- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 01 Mar 2024 Italy, France, Switzerland, France, Italy, France, France, FrancePublisher:IOP Publishing Authors: Kellerer-Pirklbauer, Andreas; Bodin, Xavier; Delaloye, Reynald; Lambiel, Christophe; +19 AuthorsKellerer-Pirklbauer, Andreas; Bodin, Xavier; Delaloye, Reynald; Lambiel, Christophe; Gärtner-Roer, Isabelle; Bonnefoy-Demongeot, Mylène; Carturan, Luca; Damm, Bodo; Eulenstein, Julia; Fischer, Andrea; Hartl, Lea; Ikeda, Atsushi; Kaufmann, Viktor; Krainer, Karl; Matsuoka, Norikazu; Morra Di Cella, Umberto; Noetzli, Jeannette; Seppi, Roberto; Scapozza, Cristian; Schoeneich, Philippe; Stocker-Waldhuber, Martin; Thibert, Emmanuel; Zumiani, Matteo;handle: 11577/3530422 , 11571/1492636
Abstract Cryospheric long-term timeseries get increasingly important. To document climate-related effects on long-term viscous creep of ice-rich mountain permafrost, we investigated timeseries (1995–2022) of geodetically-derived Rock Glacier Velocity (RGV), i.e. spatially averaged interannual velocity timeseries related to a rock glacier (RG) unit or part of it. We considered 50 RGV from 43 RGs spatially covering the entire European Alps. Eight of these RGs are destabilized. Results show that RGV are distinctly variable ranging from 0.04 to 6.23 m a−1. Acceleration and deceleration at many RGs are highly correlated with similar behaviour over 2.5 decades for 15 timeseries. In addition to a general long-term, warming-induced trend of increasing velocities, three main phases of distinct acceleration (2000–2004, 2008–2015, 2018–2020), interrupted by deceleration or steady state conditions, were identified. The evolution is attributed to climate forcing and underlines the significance of RGV as a product of the Essential Climate Variable (ECV) permafrost. We show that RGV data are valuable as climate indicators, but such data should always be assessed critically considering changing local factors (geomorphic, thermal, hydrologic) and monitoring approaches. To extract a climate signal, larger RGV ensembles should be analysed. Criteria for selecting new RGV-sites are proposed.
Archivio istituziona... arrow_drop_down Serveur académique lausannoisArticle . 2024License: CC BYData sources: Serveur académique lausannoisZurich Open Repository and ArchiveArticle . 2024License: CC BYData sources: Zurich Open Repository and ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad25a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Serveur académique lausannoisArticle . 2024License: CC BYData sources: Serveur académique lausannoisZurich Open Repository and ArchiveArticle . 2024License: CC BYData sources: Zurich Open Repository and ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad25a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 SwitzerlandPublisher:OpenEdition Authors: Haeberli, Wilfried; Noetzli, Jeannette; Mühll, Daniel Vonder;handle: 20.500.13089/k4sz
Climate-related permafrost is widespread in cold mountains and heavily affects slope stability. As a subsurface phenomenon, however, it is often still absent in the perception of key partners concerning the discussion and anticipation of long-term impacts on high mountain regions from continued global warming. Outreach and knowledge transfer, therefore, play a key role. Long-term observations of permafrost temperatures measured in boreholes can be used to convey answers and key messages concerning thermal conditions in a spatio-temporal context, related environmental conditions, affected depth ranges, and impacts of warming and degradation on slope stability.The 35-year Murtèl-Corvatsch time series of borehole temperatures from which data is available since 1987, is used here as an example. Today, mountain permafrost is well documented and understood regarding involved processes, as well as its occurrence in space and evolution in time. Thermal anomalies caused by global warming already now reach about 100 meters depth, thereby reducing the ground ice content, causing accelerated creep of ice-rich frozen talus/debris (so-called “rock glaciers”) and reducing the stability of large frozen bedrock masses at steep icy faces and peaks.
Revue de Géographie ... arrow_drop_down Revue de Géographie AlpineArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4000/rga.11950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Revue de Géographie ... arrow_drop_down Revue de Géographie AlpineArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4000/rga.11950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal , Other literature type , Report 2017 France, Saudi Arabia, Italy, United Kingdom, United Kingdom, Netherlands, United Kingdom, Saudi Arabia, United Kingdom, ItalyPublisher:American Meteorological Society Funded by:EC | WAPITI, EC | EUSTACEEC| WAPITI ,EC| EUSTACELinda M. Keller; Martin Stengel; Sergio R. Signorini; Gabriel J. Wolken; Stephen C. Maberly; Don P. Chambers; Lincoln M. Alves; Claudia Schmid; D. van As; Andrew G. Fountain; Michael Riffler; Markus G. Donat; A. Rost Parsons; Michael P. Meredith; E. Hyung Park; Eric J. Alfaro; Jeannette Noetzli; Luis Alfonso López Álvarez; Martin Sharp; Curtis L. DeGasperi; Dmitry A. Streletskiy; Sean Quegan; Hannah K. Huelsing; Skie Tobin; Jan L. Lieser; Paul W. Stackhouse; Jeanette D. Wild; Craig S. Long; David Burgess; Vitali Fioletov; Jaqueline M. Spence; C. Jiménez; Robert A. Weller; L. Randriamarolaza; Andrea M. Ramos; Robert S. Fausto; Irina Petropavlovskikh; Martin Schmid; Sunny Sun-Mack; Mark Weber; Adrian R. Trotman; Viva Banzon; Michelle L. Santee; Jacqueline A. Richter-Menge; Juan José Nieto; David I. Berry; Kyle Hilburn; Cesar Azorin-Molina; Angela Benedetti; Christopher L. Sabine; Mesut Demircan; Kristin Gilbert; José Luis Stella; Shih-Yu Wang; Uma S. Bhatt; Vernie Marcellin; David A. Siegel; Sharon Stammerjohn; M. Crotwell; Susan E. Strahan; F. Di Giuseppe; Diego G. Miralles; Eric F. Wood; Dale F. Hurst; Viju O. John; Hugh W. Ducklow; Stephen A. Montzka; Robert F. Adler; Kit M. Kovacs; Eric S. Blake; Sarah E. Perkins-Kirkpatrick; Mark A. Lander; Hanne H. Christiansen; W. Paul Menzel; Kenneth Kerr; Michael J. Foster; Alexander Gruber; I-I Lin; Robert Whitewood; Kaisa Lakkala; Yan Xue; Adrian Simmons; Molly O. Baringer; Michael C. Pitts; M. U. Bardin; Masayoshi Ishii; Sergei Marchenko; Xiangze Jin; Thomas Mistelbauer; John A. Knaff; Martin T. Dokulil; Muyin Wang; Rick Lumpkin; Fatou Sima; Lucien Froidevaux; Alexander Kholodov; Zhe Feng; Doug Degenstein; Shinya Kobayashi; Mark Parrington; George J. Huffman; R. Sorbonne Gomez; Wayne R. Meier; Bryan J. Johnson; David Phillips; Elvira de Eyto; Abdolhassan Kazemi; M. Fossheim; Shohei Watanabe; Fatemeh Rahimzadeh; Jeremy T. Mathis; Richard A. Feely; Gustavo Goni; Christopher S. Meinen; Mark McCarthy; Jake Crouch; Matthew F. McCabe; Amal Sayouri; Larry Di Girolamo; Juan Quintana; K. Hansen; Patrick Minnis; Ricardo A. Locarnini; Shad O'Neel; Chunzai Wang; Natalya Kramarova; Nikolai I. Shiklomanov; Christopher W. Landsea; Guillaume Jumaux; Andrew Lorrey; Christian Lydersen; J. A. Ijampy; J. V. Revadekar; Deborah J. Misch; Sara W. Veasey; Piet Verburg; Derek S. Arndt; Reynaldo Pascual-Ramírez; José A. Marengo; Eric Leuliette; J. G. Cogley; Annie C. Joseph; G. V. Malkova; Sebastiaan Swart; Philip Jones; Andries Kruger; Petra R. Pearce; Nicolaus G. Adams; Kate M. Willett; James S. Famiglietti; Shenfu Dong; Lawrence Mudryk; Antje Inness; Colin Morice; Linda May; Andreas Becker; Jessica Blunden; R. Steven Nerem; Dmitry Drozdov; Junhong Wang; Sebastian Gerland; Seong-Joong Kim; R. S. W. van de Wal; Peiqun Zhang; Boyin Huang; Lucie A. Vincent; James A. Rusak; Raul Primicerio; M. Elkharrim; S. E. Tank; Paul A. Newman; C. J. P. P. Smeets; Christopher J. Merchant; G. Zhao; Benjamin D. Hamlington; Didier Monselesan; Owen R. Cooper; Catherine Ganter; Olivier Boucher; Caio A. S. Coelho; Michael G. Bosilovich; Pedro M. S. Monteiro; Sunke Schmidtko; Katja Trachte; Brian D. Bill; Andrew M. Paterson; Melisa Menendez; Anne C. Wilber; José L. Rodríguez Solís; Nicolas Metzl; Janne Hakkarainen; Mark Tschudi; Juan Arévalo; Isabella Velicogna; John Wahr; John J. Marra; Robert Dunn; Philip R. Thompson; Xavier Fettweis; Diego Loyola;Abstract Editor’s note: For easy download the posted pdf of the State of the Climate for 2017 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.
CORE arrow_drop_down Utrecht University RepositoryPart of book or chapter of book . 2017Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2016Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2013Data sources: Utrecht University RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerBulletin of the American Meteorological SocietyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2017Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalBulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalKing Abdullah University of Science and Technology: KAUST RepositoryReport . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/2017bamsstateoftheclimate.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 162 citations 162 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Utrecht University RepositoryPart of book or chapter of book . 2017Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2016Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2013Data sources: Utrecht University RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerBulletin of the American Meteorological SocietyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2017Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalBulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalKing Abdullah University of Science and Technology: KAUST RepositoryReport . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/2017bamsstateoftheclimate.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Norway, Switzerland, SwitzerlandPublisher:IOP Publishing Funded by:MIUR | Risposte di ecosistemi se...MIUR| Risposte di ecosistemi sensibili alpini ai cambiamenti climatici (RESACC)B Etzelmüller; M Guglielmin; C Hauck; C Hilbich; M Hoelzle; K Isaksen; J Noetzli; M Oliva; M Ramos;handle: 10852/81196
This paper reviews and analyses the past 20 years of change and variability of European mountain permafrost in response to climate change based on time series of ground temperatures along a south–north transect of deep boreholes from Sierra Nevada in Spain (37°N) to Svalbard (78°N), established between 1998 and 2000 during the EU-funded PACE (Permafrost and Climate in Europe) project. In Sierra Nevada (at the Veleta Peak), no permafrost is encountered. All other boreholes are drilled in permafrost. Results show that permafrost warmed at all sites down to depths of 50 m or more. The warming at a 20 m depth varied between 1.5 °C on Svalbard and 0.4 °C in the Alps. Warming rates tend to be less pronounced in the warm permafrost boreholes, which is partly due to latent heat effects at more ice-rich sites with ground temperatures close to 0 °C. At most sites, the air temperature at 2 m height showed a smaller increase than the near-ground-surface temperature, leading to an increase of surface offsets (SOs). The active layer thickness (ALT) increased at all sites between c. 10% and 200% with respect to the start of the study period, with the largest changes observed in the European Alps. Multi-temporal electrical resistivity tomography (ERT) carried out at six sites showed a decrease in electrical resistivity, independently supporting our conclusion of ground ice degradation and higher unfrozen water content.
Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81196Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abae9d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81196Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abae9d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 01 Mar 2024 Italy, France, Switzerland, France, Italy, France, France, FrancePublisher:IOP Publishing Authors: Kellerer-Pirklbauer, Andreas; Bodin, Xavier; Delaloye, Reynald; Lambiel, Christophe; +19 AuthorsKellerer-Pirklbauer, Andreas; Bodin, Xavier; Delaloye, Reynald; Lambiel, Christophe; Gärtner-Roer, Isabelle; Bonnefoy-Demongeot, Mylène; Carturan, Luca; Damm, Bodo; Eulenstein, Julia; Fischer, Andrea; Hartl, Lea; Ikeda, Atsushi; Kaufmann, Viktor; Krainer, Karl; Matsuoka, Norikazu; Morra Di Cella, Umberto; Noetzli, Jeannette; Seppi, Roberto; Scapozza, Cristian; Schoeneich, Philippe; Stocker-Waldhuber, Martin; Thibert, Emmanuel; Zumiani, Matteo;handle: 11577/3530422 , 11571/1492636
Abstract Cryospheric long-term timeseries get increasingly important. To document climate-related effects on long-term viscous creep of ice-rich mountain permafrost, we investigated timeseries (1995–2022) of geodetically-derived Rock Glacier Velocity (RGV), i.e. spatially averaged interannual velocity timeseries related to a rock glacier (RG) unit or part of it. We considered 50 RGV from 43 RGs spatially covering the entire European Alps. Eight of these RGs are destabilized. Results show that RGV are distinctly variable ranging from 0.04 to 6.23 m a−1. Acceleration and deceleration at many RGs are highly correlated with similar behaviour over 2.5 decades for 15 timeseries. In addition to a general long-term, warming-induced trend of increasing velocities, three main phases of distinct acceleration (2000–2004, 2008–2015, 2018–2020), interrupted by deceleration or steady state conditions, were identified. The evolution is attributed to climate forcing and underlines the significance of RGV as a product of the Essential Climate Variable (ECV) permafrost. We show that RGV data are valuable as climate indicators, but such data should always be assessed critically considering changing local factors (geomorphic, thermal, hydrologic) and monitoring approaches. To extract a climate signal, larger RGV ensembles should be analysed. Criteria for selecting new RGV-sites are proposed.
Archivio istituziona... arrow_drop_down Serveur académique lausannoisArticle . 2024License: CC BYData sources: Serveur académique lausannoisZurich Open Repository and ArchiveArticle . 2024License: CC BYData sources: Zurich Open Repository and ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad25a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Serveur académique lausannoisArticle . 2024License: CC BYData sources: Serveur académique lausannoisZurich Open Repository and ArchiveArticle . 2024License: CC BYData sources: Zurich Open Repository and ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad25a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 SwitzerlandPublisher:OpenEdition Authors: Haeberli, Wilfried; Noetzli, Jeannette; Mühll, Daniel Vonder;handle: 20.500.13089/k4sz
Climate-related permafrost is widespread in cold mountains and heavily affects slope stability. As a subsurface phenomenon, however, it is often still absent in the perception of key partners concerning the discussion and anticipation of long-term impacts on high mountain regions from continued global warming. Outreach and knowledge transfer, therefore, play a key role. Long-term observations of permafrost temperatures measured in boreholes can be used to convey answers and key messages concerning thermal conditions in a spatio-temporal context, related environmental conditions, affected depth ranges, and impacts of warming and degradation on slope stability.The 35-year Murtèl-Corvatsch time series of borehole temperatures from which data is available since 1987, is used here as an example. Today, mountain permafrost is well documented and understood regarding involved processes, as well as its occurrence in space and evolution in time. Thermal anomalies caused by global warming already now reach about 100 meters depth, thereby reducing the ground ice content, causing accelerated creep of ice-rich frozen talus/debris (so-called “rock glaciers”) and reducing the stability of large frozen bedrock masses at steep icy faces and peaks.
Revue de Géographie ... arrow_drop_down Revue de Géographie AlpineArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4000/rga.11950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Revue de Géographie ... arrow_drop_down Revue de Géographie AlpineArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4000/rga.11950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal , Other literature type , Report 2017 France, Saudi Arabia, Italy, United Kingdom, United Kingdom, Netherlands, United Kingdom, Saudi Arabia, United Kingdom, ItalyPublisher:American Meteorological Society Funded by:EC | WAPITI, EC | EUSTACEEC| WAPITI ,EC| EUSTACELinda M. Keller; Martin Stengel; Sergio R. Signorini; Gabriel J. Wolken; Stephen C. Maberly; Don P. Chambers; Lincoln M. Alves; Claudia Schmid; D. van As; Andrew G. Fountain; Michael Riffler; Markus G. Donat; A. Rost Parsons; Michael P. Meredith; E. Hyung Park; Eric J. Alfaro; Jeannette Noetzli; Luis Alfonso López Álvarez; Martin Sharp; Curtis L. DeGasperi; Dmitry A. Streletskiy; Sean Quegan; Hannah K. Huelsing; Skie Tobin; Jan L. Lieser; Paul W. Stackhouse; Jeanette D. Wild; Craig S. Long; David Burgess; Vitali Fioletov; Jaqueline M. Spence; C. Jiménez; Robert A. Weller; L. Randriamarolaza; Andrea M. Ramos; Robert S. Fausto; Irina Petropavlovskikh; Martin Schmid; Sunny Sun-Mack; Mark Weber; Adrian R. Trotman; Viva Banzon; Michelle L. Santee; Jacqueline A. Richter-Menge; Juan José Nieto; David I. Berry; Kyle Hilburn; Cesar Azorin-Molina; Angela Benedetti; Christopher L. Sabine; Mesut Demircan; Kristin Gilbert; José Luis Stella; Shih-Yu Wang; Uma S. Bhatt; Vernie Marcellin; David A. Siegel; Sharon Stammerjohn; M. Crotwell; Susan E. Strahan; F. Di Giuseppe; Diego G. Miralles; Eric F. Wood; Dale F. Hurst; Viju O. John; Hugh W. Ducklow; Stephen A. Montzka; Robert F. Adler; Kit M. Kovacs; Eric S. Blake; Sarah E. Perkins-Kirkpatrick; Mark A. Lander; Hanne H. Christiansen; W. Paul Menzel; Kenneth Kerr; Michael J. Foster; Alexander Gruber; I-I Lin; Robert Whitewood; Kaisa Lakkala; Yan Xue; Adrian Simmons; Molly O. Baringer; Michael C. Pitts; M. U. Bardin; Masayoshi Ishii; Sergei Marchenko; Xiangze Jin; Thomas Mistelbauer; John A. Knaff; Martin T. Dokulil; Muyin Wang; Rick Lumpkin; Fatou Sima; Lucien Froidevaux; Alexander Kholodov; Zhe Feng; Doug Degenstein; Shinya Kobayashi; Mark Parrington; George J. Huffman; R. Sorbonne Gomez; Wayne R. Meier; Bryan J. Johnson; David Phillips; Elvira de Eyto; Abdolhassan Kazemi; M. Fossheim; Shohei Watanabe; Fatemeh Rahimzadeh; Jeremy T. Mathis; Richard A. Feely; Gustavo Goni; Christopher S. Meinen; Mark McCarthy; Jake Crouch; Matthew F. McCabe; Amal Sayouri; Larry Di Girolamo; Juan Quintana; K. Hansen; Patrick Minnis; Ricardo A. Locarnini; Shad O'Neel; Chunzai Wang; Natalya Kramarova; Nikolai I. Shiklomanov; Christopher W. Landsea; Guillaume Jumaux; Andrew Lorrey; Christian Lydersen; J. A. Ijampy; J. V. Revadekar; Deborah J. Misch; Sara W. Veasey; Piet Verburg; Derek S. Arndt; Reynaldo Pascual-Ramírez; José A. Marengo; Eric Leuliette; J. G. Cogley; Annie C. Joseph; G. V. Malkova; Sebastiaan Swart; Philip Jones; Andries Kruger; Petra R. Pearce; Nicolaus G. Adams; Kate M. Willett; James S. Famiglietti; Shenfu Dong; Lawrence Mudryk; Antje Inness; Colin Morice; Linda May; Andreas Becker; Jessica Blunden; R. Steven Nerem; Dmitry Drozdov; Junhong Wang; Sebastian Gerland; Seong-Joong Kim; R. S. W. van de Wal; Peiqun Zhang; Boyin Huang; Lucie A. Vincent; James A. Rusak; Raul Primicerio; M. Elkharrim; S. E. Tank; Paul A. Newman; C. J. P. P. Smeets; Christopher J. Merchant; G. Zhao; Benjamin D. Hamlington; Didier Monselesan; Owen R. Cooper; Catherine Ganter; Olivier Boucher; Caio A. S. Coelho; Michael G. Bosilovich; Pedro M. S. Monteiro; Sunke Schmidtko; Katja Trachte; Brian D. Bill; Andrew M. Paterson; Melisa Menendez; Anne C. Wilber; José L. Rodríguez Solís; Nicolas Metzl; Janne Hakkarainen; Mark Tschudi; Juan Arévalo; Isabella Velicogna; John Wahr; John J. Marra; Robert Dunn; Philip R. Thompson; Xavier Fettweis; Diego Loyola;Abstract Editor’s note: For easy download the posted pdf of the State of the Climate for 2017 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.
CORE arrow_drop_down Utrecht University RepositoryPart of book or chapter of book . 2017Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2016Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2013Data sources: Utrecht University RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerBulletin of the American Meteorological SocietyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2017Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalBulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalKing Abdullah University of Science and Technology: KAUST RepositoryReport . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/2017bamsstateoftheclimate.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 162 citations 162 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Utrecht University RepositoryPart of book or chapter of book . 2017Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2016Data sources: Utrecht University RepositoryUtrecht University RepositoryPart of book or chapter of book . 2013Data sources: Utrecht University RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerBulletin of the American Meteorological SocietyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2017Bulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalBulletin of the American Meteorological SocietyArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalKing Abdullah University of Science and Technology: KAUST RepositoryReport . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/2017bamsstateoftheclimate.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Norway, Switzerland, SwitzerlandPublisher:IOP Publishing Funded by:MIUR | Risposte di ecosistemi se...MIUR| Risposte di ecosistemi sensibili alpini ai cambiamenti climatici (RESACC)B Etzelmüller; M Guglielmin; C Hauck; C Hilbich; M Hoelzle; K Isaksen; J Noetzli; M Oliva; M Ramos;handle: 10852/81196
This paper reviews and analyses the past 20 years of change and variability of European mountain permafrost in response to climate change based on time series of ground temperatures along a south–north transect of deep boreholes from Sierra Nevada in Spain (37°N) to Svalbard (78°N), established between 1998 and 2000 during the EU-funded PACE (Permafrost and Climate in Europe) project. In Sierra Nevada (at the Veleta Peak), no permafrost is encountered. All other boreholes are drilled in permafrost. Results show that permafrost warmed at all sites down to depths of 50 m or more. The warming at a 20 m depth varied between 1.5 °C on Svalbard and 0.4 °C in the Alps. Warming rates tend to be less pronounced in the warm permafrost boreholes, which is partly due to latent heat effects at more ice-rich sites with ground temperatures close to 0 °C. At most sites, the air temperature at 2 m height showed a smaller increase than the near-ground-surface temperature, leading to an increase of surface offsets (SOs). The active layer thickness (ALT) increased at all sites between c. 10% and 200% with respect to the start of the study period, with the largest changes observed in the European Alps. Multi-temporal electrical resistivity tomography (ERT) carried out at six sites showed a decrease in electrical resistivity, independently supporting our conclusion of ground ice degradation and higher unfrozen water content.
Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81196Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abae9d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81196Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abae9d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu