- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013 Australia, India, Germany, India, United KingdomPublisher:Wiley I-F Sun; Yue Bin; Geoffrey G. Parker; Sylvester Tan; Zhanqing Hao; Renato Valencia; Nimal Gunatilleke; Christine Fletcher; Zuoqiang Yuan; Hugo Romero-Saltos; Ruwan Punchi-Manage; George B. Chuyong; Sarayudh Bunyavejchewin; Dunmei Lin; Alvaro Duque; Min Cao; Wanhui Ye; James A. Lutz; Sean C. Thomas; Jyh-Min Chiang; Michael D. Morecroft; Sheng-Hsin Su; Duncan W. Thomas; Jess K. Zimmerman; Kassim Abdul Rahman; Haifeng Liu; Haifeng Liu; Salim Mohd Razman; Sandeep Pulla; Norman A. Bourg; Sean M. McMahon; Ryan A. Chisholm; Yadvinder Malhi; Jill Thompson; H. S. Dattaraja; Stephen P. Hubbell; Stephen P. Hubbell; Weiguo Sang; Weiguo Sang; Rhett D. Harrison; Jon Schurman; Joshua S. Brinks; Andrew J. Larson; Alexandre Adalardo de Oliveira; Dairon Cárdenas; Nathalie Butt; Nathalie Butt; Stuart J. Davies; Christopher J. Nytch; Savitri Gunatilleke; Richard Condit; Hong-Lin Cao; Madhava Meegaskumbura; William J. McShea; Somboon Kiratiprayoon; Chang-Fu Hsieh; Raman Sukumar; Stephanie A. Bohlman; Sandra L. Yap; Helene C. Muller-Landau; Hebbalalu S. Suresh; Daniel P. Bebber; Amy Wolf; David Kenfack; Juyu Lian; Keping Ma; Li-Wan Chang; Akira Itoh; Robert W. Howe;handle: 10088/21773
Summary The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long‐standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity. Here, we conduct an analysis of relationships between tree species richness, biomass and productivity in 25 forest plots of area 8–50 ha from across the world. The data were collected using standardized protocols, obviating the need to correct for methodological differences that plague many studies on this topic. We found that at very small spatial grains (0.04 ha) species richness was generally positively related to productivity and biomass within plots, with a doubling of species richness corresponding to an average 48% increase in productivity and 53% increase in biomass. At larger spatial grains (0.25 ha, 1 ha), results were mixed, with negative relationships becoming more common. The results were qualitatively similar but much weaker when we controlled for stem density: at the 0.04 ha spatial grain, a doubling of species richness corresponded to a 5% increase in productivity and 7% increase in biomass. Productivity and biomass were themselves almost always positively related at all spatial grains. Synthesis. This is the first cross‐site study of the effect of tree species richness on forest biomass and productivity that systematically varies spatial grain within a controlled methodology. The scale‐dependent results are consistent with theoretical models in which sampling effects and niche complementarity dominate at small scales, while environmental gradients drive patterns at large scales. Our study shows that the relationship of tree species richness with biomass and productivity changes qualitatively when moving from scales typical of forest surveys (0.04 ha) to slightly larger scales (0.25 and 1 ha). This needs to be recognized in forest conservation policy and management.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Journal of EcologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIndian Institute of Science, Bangalore: ePrints@IIscArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 289 citations 289 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Journal of EcologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIndian Institute of Science, Bangalore: ePrints@IIscArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Nov 2018 Belgium, France, Brazil, France, France, Australia, Germany, Netherlands, Netherlands, Brazil, Australia, Australia, United Kingdom, France, France, France, Switzerland, United Kingdom, France, Australia, Italy, United KingdomPublisher:Wiley Emmanuel H. Martin; Verginia Wortel; Thomas E. Lovejoy; Narayanan Ayyappan; Narayanan Ayyappan; Roel J. W. Brienen; Georges Chuyong; Nigel C. A. Pitman; Nina Farwig; John Terborgh; John Terborgh; Ana Andrade; Narcisse Guy Kamdem; Rodolfo Vasque; Hans Beeckman; Paulus Matius; John R. Poulsen; Stephen P. Hubbell; Stephen P. Hubbell; Susan G. Laurance; Iêda Leão do Amaral; Juliana Stropp; Jérôme Chave; Simon L. Lewis; James R. Kellner; Thomas Duncan; Oliver L. Phillips; B.R. Ramesh; Germaine Alexander Parada Gutierrez; Martin J. P. Sullivan; Papi Puspa Warsudi; Connie J. Clark; Donatien Zebaze; Wannes Hubau; Hans Verbeeck; Eurídice N. Honorio Coronado; Tinde van Andel; Takeshi Toma; Renato Valencia; Luis Valenzuela; Andrew R. Marshall; Andrew R. Marshall; Hugo Romero Saltos; Samir Gonçalves Rolim; Ben Swanepoel; Jon Lloyd; Jon Lloyd; Jorcely Barroso; Laurent Descroix; Sebastian K. Herzog; Patricia Alvarez-Loyayza; Robin L. Chazdon; Marcos Silveira; Guido Pardo; David Harris; Olaf Bánki; Thalès de Haulleville; Thalès de Haulleville; Maxime Réjou-Méchain; Wilson Roberto Spironello; Luzmila Arroyo; Jean-Louis Doucet; Leandro Valle Ferreira; James Grogan; Ahimsa Campos-Arceiz; Hans ter Steege; Hans ter Steege; Pierre Ploton; David Kenfack; Koen Hufkens; Bonaventure Sonké; Priya Davidar; Adeline Fayolle; Pandi Vivek; Antonio Ferraz; Gauthier Ligot; David A. Neill; Vincent Droissart; Katrin Boehning-Gaese; Johanna Hurtado; Jan Bogaert; Elizabeth Kearsley; Krisna Gajapersad; Christine Fletcher; Nicolas Barbier; Denise Sasaki; Ervan Rutishauser; Beatriz Schwantes Marimon; Francis Q. Brearley; Javier Silva Espejo; Santiago Espinosa; Jean François Gillet; Benoît Cassart; Benoît Cassart; Christelle Gonmadje; Jean-François Bastin; Quentin Ponette; Charles De Cannière; Jean Claude Razafimahaimodison; Arafat S. Mtui; Luiz Marcelo Brum Rossi; Philippe Saner; Moses Libalah; Mireille Breuer-Ndoundou Hockemba; Michael Kessler; Bruno Hérault; Jason Vleminckx; Alejandro Araujo-Murakami; Aurélie Dourdain; Yves Laumonier; Victoria Meyer; Nicolas Labrière; Richard Condit; Ted R. Feldpausch; Robert Bitariho; James Singh; Marc P. E. Parren; Vincent A. Vos; Mark Schulze; David B. Clark; Yadvinder Malhi; Ben Hur Marimon Junior; J. Daniel Soto; Narayanaswamy Parthasarathy; Francesco Rovero; Casimero Mendoza Bautista; Fernando Cornejo Valverde; Ferry Slik; Abel Monteagudo-Mendoza; Roderick Zagt; Hilandia Brandão; Jürgen Homeier; Plinio Sist; Cintia Rodrigues de Souza; Celso Paulo de Azevedo; Pascal Boeckx; William F. Laurance; Sassan Saatchi; Nicolas Texier; Raphaël Pélissier; Albert Angbonga-Basia; Fabien Wagner; José Luís Camargo;AbstractAimLarge tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot‐level forest structure properties and biomass from only the largest trees.LocationPan‐tropical.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsUsing a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees.ResultsMeasuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate‐diameter classes relative to other continents.Main conclusionsOur approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 United States, United Kingdom, Brazil, United Kingdom, Netherlands, Australia, Australia, Brazil, ItalyPublisher:Wiley Cisquet Hector Roy; Patrick A. Jansen; Patrick A. Jansen; Hugo Romero-Saltos; Patricia Alvarez-Loayza; Marcela Guimarães Moreira Lima; Jorge A. Ahumada; Renato Valencia; Sandy J. Andelman; David Kenfack; Jean Claude Razafimahaimodison; Douglas Sheil; Kailin Kroetz; Francesco Rovero; Lydia Beaudrot; Iêda Leão do Amaral; Thomas Breuer; Andrew R. Marshall; Emanuel H. Martin; Timothy G. O'Brien; Wilson Roberto Spironello; Alex Zvoleff; Carlos A. Silva; Mireille Ndoundou-Hockemba; Christine Fletcher;doi: 10.1890/15-0935 , 10.1890/15-0935.1
pmid: 27509751
handle: 2158/1152041 , 2027.42/137258 , 10088/27644
doi: 10.1890/15-0935 , 10.1890/15-0935.1
pmid: 27509751
handle: 2158/1152041 , 2027.42/137258 , 10088/27644
AbstractThe conservation of tropical forest carbon stocks offers the opportunity to curb climate change by reducing greenhouse gas emissions from deforestation and simultaneously conserve biodiversity. However, there has been considerable debate about the extent to which carbon stock conservation will provide benefits to biodiversity in part because whether forests that contain high carbon density in their aboveground biomass also contain high animal diversity is unknown. Here, we empirically examined medium to large bodied ground‐dwelling mammal and bird (hereafter “wildlife”) diversity and carbon stock levels within the tropics using camera trap and vegetation data from a pantropical network of sites. Specifically, we tested whether tropical forests that stored more carbon contained higher wildlife species richness, taxonomic diversity, and trait diversity. We found that carbon stocks were not a significant predictor for any of these three measures of diversity, which suggests that benefits for wildlife diversity will not be maximized unless wildlife diversity is explicitly taken into account; prioritizing carbon stocks alone will not necessarily meet biodiversity conservation goals. We recommend conservation planning that considers both objectives because there is the potential for more wildlife diversity and carbon stock conservation to be achieved for the same total budget if both objectives are pursued in tandem rather than independently. Tropical forests with low elevation variability and low tree density supported significantly higher wildlife diversity. These tropical forest characteristics may provide more affordable proxies of wildlife diversity for future multi‐objective conservation planning when fine scale data on wildlife are lacking.
CORE arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Ecological ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)University of Michigan: Deep BlueArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Ecological ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)University of Michigan: Deep BlueArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 Australia, India, Germany, India, United KingdomPublisher:Wiley I-F Sun; Yue Bin; Geoffrey G. Parker; Sylvester Tan; Zhanqing Hao; Renato Valencia; Nimal Gunatilleke; Christine Fletcher; Zuoqiang Yuan; Hugo Romero-Saltos; Ruwan Punchi-Manage; George B. Chuyong; Sarayudh Bunyavejchewin; Dunmei Lin; Alvaro Duque; Min Cao; Wanhui Ye; James A. Lutz; Sean C. Thomas; Jyh-Min Chiang; Michael D. Morecroft; Sheng-Hsin Su; Duncan W. Thomas; Jess K. Zimmerman; Kassim Abdul Rahman; Haifeng Liu; Haifeng Liu; Salim Mohd Razman; Sandeep Pulla; Norman A. Bourg; Sean M. McMahon; Ryan A. Chisholm; Yadvinder Malhi; Jill Thompson; H. S. Dattaraja; Stephen P. Hubbell; Stephen P. Hubbell; Weiguo Sang; Weiguo Sang; Rhett D. Harrison; Jon Schurman; Joshua S. Brinks; Andrew J. Larson; Alexandre Adalardo de Oliveira; Dairon Cárdenas; Nathalie Butt; Nathalie Butt; Stuart J. Davies; Christopher J. Nytch; Savitri Gunatilleke; Richard Condit; Hong-Lin Cao; Madhava Meegaskumbura; William J. McShea; Somboon Kiratiprayoon; Chang-Fu Hsieh; Raman Sukumar; Stephanie A. Bohlman; Sandra L. Yap; Helene C. Muller-Landau; Hebbalalu S. Suresh; Daniel P. Bebber; Amy Wolf; David Kenfack; Juyu Lian; Keping Ma; Li-Wan Chang; Akira Itoh; Robert W. Howe;handle: 10088/21773
Summary The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long‐standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity. Here, we conduct an analysis of relationships between tree species richness, biomass and productivity in 25 forest plots of area 8–50 ha from across the world. The data were collected using standardized protocols, obviating the need to correct for methodological differences that plague many studies on this topic. We found that at very small spatial grains (0.04 ha) species richness was generally positively related to productivity and biomass within plots, with a doubling of species richness corresponding to an average 48% increase in productivity and 53% increase in biomass. At larger spatial grains (0.25 ha, 1 ha), results were mixed, with negative relationships becoming more common. The results were qualitatively similar but much weaker when we controlled for stem density: at the 0.04 ha spatial grain, a doubling of species richness corresponded to a 5% increase in productivity and 7% increase in biomass. Productivity and biomass were themselves almost always positively related at all spatial grains. Synthesis. This is the first cross‐site study of the effect of tree species richness on forest biomass and productivity that systematically varies spatial grain within a controlled methodology. The scale‐dependent results are consistent with theoretical models in which sampling effects and niche complementarity dominate at small scales, while environmental gradients drive patterns at large scales. Our study shows that the relationship of tree species richness with biomass and productivity changes qualitatively when moving from scales typical of forest surveys (0.04 ha) to slightly larger scales (0.25 and 1 ha). This needs to be recognized in forest conservation policy and management.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Journal of EcologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIndian Institute of Science, Bangalore: ePrints@IIscArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 289 citations 289 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Journal of EcologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIndian Institute of Science, Bangalore: ePrints@IIscArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Nov 2018 Belgium, France, Brazil, France, France, Australia, Germany, Netherlands, Netherlands, Brazil, Australia, Australia, United Kingdom, France, France, France, Switzerland, United Kingdom, France, Australia, Italy, United KingdomPublisher:Wiley Emmanuel H. Martin; Verginia Wortel; Thomas E. Lovejoy; Narayanan Ayyappan; Narayanan Ayyappan; Roel J. W. Brienen; Georges Chuyong; Nigel C. A. Pitman; Nina Farwig; John Terborgh; John Terborgh; Ana Andrade; Narcisse Guy Kamdem; Rodolfo Vasque; Hans Beeckman; Paulus Matius; John R. Poulsen; Stephen P. Hubbell; Stephen P. Hubbell; Susan G. Laurance; Iêda Leão do Amaral; Juliana Stropp; Jérôme Chave; Simon L. Lewis; James R. Kellner; Thomas Duncan; Oliver L. Phillips; B.R. Ramesh; Germaine Alexander Parada Gutierrez; Martin J. P. Sullivan; Papi Puspa Warsudi; Connie J. Clark; Donatien Zebaze; Wannes Hubau; Hans Verbeeck; Eurídice N. Honorio Coronado; Tinde van Andel; Takeshi Toma; Renato Valencia; Luis Valenzuela; Andrew R. Marshall; Andrew R. Marshall; Hugo Romero Saltos; Samir Gonçalves Rolim; Ben Swanepoel; Jon Lloyd; Jon Lloyd; Jorcely Barroso; Laurent Descroix; Sebastian K. Herzog; Patricia Alvarez-Loyayza; Robin L. Chazdon; Marcos Silveira; Guido Pardo; David Harris; Olaf Bánki; Thalès de Haulleville; Thalès de Haulleville; Maxime Réjou-Méchain; Wilson Roberto Spironello; Luzmila Arroyo; Jean-Louis Doucet; Leandro Valle Ferreira; James Grogan; Ahimsa Campos-Arceiz; Hans ter Steege; Hans ter Steege; Pierre Ploton; David Kenfack; Koen Hufkens; Bonaventure Sonké; Priya Davidar; Adeline Fayolle; Pandi Vivek; Antonio Ferraz; Gauthier Ligot; David A. Neill; Vincent Droissart; Katrin Boehning-Gaese; Johanna Hurtado; Jan Bogaert; Elizabeth Kearsley; Krisna Gajapersad; Christine Fletcher; Nicolas Barbier; Denise Sasaki; Ervan Rutishauser; Beatriz Schwantes Marimon; Francis Q. Brearley; Javier Silva Espejo; Santiago Espinosa; Jean François Gillet; Benoît Cassart; Benoît Cassart; Christelle Gonmadje; Jean-François Bastin; Quentin Ponette; Charles De Cannière; Jean Claude Razafimahaimodison; Arafat S. Mtui; Luiz Marcelo Brum Rossi; Philippe Saner; Moses Libalah; Mireille Breuer-Ndoundou Hockemba; Michael Kessler; Bruno Hérault; Jason Vleminckx; Alejandro Araujo-Murakami; Aurélie Dourdain; Yves Laumonier; Victoria Meyer; Nicolas Labrière; Richard Condit; Ted R. Feldpausch; Robert Bitariho; James Singh; Marc P. E. Parren; Vincent A. Vos; Mark Schulze; David B. Clark; Yadvinder Malhi; Ben Hur Marimon Junior; J. Daniel Soto; Narayanaswamy Parthasarathy; Francesco Rovero; Casimero Mendoza Bautista; Fernando Cornejo Valverde; Ferry Slik; Abel Monteagudo-Mendoza; Roderick Zagt; Hilandia Brandão; Jürgen Homeier; Plinio Sist; Cintia Rodrigues de Souza; Celso Paulo de Azevedo; Pascal Boeckx; William F. Laurance; Sassan Saatchi; Nicolas Texier; Raphaël Pélissier; Albert Angbonga-Basia; Fabien Wagner; José Luís Camargo;AbstractAimLarge tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot‐level forest structure properties and biomass from only the largest trees.LocationPan‐tropical.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsUsing a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees.ResultsMeasuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate‐diameter classes relative to other continents.Main conclusionsOur approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 United States, United Kingdom, Brazil, United Kingdom, Netherlands, Australia, Australia, Brazil, ItalyPublisher:Wiley Cisquet Hector Roy; Patrick A. Jansen; Patrick A. Jansen; Hugo Romero-Saltos; Patricia Alvarez-Loayza; Marcela Guimarães Moreira Lima; Jorge A. Ahumada; Renato Valencia; Sandy J. Andelman; David Kenfack; Jean Claude Razafimahaimodison; Douglas Sheil; Kailin Kroetz; Francesco Rovero; Lydia Beaudrot; Iêda Leão do Amaral; Thomas Breuer; Andrew R. Marshall; Emanuel H. Martin; Timothy G. O'Brien; Wilson Roberto Spironello; Alex Zvoleff; Carlos A. Silva; Mireille Ndoundou-Hockemba; Christine Fletcher;doi: 10.1890/15-0935 , 10.1890/15-0935.1
pmid: 27509751
handle: 2158/1152041 , 2027.42/137258 , 10088/27644
doi: 10.1890/15-0935 , 10.1890/15-0935.1
pmid: 27509751
handle: 2158/1152041 , 2027.42/137258 , 10088/27644
AbstractThe conservation of tropical forest carbon stocks offers the opportunity to curb climate change by reducing greenhouse gas emissions from deforestation and simultaneously conserve biodiversity. However, there has been considerable debate about the extent to which carbon stock conservation will provide benefits to biodiversity in part because whether forests that contain high carbon density in their aboveground biomass also contain high animal diversity is unknown. Here, we empirically examined medium to large bodied ground‐dwelling mammal and bird (hereafter “wildlife”) diversity and carbon stock levels within the tropics using camera trap and vegetation data from a pantropical network of sites. Specifically, we tested whether tropical forests that stored more carbon contained higher wildlife species richness, taxonomic diversity, and trait diversity. We found that carbon stocks were not a significant predictor for any of these three measures of diversity, which suggests that benefits for wildlife diversity will not be maximized unless wildlife diversity is explicitly taken into account; prioritizing carbon stocks alone will not necessarily meet biodiversity conservation goals. We recommend conservation planning that considers both objectives because there is the potential for more wildlife diversity and carbon stock conservation to be achieved for the same total budget if both objectives are pursued in tandem rather than independently. Tropical forests with low elevation variability and low tree density supported significantly higher wildlife diversity. These tropical forest characteristics may provide more affordable proxies of wildlife diversity for future multi‐objective conservation planning when fine scale data on wildlife are lacking.
CORE arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Ecological ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)University of Michigan: Deep BlueArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Ecological ApplicationsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFlore (Florence Research Repository)Article . 2016Data sources: Flore (Florence Research Repository)University of Michigan: Deep BlueArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0935&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu