentration profile in biogas, and current technologies for siloxane removal. The topics of future study are discussed, focusing on mechanism of biodegradation and microbiology.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jianzheng Li; Wenbin Liu; Jia Meng; Lei Zhao; +2 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jia Meng; Jiuling Li; Jianzheng Li; Jun Nan; +1 Authors

    Recently, upflow microaerobic sludge blanket (UMSB) system has been developed to remove ammonium and organic matter simultaneously. This study aims to establish influent and operational conditions promoting anammox-based nitrogen removal process in the UMSB reactor by using a modified Activated Sludge Model. Experiments were performed on a laboratory-scale UMSB reactor treated piggery wastewater for over two years. With the experimentally determined model parameters, the established model well simulated the UMSB reactor performance. The maximum anammox growth rate was calibrated to be 0.41 d-1 at 35 °C. Further simulations showed that UMSB reactor operated with high influent organics or nitrogen loading rates at temperature above 15 °C can achieve efficient nitrogen removal (>70%). The nitrogen loading over 0.6 kg N/(m3·d)) significantly favors anammox activity. UMSB could also be a promising system for nitrogen removal from low-strength ammonium wastewater with fluctuated COD influence. These results provide support to UMSB design and operational optimization.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhetai Hu; Haoran Duan; Zhiyao Wang; Jing Zhao; +4 Authors

    Iron salts (i.e. FeCl3) are the most used chemicals in the urban wastewater system. Iron is commonly dosed into sewage or the mainstream system, which provides multiple benefits such as enhanced phosphorus removal and improved sludge settleability/dewaterability. This study reported and demonstrated a new approach that dosed FeCl3 into returned sludge in order to bring two more benefits to wastewater management: short-cut nitrogen removal via the nitrite pathway and less biomass production. This approach is achieved based on our findings that with similar amount of FeCl3, centralized iron dosing into a sidestream sludge unit generated iron concentration two orders of magnitude higher than the common mainstream dosing (e.g. 10-40 mg Fe/L-wastewater), leading to sludge acidification (pH = 2.1) with Fe (III) hydrolysis. Together with accumulated nitrite in the supernatant of the sludge, ppm-level of free nitrous acid was generated and thus enabled sludge disintegration, cell lysis, and selective elimination of nitrite-oxidizing bacteria (NOB). Long-term effects on nitrifying bacteria and overall reactor performance were evaluated using two laboratory reactor experiments for over one year. The experimental reactor showed stable nitrite accumulation with an average NO2-/(NO2- + NO3-) ratio above 80% and ∼30% observed biomass yield reduction compared to those in control reactors. In addition, the centralized sludge dosing strategy still provided benefits such as improved settleability and dewaterability of sludge and enhanced phosphorus removal.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    22
    citations22
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jing Zhao; Gaofeng Ni; Maria Piculell; Jie Li; +6 Authors

    This study investigated biofilm establishment, biofilm structure, and microbial community composition of biofilms in three laboratory-scale moving bed biofilm reactors. These reactors were filled with three types of plastic carriers with varied depths of living space for microbial growth. The reactors were operated under the same influent and operational conditions. Along with the operation, the results showed that carriers with grids of 50 μm in height delayed the biofilm development and formed the thinnest biofilm and a carpet-like structure with the lowest α-diversity. In comparison, another two carriers with grids of 200 and 400 μm in height formed thick biofilms and large colonies with more voids and channels. Quantified properties of biofilm thickness, biomass, heterogeneity, portion of the biofilm exposed to the nutrient, and maximum diffusion distance were examined, and the results demonstrated that they almost (except for heterogeneity) strongly correlated to the α-diversity of microbial community. These illustrate that depth of living space, as an important parameter for carrier, could drive the formation of biofilm structure and community composition. It improves understanding of influencing factors on biofilm establishment, structure and its microbial community, and would be helpful for the design of biofilm processes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
6 Research products
  • Authors: Zheng, Min; Liu, Yan-Chen; Xin, Jia; Zuo, Hao; +2 Authors

    Oxidation of ammonia to nitrite rather than nitrate is critical for nitritation process for wastewater treatment. We proposed a promising approach by using controlled ultrasonic treatment to enhance the activity of ammonia-oxidizing bacteria (AOB) and suppress that of nitrite-oxidizing bacteria (NOB). Batch activity assays indicated that when ultrasound was applied, AOB activity reached a peak level and then declined but NOB activity deteriorated continuously as the power intensity of ultrasound increased. Kinetic analysis of relative microbial activity versus ultrasonic energy density was performed to investigate the effect of operational factors (power, sludge concentration, and aeration) on AOB and NOB activities and the test parameters were selected for reactor tests. Laboratory sequential batch reactor (SBR) was further used to test the ultrasonic stimulus with 8 h per day operational cycle and synthetic waste urine as influent. With specific ultrasonic energy density of 0.09 kJ/mg VSS and continuously fed influent containing above 200 mg NH3-N/L, high AOB reproductive activity was achieved and nearly complete conversion of ammonia-N to nitrite was maintained. Microbial structure analysis confirmed that the treatment changed community of AOB, NOB, and heterotrophs. Known AOB Nitrosomonas genus remained at similar level in the biomass while typical NOB Nitrospira genus disappeared in the SBR under ultrasonic treatment and after the treatment was off for 30 days.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    62
    citations62
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • Authors: Zheng, Min; Wu, Weimin; Chi, Lina; Wang, Chengwen;

    Siloxane has become an environmental concern as poly-dimethylsiloxanes are extensively applied. Siloxanes in biogas generated from landfill and anaerobic digestion at wastewater treatment plants must be removed before the biogas is used for electricity generation in case of production of silicon precipitates inside an engine. This paper reviews the updated research results on siloxanes including physical-chemical properties, contaminant sources, migration and transformation in environment, biodegradability, concentration profile in biogas, and current technologies for siloxane removal. The topics of future study are discussed, focusing on mechanism of biodegradation and microbiology.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jianzheng Li; Wenbin Liu; Jia Meng; Lei Zhao; +2 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jia Meng; Jiuling Li; Jianzheng Li; Jun Nan; +1 Authors

    Recently, upflow microaerobic sludge blanket (UMSB) system has been developed to remove ammonium and organic matter simultaneously. This study aims to establish influent and operational conditions promoting anammox-based nitrogen removal process in the UMSB reactor by using a modified Activated Sludge Model. Experiments were performed on a laboratory-scale UMSB reactor treated piggery wastewater for over two years. With the experimentally determined model parameters, the established model well simulated the UMSB reactor performance. The maximum anammox growth rate was calibrated to be 0.41 d-1 at 35 °C. Further simulations showed that UMSB reactor operated with high influent organics or nitrogen loading rates at temperature above 15 °C can achieve efficient nitrogen removal (>70%). The nitrogen loading over 0.6 kg N/(m3·d)) significantly favors anammox activity. UMSB could also be a promising system for nitrogen removal from low-strength ammonium wastewater with fluctuated COD influence. These results provide support to UMSB design and operational optimization.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhetai Hu; Haoran Duan; Zhiyao Wang; Jing Zhao; +4 Authors

    Iron salts (i.e. FeCl3) are the most used chemicals in the urban wastewater system. Iron is commonly dosed into sewage or the mainstream system, which provides multiple benefits such as enhanced phosphorus removal and improved sludge settleability/dewaterability. This study reported and demonstrated a new approach that dosed FeCl3 into returned sludge in order to bring two more benefits to wastewater management: short-cut nitrogen removal via the nitrite pathway and less biomass production. This approach is achieved based on our findings that with similar amount of FeCl3, centralized iron dosing into a sidestream sludge unit generated iron concentration two orders of magnitude higher than the common mainstream dosing (e.g. 10-40 mg Fe/L-wastewater), leading to sludge acidification (pH = 2.1) with Fe (III) hydrolysis. Together with accumulated nitrite in the supernatant of the sludge, ppm-level of free nitrous acid was generated and thus enabled sludge disintegration, cell lysis, and selective elimination of nitrite-oxidizing bacteria (NOB). Long-term effects on nitrifying bacteria and overall reactor performance were evaluated using two laboratory reactor experiments for over one year. The experimental reactor showed stable nitrite accumulation with an average NO2-/(NO2- + NO3-) ratio above 80% and ∼30% observed biomass yield reduction compared to those in control reactors. In addition, the centralized sludge dosing strategy still provided benefits such as improved settleability and dewaterability of sludge and enhanced phosphorus removal.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    22
    citations22
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jing Zhao; Gaofeng Ni; Maria Piculell; Jie Li; +6 Authors

    This study investigated biofilm establishment, biofilm structure, and microbial community composition of biofilms in three laboratory-scale moving bed biofilm reactors. These reactors were filled with three types of plastic carriers with varied depths of living space for microbial growth. The reactors were operated under the same influent and operational conditions. Along with the operation, the results showed that carriers with grids of 50 μm in height delayed the biofilm development and formed the thinnest biofilm and a carpet-like structure with the lowest α-diversity. In comparison, another two carriers with grids of 200 and 400 μm in height formed thick biofilms and large colonies with more voids and channels. Quantified properties of biofilm thickness, biomass, heterogeneity, portion of the biofilm exposed to the nutrient, and maximum diffusion distance were examined, and the results demonstrated that they almost (except for heterogeneity) strongly correlated to the α-diversity of microbial community. These illustrate that depth of living space, as an important parameter for carrier, could drive the formation of biofilm structure and community composition. It improves understanding of influencing factors on biofilm establishment, structure and its microbial community, and would be helpful for the design of biofilm processes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Management
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph