- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Funded by:EC | METLAKE, EC | VISUALMEDIA, EC | IMBALANCE-P +4 projectsEC| METLAKE ,EC| VISUALMEDIA ,EC| IMBALANCE-P ,EC| VERIFY ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPA ,EC| CHEAna Maria Roxana Petrescu; Chunjing Qiu; Philippe Ciais; Rona L. Thompson; Philippe Peylin; Matthew J. McGrath; Efisio Solazzo; Greet Janssens‐Maenhout; Francesco N. Tubiello; P. Bergamaschi; D. Brunner; Glen P. Peters; L. Höglund-Isaksson; Pierre Regnier; Ronny Lauerwald; David Bastviken; Aki Tsuruta; Wilfried Winiwarter; Prabir K. Patra; Matthias Kuhnert; Gabriel D. Orregioni; Monica Crippa; Marielle Saunois; Lucia Perugini; Tiina Markkanen; Tuula Aalto; Christine Groot Zwaaftink; Yuanzhi Yao; Chris Wilson; Giulia Conchedda; Dirk Günther; Adrian Leip; Pete Smith; Jean‐Matthieu Haussaire; Antti Leppänen; Alistair J. Manning; Joe McNorton; Patrick Brockmann; A.J. Dolman;Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate recent emission inventory data, ecosystem process-based model results, and inverse modelling estimates over the period 1990–2018. BU and TD products are compared with European National GHG Inventories (NGHGI) reported to the UN climate convention secretariat UNFCCC in 2019. For uncertainties, we used for NGHGI the standard deviation obtained by varying parameters of inventory calculations, reported by the Member States following the IPCC guidelines recommendations. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model specific uncertainties when reported. In comparing NGHGI with other approaches, a key source of bias is the activities included, e.g. anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. TD total inversions estimates give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions and geological sources together account for the gap between NGHGI and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1 respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1 respectively, compared to 0.9 Tg N2O yr−1 from the BU data. The TU and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at EU+UK scale and at national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4288969 (Petrescu et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Norway, Norway, France, Netherlands, Germany, Norway, France, Italy, France, FrancePublisher:American Geophysical Union (AGU) Funded by:EC | RESONATE, EC | VERIFY, EC | FORWARDS +9 projectsEC| RESONATE ,EC| VERIFY ,EC| FORWARDS ,EC| EYE-CLIMA ,EC| CoCO2 ,UKRI| The UK Earth system modelling project ,EC| eco2adapt ,EC| LAMASUS ,EC| SUPERB ,EC| AVENGERS ,EC| ForExD ,UKRI| NCEO LTS-SRonny Lauerwald; Ana Bastos; Matthew J. McGrath; Ana Maria Roxana Petrescu; François Ritter; Robbie M. Andrew; Antoine Berchet; Grégoire Broquet; Dominik Brunner; Frédéric Chevallier; Alessandro Cescatti; Sara Filipek; Audrey Fortems‐Cheiney; Giovanni Forzieri; Pierre Friedlingstein; Richard Fuchs; Christoph Gerbig; Sander Houweling; Piyu Ke; Bas J. W. Lerink; Wanjing Li; Wei Li; Xiaojun Li; Ingrid Luijkx; Guillaume Monteil; Saqr Munassar; Gert‐Jan Nabuurs; Prabir K. Patra; Philippe Peylin; Julia Pongratz; Pierre Regnier; Marielle Saunois; Mart‐Jan Schelhaas; Marko Scholze; Stephen Sitch; Rona L. Thompson; Hanqin Tian; Aki Tsuruta; Chris Wilson; Jean‐Pierre Wigneron; Karina Winkler; Yitong Yao; Sönke Zaehle; Philippe Ciais;handle: 1871.1/4c1d05d5-8ab0-45c1-a9ab-851e57b7e622 , 21.11116/0000-000F-B7E6-F , 21.11116/0000-000F-B7E7-E , 21.11116/0000-000F-B7E8-D , 21.11116/0000-000F-2E2D-D , 21.11116/0000-000F-B8AD-F , 21.11116/0000-000F-B8AE-E , 21.11116/0000-000F-B8AF-D , 21.11116/0000-000F-B8AB-1 , 11250/3150998 , 11250/3153775 , 2158/1405755
handle: 1871.1/4c1d05d5-8ab0-45c1-a9ab-851e57b7e622 , 21.11116/0000-000F-B7E6-F , 21.11116/0000-000F-B7E7-E , 21.11116/0000-000F-B7E8-D , 21.11116/0000-000F-2E2D-D , 21.11116/0000-000F-B8AD-F , 21.11116/0000-000F-B8AE-E , 21.11116/0000-000F-B8AF-D , 21.11116/0000-000F-B8AB-1 , 11250/3150998 , 11250/3153775 , 2158/1405755
AbstractIn the framework of the RECCAP2 initiative, we present the greenhouse gas (GHG) and carbon (C) budget of Europe. For the decade of the 2010s, we present a bottom‐up (BU) estimate of GHG net‐emissions of 3.9 Pg CO2‐eq. yr−1 (using a global warming potential on a 100 years horizon), which are largely dominated by fossil fuel emissions. In this decade, terrestrial ecosystems acted as a net GHG sink of 0.9 Pg CO2‐eq. yr−1, dominated by a CO2 sink that was partially counterbalanced by net emissions of CH4 and N2O. For CH4 and N2O, we find good agreement between BU and top‐down (TD) estimates from atmospheric inversions. However, our BU land CO2 sink is significantly higher than the TD estimates. We further show that decadal averages of GHG net‐emissions have declined by 1.2 Pg CO2‐eq. yr−1 since the 1990s, mainly due to a reduction in fossil fuel emissions. In addition, based on both data driven BU and TD estimates, we also find that the land CO2 sink has weakened over the past two decades. A large part of the European CO2 and C sinks is located in Northern Europe. At the same time, we find a decreasing trend in sink strength in Scandinavia, which can be attributed to an increase in forest management intensity. These are partly offset by increasing CO2 sinks in parts of Eastern Europe and Northern Spain, attributed in part to land use change. Extensive regions of high CH4 and N2O emissions are mainly attributed to agricultural activities and are found in Belgium, the Netherlands and the southern UK. We further analyzed interannual variability in the GHG budgets. The drought year of 2003 shows the highest net‐emissions of CO2 and of all GHGs combined.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gb008141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gb008141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Sweden, Belgium, Netherlands, Netherlands, France, Netherlands, Netherlands, Italy, GermanyPublisher:Copernicus GmbH Funded by:EC | GHG EUROPE, EC | GEOCARBON, EC | COCOS +5 projectsEC| GHG EUROPE ,EC| GEOCARBON ,EC| COCOS ,EC| LUISE ,EC| POPFULL ,EC| JULIA ,EC| DOFOCO ,NWO| A multiple constraint data assimilation system for the carbon cycleSebastiaan Luyssaert; Gwénaël Abril; R. J. Andres; David Bastviken; Valentin Bellassen; P. Bergamaschi; Philippe Bousquet; Frédéric Chevallier; Philippe Ciais; M. Corazza; René Dechow; Karl‐Heinz Erb; Giuseppe Etiope; Audrey Fortems-Cheiney; Giacomo Grassi; Jens Hartmann; Martin Jung; Juliette Lathière; Annalea Lohila; Emilio Mayorga; Nils Moosdorf; D. S. Njakou; Juliane Otto; Dario Papale; Wouter Peters; P. Peylin; Peter A. Raymond; Christian Rödenbeck; Sanna Saarnio; Ernst‐Detlef Schulze; Sophie Szopa; Rona L. Thompson; Pieter Johannes Verkerk; Nicolas Vuichard; R. Wang; M. Wattenbach; Sönke Zaehle;Abstract. Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic greenhouse gas emissions over the period 2000–2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balances of Europe following a dual constraint approach in which (1) a land-based balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are compared to (3) the atmospheric data-based balance derived from inversions constrained by measurements of atmospheric GHG (greenhouse gas) concentrations. Good agreement between the GHG balances based on fluxes (1294 ± 545 Tg C in CO2-eq yr−1), inventories (1299 ± 200 Tg C in CO2-eq yr−1) and inversions (1210 ± 405 Tg C in CO2-eq yr−1) increases our confidence that the processes underlying the European GHG budget are well understood and reasonably sampled. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land to atmosphere exchanges are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The net land-to-atmosphere flux is a net source for CO2, CO, CH4 and N2O, because the anthropogenic emissions by far exceed the biogenic sink strength. The dual-constraint approach confirmed that the European biogenic sink removes as much as 205 ± 72 Tg C yr−1 from fossil fuel burning from the atmosphere. However, This C is being sequestered in both terrestrial and inland aquatic ecosystems. If the C-cost for ecosystem management is taken into account, the net uptake of ecosystems is estimated to decrease by 45% but still indicates substantial C-sequestration. However, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is offset by emissions of non-CO2 GHGs. As such, the European ecosystems are unlikely to contribute to mitigating the effects of climate change.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Article . 2012GFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPublikationer från Linköpings universitetArticle . 2012Data sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2012 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-9...Other literature typeData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-9-3357-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Article . 2012GFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPublikationer från Linköpings universitetArticle . 2012Data sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2012 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-9...Other literature typeData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-9-3357-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 BelgiumPublisher:Copernicus GmbH Funded by:EC | LUISE, EC | GHG EUROPE, EC | VOLANTE +5 projectsEC| LUISE ,EC| GHG EUROPE ,EC| VOLANTE ,EC| DOFOCO ,EC| JULIA ,EC| POPFULL ,NWO| A multiple constraint data assimilation system for the carbon cycle ,EC| COCOSSebastiaan Luyssaert; Gwénaël Abril; R. J. Andres; David Bastviken; Valentin Bellassen; P. Bergamaschi; Philippe Bousquet; Frédéric Chevallier; Philippe Ciais; M. Corazza; René Dechow; Karl‐Heinz Erb; Giuseppe Etiope; Audrey Fortems-Cheiney; Giacomo Grassi; J. Hartman; Martin Jung; Juliette Lathière; Annalea Lohila; Nils Moosdorf; Sylvestre Njakou Djomo; Juliane Otto; Dario Papale; Wouter Peters; P. Peylin; Peter A. Raymond; Christian Rödenbeck; Sanna Saarnio; Ernst‐Detlef Schulze; Sophie Szopa; Rona L. Thompson; Pieter Johannes Verkerk; Nicolas Vuichard; R. Wang; M. Wattenbach; Sönke Zaehle;Abstract. Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic emissions over the period 20007–2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balance of Europe following a dual constraint approach in which (1) a land-based balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are confronted with (3) the atmospheric-based balance derived from inversion informed by measurements of atmospheric GHG concentrations. Good agreement between the GHG balances based on fluxes (1249 ± 545 Tg C in CO2-eq y−1), inventories (1299 ± 200 Tg C in CO2-eq y−1) and inversions (1210 ± 405 Tg C in CO2-eq y−1) increases our confidence that current European GHG balances are accurate. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land-atmosphere balances are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The dual-constraint approach confirmed that the European land surface, including inland waters and urban areas, is a net source for CO2, CO, CH4 and N2O. However, for all ecosystems except croplands, C uptake exceeds C release and us such 210 ± 70 Tg C y−1 from fossil fuel burning is removed from the atmosphere and sequestered in both terrestrial and inland aquatic ecosystems. If the C cost for ecosystem management is taken into account, the net uptake of ecosystems was estimated to decrease by 45% but still indicates substantial C-sequestration. Also, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is compensated for by emissions of GHGs. As such the European ecosystems are unlikely to contribute to mitigating the effects of climate change.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefhttp://hdl.handle.net/10067/98...Article . 2012Data sources: Institutional Repository Universiteit Antwerpenhttp://dx.doi.org/10.5194/bgd-...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-2005-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefhttp://hdl.handle.net/10067/98...Article . 2012Data sources: Institutional Repository Universiteit Antwerpenhttp://dx.doi.org/10.5194/bgd-...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-2005-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2020Publisher:OpenAlex Ana Maria Roxana Petrescu; Chunjing Qiu; Philippe Ciais; Rona L. Thompson; Philippe Peylin; Matthew J. McGrath; Efisio Solazzo; Greet Janssens‐Maenhout; Francesco N. Tubiello; P. Bergamaschi; Dominik Brunner; Glen P. Peters; L. Höglund-Isaksson; Pierre Regnier; Ronny Lauerwald; David Bastviken; Aki Tsuruta; Wilfried Winiwarter; Prabir K. Patra; Matthias Kuhnert; Gabriel Oreggioni; Monica Crippa; Marielle Saunois; Lucia Perugini; Tiina Markkanen; Tuula Aalto; Christine Groot Zwaaftink; Yuanzhi Yao; Chris Wilson; Giulia Conchedda; Dirk Günther; Adrian Leip; Pete Smith; Jean‐Matthieu Haussaire; Antti Leppänen; Alistair J. Manning; Joe McNorton; Patrick Brockmann; Han Dolman;Cet ensemble de données contient toutes les données (au format csv) liées aux chiffres du document soumis par l'ESSD : « The consolidated European synthesis of CH4 and N2O emissions for EU27 and UK : 1990-2017 » Petrescu, A. M. R., Qiu, C., Ciais, P., Thompson, R.L., Peylin, P., McGrath, M. J., Solazzo, E., Janssens-Maenhout, G, Tubiello, F. N., Bergamaschi, P., Brunner, D., Peters, G. P., Höglund-Isaksson, L., Regnier, P., Lauerwald, R., Bastviken, D., Tsuruta, A., Winiwarter, W., Patra, P.K., Kuhnert, M., Orregioni, G. D., Crippa, M., Saunois, M., Perugini, L., Markkanen, T., Aalto, T., Groot Zwaaftink, C.D., Yao, Y., Wilson, C., Conchedda, G., Günther, D., Leip, A., Smith, P., Haussaire, J.-M., Leppänen, A., Manning, A. J., McNorton, J., Brockmann, P., et Dolman, A. J. : La synthèse européenne consolidée des émissions de CH4 et de N2O pour l'UE27 et le Royaume-Uni : 1990-2017, Earth Syst. Sci. Data Discuss., essd-2020-367, in review, 2020. Este conjunto de datos contiene todos los datos (en formato csv) vinculados a las cifras del documento presentado por la ESSD: "The consolidated European synthesis of CH4 and N2O emissions for EU27 and UK: 1990-2017" Petrescu, A. M. R., Qiu, C., Ciais, P., Thompson, R.L., Peylin, P., McGrath, M. J., Solazzo, E., Janssens-Maenhout, G, Tubiello, F. N., Bergamaschi, P., Brunner, D., Peters, G. P., Höglund-Isaksson, L., Regnier, P., Lauerwald, R., Bastviken, D., Tsuruta, A., Winiwarter, W., Patra, P. K., Kuhnert, M., Orregioni, G. D., Crippa, M., Saunois, M., Perugini, L., Markkanen, T., Aalto, T., Groot Zwaaftink, C. D., Yao, Y., Wilson, C., Conchedda, G., Günther, D., Leip, A., Smith, P., Haussaire, J.-M., Leppänen, A., Manning, A. J., McNorton, J., Brockmann, P., y Dolman, A. J.: The consolidated European synthesis of CH4 and N2O emissions for EU27 and UK: 1990-2017, Earth Syst. Sci. Data Discuss., essd-2020-367, en revisión, 2020. تحتوي مجموعة البيانات هذه على جميع البيانات (بتنسيق CSV) المرتبطة بالأرقام الواردة في ورقة ESSD المقدمة: "التوليف الأوروبي الموحد لانبعاثات CH4 و N2O للاتحاد الأوروبي 27 والمملكة المتحدة: 1990-2017" بتريسكو، أ. م. ر.، تشيو، ج.، Ciais, ص. طومسون، ر .ل، بيلين، ص. ماكغراث، MJ, سولازو، هـ.، Janssens - Maenhout، ز، Tubiello, F. N., Bergamaschi, ص. برونر، د.، بيترز، جي بي، Höglund - Isaksson، ل.، رينييه، ص. لويرفالد، R., باستفيكن، د.، تسوروتا، أ.، Winiwarter، دبليو، باترا، بي كيه، Kuhnert, م.، Orregioni, جي دي، كريبا، م.، ساونوا، م.، بيروجيني، ل.، Markkanen, T., آلتو، T., جروت زوافتينك، سي. دي.، ياو، Y., ويلسون، ج.، كونشيددا، G., غونتر، د.، ليب، أ.، سميث، ص. هاوسير، ج. م.، Leppänen, أ.، مانينغ، ايه جيه، ماكنورتون، J., بروكمان، ص. ودولمان، إيه جيه: التوليف الأوروبي الموحد لانبعاثات الميثان وأكسيد النيتروز للاتحاد الأوروبي 27 والمملكة المتحدة: 1990-2017، نظام الأرض. Sci. مناقشة البيانات، essd -2020-367، قيد المراجعة، 2020. This dataset contains all data (in csv format) linked to the figures from the ESSD submitted paper: "The consolidated European synthesis of CH4 and N2O emissions for EU27 and UK: 1990-2017" Petrescu, A. M. R., Qiu, C., Ciais, P., Thompson, R.L., Peylin, P., McGrath, M. J., Solazzo, E., Janssens-Maenhout, G, Tubiello, F. N., Bergamaschi, P., Brunner, D., Peters, G. P., Höglund-Isaksson, L., Regnier, P., Lauerwald, R., Bastviken, D., Tsuruta, A., Winiwarter, W., Patra, P. K., Kuhnert, M., Orregioni, G. D., Crippa, M., Saunois, M., Perugini, L., Markkanen, T., Aalto, T., Groot Zwaaftink, C. D., Yao, Y., Wilson, C., Conchedda, G., Günther, D., Leip, A., Smith, P., Haussaire, J.-M., Leppänen, A., Manning, A. J., McNorton, J., Brockmann, P., and Dolman, A. J.: The consolidated European synthesis of CH4 and N2O emissions for EU27 and UK: 1990-2017, Earth Syst. Sci. Data Discuss., essd-2020-367, in review, 2020.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/zn17g-5g641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/zn17g-5g641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Data Paper 2023 Germany, United States, Austria, Norway, Switzerland, United States, Norway, Netherlands, Netherlands, Italy, United Kingdom, Norway, Netherlands, FrancePublisher:Copernicus GmbH Funded by:NSF | Track 4: Advanced CI Coo..., NSF | NRT: Addressing resilienc..., EC | GREEN GODS +13 projectsNSF| Track 4: Advanced CI Coordination Ecosystem: Monitoring and Measurement Services ,NSF| NRT: Addressing resiliency to climate-related hazards and disasters through data-informed decision making ,EC| GREEN GODS ,EC| ESM2025 ,NSF| ACO: An Open CI Ecosystem to Advance Scientific Discovery (OpenCI) ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System 2021-2025 (bgcCEP20) ,NSF| CAREER: Multiple Scales of Nitrogen Cycle in Oxygen Minimum Zones ,DFG ,NSF| Track 3: COre National Ecosystem for CyberinfrasTructure (CONECT) ,EC| EYE-CLIMA ,NSF| Track 2: Customized Multi-tier Assistance, Training, and Computational Help (MATCH) for End User ACCESS to CI ,ANR| CLAND ,UKRI| The UK Earth system modelling project ,NSF| INFEWS: U.S.-China: Integrated systems modeling for sustainable FEW nexus under multi-factor global changes: Innovative comparison between Yellow River and Mississippi River Basins ,NSF| Track 1: ACCESS Resource Allocations Marketplace and Platform Services (RAMPS) ,UKRI| NCEO LTS-SH. Tian; H. Tian; N. Pan; R. L. Thompson; J. G. Canadell; P. Suntharalingam; P. Regnier; E. A. Davidson; M. Prather; P. Ciais; M. Muntean; S. Pan; S. Pan; W. Winiwarter; W. Winiwarter; S. Zaehle; F. Zhou; R. B. Jackson; R. B. Jackson; H. W. Bange; S. Berthet; Z. Bian; D. Bianchi; A. F. Bouwman; E. T. Buitenhuis; G. Dutton; G. Dutton; M. Hu; A. Ito; A. Ito; A. K. Jain; A. Jeltsch-Thömmes; A. Jeltsch-Thömmes; F. Joos; F. Joos; S. Kou-Giesbrecht; S. Kou-Giesbrecht; P. B. Krummel; X. Lan; X. Lan; A. Landolfi; A. Landolfi; R. Lauerwald; Y. Li; C. Lu; T. Maavara; M. Manizza; D. B. Millet; J. Mühle; P. K. Patra; P. K. Patra; P. K. Patra; G. P. Peters; X. Qin; P. Raymond; L. Resplandy; J. A. Rosentreter; J. A. Rosentreter; H. Shi; Q. Sun; Q. Sun; D. Tonina; F. N. Tubiello; G. R. van der Werf; N. Vuichard; J. Wang; K. C. Wells; L. M. Western; L. M. Western; C. Wilson; C. Wilson; J. Yang; Y. Yao; Y. You; Q. Zhu;Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023).
IRIS Cnr arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Digital Repository @ Iowa State UniversityArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-2543-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Digital Repository @ Iowa State UniversityArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-2543-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Authors: Thompson, Rona; Patra, Prabir; Wilson, Christopher;Nitrous oxide emissions are presented from three independent atmospheric inversion frameworks. The frameworks are: 1) INVICAT: an inversion using the atmospheric transport model, TOMCAT and a 4D-Var optimisation method; 2) JAMSTEC: an inversion using the MIROC4-ACTM atmospheric transport model and a Bayesian analytical optimisation method; and 3) PYVAR: an inversion using the LMDZ5 atmospheric transport model and a 4D-var optimisation method. The emissions were optimised monthly and have been re-gridded from the model native resolution to 1.0 by 1.0 degrees. The files for TOMCAT and LMDZ5 (i.e. the inversion frameworks INVICAT and PYVAR, respectively) contain two flux variables: 1) the prior fluxes as estimated a priori, and 2) the posterior fluxes as estimated by the inversion. The file for the JAMSTEC inversion, contains five flux variables: 1) flux_apri_land: the prior fluxes over land, 2) flux_apri_ocean: the prior fluxes over ocean, 3) flux_apri_fossil: the prior estimate of emissions from combustion, 4) flux_apos_land: posterior fluxes over land estimated by the inversion, and 5) flux_apos_ocean: the posterior fluxes over ocean estimated by the inversion. Note that flux_apri_fossil was not optimised in the inversion but for the total posterior N2O emission, needs to be added to the flux_apos_ocean and flux_apos_land variables. {"references": ["Thompson, R. L. et al. Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion, Atmos. Chem. Phys. 14, 1801-1817 (2014)", "Wilson, C. et al. Development of a variational flux inversion system (INVICAT v1.0) using the TOMCAT chemical transport model. Geosci Model Dev 7(5), 2485\u20132500 (2014)", "Patra, P. K. et al. Improved Chemical Tracer Simulation by MIROC4.0-based Atmospheric Chemistry-Transport Model (MIROC4-ACTM). SOLA 14, 91\u201396 (2018)."]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3384590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 19visibility views 19 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3384590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 NorwayPublisher:Copernicus GmbH Yoko Yokouchi; Francesco Graziosi; Andreas Stohl; Xuekun Fang; Xuekun Fang; Shanlan Li; Rona Thompson; Sunyoung Park; Kyung-Ryul Kim; Jooil Kim; Jooil Kim; Takuya Saito;Abstract. Sulfur hexafluoride (SF6) has a global warming potential of around 22 800 over a 100 yr time horizon and is one of the greenhouse gases regulated under the Kyoto Protocol. Around circa 2000 there was a reversal in the global SF6 emission trend, from a decreasing to an increasing trend, which was likely caused by increasing emissions in countries that are not obligated to report their annual emissions to the United Nations Framework Convention on Climate Change. In this study, SF6 emissions during the period 2006–2012 for all East Asian countries, including Mongolia, China, the Taiwan region, North Korea, South Korea and Japan, were determined by using inverse modeling and in-situ atmospheric measurements. We found that the most important sources of uncertainty associated with these inversions are related to the choice of a priori emissions and their assumed uncertainty, the station network as well as the meteorological input data. Much lower uncertainties are due to seasonal variability in the emissions, inversion geometry and resolution, and the measurement calibration scale. Based on the results of these sensitivity tests, we estimate that the total SF6 emission in East Asia increased rapidly from 2437 ± 329 Mg yr−1 in 2006 to 3787 ± 512 Mg yr−1 in 2009 and stabilized thereafter. China contributed 58–72 % to the total East Asian emission for the different years, followed by South Korea (9–19%), Japan (5–16%) and the Taiwan region (4–7%), while the contributions from North Korea and Mongolia together were less than 3% of the total. The per-capita SF6 emissions are highest in South Korea and the Taiwan region, while the per-capita emissions for China, North Korea and Japan are close to global average. During the period 2006–2012, emissions from China increased rapidly and emissions from South Korea increased slightly, while emissions from the Taiwan region and Japan decreased overall.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/acpd-1...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2014 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acpd-13-21003-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/acpd-1...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2014 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acpd-13-21003-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2012 FrancePublisher:HAL CCSD Gabrielle, Benoit; Bousquet, Philippe; Gagnaire, Nathalie; Goglio, Pietro; Grossel, Agnès; Lehuger, Simon; Lopez, M.; Massad, Raia Silvia; Nicoullaud, Bernard; Pison, Isabelle; Prieur, Vincent; Python, Yves; Schmidt, M.; Schulz, M; Thompson, R.;Controversy is brewing about the potential greenhouse gas (GHG) savings resulting from the displacement of fossil energy sources by bioenergy, which mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions from arable soils occuring during feedstock production. The life-cycle GHG budget of bioenergy pathways are indeed strongly conditioned by these emissions, which are related to fertilizer nitrogen input rates but also largely controlled by soil and climate factors. The IMAGINE project, funded by by the ENERBIO/Tuck Foundation from January 2010 to December 2011 aimed at improving the estimation of N2O emissions from local to regional scales using ecosystem models and measurements and modeling of atmospheric N2O in the greater Paris basin, by using ecosystem models and measurements and modeling of atmospheric N2O. Ground fluxes were measured in two locations to assess the effect of soil type and management, crop type (including lignocellulosics such as triticale, switchgrass and miscanthus), and climate on N2O emission rates and dynamics. High-resolution maps of N2O emissions were generated over the Ile-de-France region (around Paris) with a generic ecosystem model, O-CN, and an agro-ecosystem model, CERES-EGC, using geographical databases on soils, weather data, land-use and crop management. The models were tested against ground flux measurements, and the emission maps were fed into the atmospheric chemistry-transport model CHIMERE. The maps were tested by comparing the CHIMERE simulations with time series of N2O concentrations measured at various heights in the planetary boundary layer in two locations in 2007. The emissions of N2O, as integrated at the regional scale, were used in a life-cycle assessment of representative biofuel pathways : bioethanol from wheat and sugar-beet (1st generation), and miscanthus (2nd generation process) ; biodiesel from oilseed rape. Compared to the standard methodology currently used in LCA, based on fixed emissions for N2O, the use of model-derived estimates leads to a 10 to 40 % reduction in the overall GHG emissions of biofuels. This emphasizes the importance of regional factors in the relationship between agricultural inputs and emissions (altogether with biomass yields) in the outcome of LCAs. When excluding indirect land-use change effects (iLUC), 1st generation pathways enabled GHG savings ranging from 50 to 73 % compared to fossile-derived equivalents, while this figure reached 88 % for 2nd generation bioethanol from miscanthus.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverConference object . 2012Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationConference object . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5c8fde3be26fc16d70d081cc8a52c474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverConference object . 2012Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationConference object . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5c8fde3be26fc16d70d081cc8a52c474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Norway, FrancePublisher:American Geophysical Union (AGU) Funded by:UKRI | NCEO LTS-S, ANR | CLANDUKRI| NCEO LTS-S ,ANR| CLANDXuhui Wang; Yahui Gao; Sujong Jeong; Akihiko Ito; Ana Bastos; Benjamin Poulter; Yilong Wang; Philippe Ciais; Hanqin Tian; Wenping Yuan; Naveen Chandra; Frédéric Chevallier; Lei Fan; Songbai Hong; Ronny Lauerwald; Wei Li; Zhengyang Lin; Naiqing Pan; Prabir K. Patra; Shushi Peng; Lishan Ran; Yuxing Sang; Stephen Sitch; T. Mäki; Rona L. Thompson; Chenzhi Wang; Kai Wang; Tao Wang; Yi Xi; Li Xu; Yanzi Yan; Jeongmin Yun; Yao Zhang; Yuzhong Zhang; Zhen Zhang; Bo Zheng; Feng Zhou; Shu Tao; Josep G. Canadell; Shilong Piao;AbstractEast Asia (China, Japan, Koreas, and Mongolia) has been the world's economic engine over at least the past two decades, exhibiting a rapid increase in fossil fuel emissions of greenhouse gases (GHGs) and has expressed the recent ambition to achieve climate neutrality by mid‐century. However, the GHG balance of its terrestrial ecosystems remains poorly constrained. Here, we present a synthesis of the three most important long‐lived greenhouse gases (CO2, CH4, and N2O) budgets over East Asia during the decades of 2000s and 2010s, following a dual constraint approach. We estimate that terrestrial ecosystems in East Asia is close to neutrality of GHGs, with a magnitude of between −46.3 ± 505.9 Tg CO2eq yr−1(the top‐down approach) and −36.1 ± 207.1 Tg CO2eq yr−1(the bottom‐up approach) during 2000–2019. This net GHG sink includes a large land CO2sink (−1229.3 ± 430.9 Tg CO2 yr−1based on the top‐down approach and −1353.8 ± 158.5 Tg CO2 yr−1based on the bottom‐up approach) being offset by biogenic CH4and N2O emissions, predominantly coming from the agricultural sectors. Emerging data sources and modeling capacities have helped achieve agreement between the top‐down and bottom‐up approaches, but sizable uncertainties remain in several flux terms. For example, the reported CO2flux from land use and land cover change varies from a net source of more than 300 Tg CO2 yr−1to a net sink of ∼−700 Tg CO2 yr−1. Although terrestrial ecosystems over East Asia is close to GHG neutral currently, curbing agricultural GHG emissions and additional afforestation and forest managements have the potential to transform the terrestrial ecosystems into a net GHG sink, which would help in realizing East Asian countries' ambitions to achieve climate neutrality.
NILU Brage arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert NILU Brage arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Funded by:EC | METLAKE, EC | VISUALMEDIA, EC | IMBALANCE-P +4 projectsEC| METLAKE ,EC| VISUALMEDIA ,EC| IMBALANCE-P ,EC| VERIFY ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPA ,EC| CHEAna Maria Roxana Petrescu; Chunjing Qiu; Philippe Ciais; Rona L. Thompson; Philippe Peylin; Matthew J. McGrath; Efisio Solazzo; Greet Janssens‐Maenhout; Francesco N. Tubiello; P. Bergamaschi; D. Brunner; Glen P. Peters; L. Höglund-Isaksson; Pierre Regnier; Ronny Lauerwald; David Bastviken; Aki Tsuruta; Wilfried Winiwarter; Prabir K. Patra; Matthias Kuhnert; Gabriel D. Orregioni; Monica Crippa; Marielle Saunois; Lucia Perugini; Tiina Markkanen; Tuula Aalto; Christine Groot Zwaaftink; Yuanzhi Yao; Chris Wilson; Giulia Conchedda; Dirk Günther; Adrian Leip; Pete Smith; Jean‐Matthieu Haussaire; Antti Leppänen; Alistair J. Manning; Joe McNorton; Patrick Brockmann; A.J. Dolman;Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate recent emission inventory data, ecosystem process-based model results, and inverse modelling estimates over the period 1990–2018. BU and TD products are compared with European National GHG Inventories (NGHGI) reported to the UN climate convention secretariat UNFCCC in 2019. For uncertainties, we used for NGHGI the standard deviation obtained by varying parameters of inventory calculations, reported by the Member States following the IPCC guidelines recommendations. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model specific uncertainties when reported. In comparing NGHGI with other approaches, a key source of bias is the activities included, e.g. anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. TD total inversions estimates give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions and geological sources together account for the gap between NGHGI and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1 respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1 respectively, compared to 0.9 Tg N2O yr−1 from the BU data. The TU and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at EU+UK scale and at national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4288969 (Petrescu et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Norway, Norway, France, Netherlands, Germany, Norway, France, Italy, France, FrancePublisher:American Geophysical Union (AGU) Funded by:EC | RESONATE, EC | VERIFY, EC | FORWARDS +9 projectsEC| RESONATE ,EC| VERIFY ,EC| FORWARDS ,EC| EYE-CLIMA ,EC| CoCO2 ,UKRI| The UK Earth system modelling project ,EC| eco2adapt ,EC| LAMASUS ,EC| SUPERB ,EC| AVENGERS ,EC| ForExD ,UKRI| NCEO LTS-SRonny Lauerwald; Ana Bastos; Matthew J. McGrath; Ana Maria Roxana Petrescu; François Ritter; Robbie M. Andrew; Antoine Berchet; Grégoire Broquet; Dominik Brunner; Frédéric Chevallier; Alessandro Cescatti; Sara Filipek; Audrey Fortems‐Cheiney; Giovanni Forzieri; Pierre Friedlingstein; Richard Fuchs; Christoph Gerbig; Sander Houweling; Piyu Ke; Bas J. W. Lerink; Wanjing Li; Wei Li; Xiaojun Li; Ingrid Luijkx; Guillaume Monteil; Saqr Munassar; Gert‐Jan Nabuurs; Prabir K. Patra; Philippe Peylin; Julia Pongratz; Pierre Regnier; Marielle Saunois; Mart‐Jan Schelhaas; Marko Scholze; Stephen Sitch; Rona L. Thompson; Hanqin Tian; Aki Tsuruta; Chris Wilson; Jean‐Pierre Wigneron; Karina Winkler; Yitong Yao; Sönke Zaehle; Philippe Ciais;handle: 1871.1/4c1d05d5-8ab0-45c1-a9ab-851e57b7e622 , 21.11116/0000-000F-B7E6-F , 21.11116/0000-000F-B7E7-E , 21.11116/0000-000F-B7E8-D , 21.11116/0000-000F-2E2D-D , 21.11116/0000-000F-B8AD-F , 21.11116/0000-000F-B8AE-E , 21.11116/0000-000F-B8AF-D , 21.11116/0000-000F-B8AB-1 , 11250/3150998 , 11250/3153775 , 2158/1405755
handle: 1871.1/4c1d05d5-8ab0-45c1-a9ab-851e57b7e622 , 21.11116/0000-000F-B7E6-F , 21.11116/0000-000F-B7E7-E , 21.11116/0000-000F-B7E8-D , 21.11116/0000-000F-2E2D-D , 21.11116/0000-000F-B8AD-F , 21.11116/0000-000F-B8AE-E , 21.11116/0000-000F-B8AF-D , 21.11116/0000-000F-B8AB-1 , 11250/3150998 , 11250/3153775 , 2158/1405755
AbstractIn the framework of the RECCAP2 initiative, we present the greenhouse gas (GHG) and carbon (C) budget of Europe. For the decade of the 2010s, we present a bottom‐up (BU) estimate of GHG net‐emissions of 3.9 Pg CO2‐eq. yr−1 (using a global warming potential on a 100 years horizon), which are largely dominated by fossil fuel emissions. In this decade, terrestrial ecosystems acted as a net GHG sink of 0.9 Pg CO2‐eq. yr−1, dominated by a CO2 sink that was partially counterbalanced by net emissions of CH4 and N2O. For CH4 and N2O, we find good agreement between BU and top‐down (TD) estimates from atmospheric inversions. However, our BU land CO2 sink is significantly higher than the TD estimates. We further show that decadal averages of GHG net‐emissions have declined by 1.2 Pg CO2‐eq. yr−1 since the 1990s, mainly due to a reduction in fossil fuel emissions. In addition, based on both data driven BU and TD estimates, we also find that the land CO2 sink has weakened over the past two decades. A large part of the European CO2 and C sinks is located in Northern Europe. At the same time, we find a decreasing trend in sink strength in Scandinavia, which can be attributed to an increase in forest management intensity. These are partly offset by increasing CO2 sinks in parts of Eastern Europe and Northern Spain, attributed in part to land use change. Extensive regions of high CH4 and N2O emissions are mainly attributed to agricultural activities and are found in Belgium, the Netherlands and the southern UK. We further analyzed interannual variability in the GHG budgets. The drought year of 2003 shows the highest net‐emissions of CO2 and of all GHGs combined.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gb008141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2024Data sources: Flore (Florence Research Repository)KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gb008141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 Sweden, Belgium, Netherlands, Netherlands, France, Netherlands, Netherlands, Italy, GermanyPublisher:Copernicus GmbH Funded by:EC | GHG EUROPE, EC | GEOCARBON, EC | COCOS +5 projectsEC| GHG EUROPE ,EC| GEOCARBON ,EC| COCOS ,EC| LUISE ,EC| POPFULL ,EC| JULIA ,EC| DOFOCO ,NWO| A multiple constraint data assimilation system for the carbon cycleSebastiaan Luyssaert; Gwénaël Abril; R. J. Andres; David Bastviken; Valentin Bellassen; P. Bergamaschi; Philippe Bousquet; Frédéric Chevallier; Philippe Ciais; M. Corazza; René Dechow; Karl‐Heinz Erb; Giuseppe Etiope; Audrey Fortems-Cheiney; Giacomo Grassi; Jens Hartmann; Martin Jung; Juliette Lathière; Annalea Lohila; Emilio Mayorga; Nils Moosdorf; D. S. Njakou; Juliane Otto; Dario Papale; Wouter Peters; P. Peylin; Peter A. Raymond; Christian Rödenbeck; Sanna Saarnio; Ernst‐Detlef Schulze; Sophie Szopa; Rona L. Thompson; Pieter Johannes Verkerk; Nicolas Vuichard; R. Wang; M. Wattenbach; Sönke Zaehle;Abstract. Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic greenhouse gas emissions over the period 2000–2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balances of Europe following a dual constraint approach in which (1) a land-based balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are compared to (3) the atmospheric data-based balance derived from inversions constrained by measurements of atmospheric GHG (greenhouse gas) concentrations. Good agreement between the GHG balances based on fluxes (1294 ± 545 Tg C in CO2-eq yr−1), inventories (1299 ± 200 Tg C in CO2-eq yr−1) and inversions (1210 ± 405 Tg C in CO2-eq yr−1) increases our confidence that the processes underlying the European GHG budget are well understood and reasonably sampled. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land to atmosphere exchanges are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The net land-to-atmosphere flux is a net source for CO2, CO, CH4 and N2O, because the anthropogenic emissions by far exceed the biogenic sink strength. The dual-constraint approach confirmed that the European biogenic sink removes as much as 205 ± 72 Tg C yr−1 from fossil fuel burning from the atmosphere. However, This C is being sequestered in both terrestrial and inland aquatic ecosystems. If the C-cost for ecosystem management is taken into account, the net uptake of ecosystems is estimated to decrease by 45% but still indicates substantial C-sequestration. However, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is offset by emissions of non-CO2 GHGs. As such, the European ecosystems are unlikely to contribute to mitigating the effects of climate change.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Article . 2012GFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPublikationer från Linköpings universitetArticle . 2012Data sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2012 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-9...Other literature typeData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-9-3357-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-01150807Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Article . 2012GFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2012Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverPublikationer från Linköpings universitetArticle . 2012Data sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2012 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/bg-9...Other literature typeData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-9-3357-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 BelgiumPublisher:Copernicus GmbH Funded by:EC | LUISE, EC | GHG EUROPE, EC | VOLANTE +5 projectsEC| LUISE ,EC| GHG EUROPE ,EC| VOLANTE ,EC| DOFOCO ,EC| JULIA ,EC| POPFULL ,NWO| A multiple constraint data assimilation system for the carbon cycle ,EC| COCOSSebastiaan Luyssaert; Gwénaël Abril; R. J. Andres; David Bastviken; Valentin Bellassen; P. Bergamaschi; Philippe Bousquet; Frédéric Chevallier; Philippe Ciais; M. Corazza; René Dechow; Karl‐Heinz Erb; Giuseppe Etiope; Audrey Fortems-Cheiney; Giacomo Grassi; J. Hartman; Martin Jung; Juliette Lathière; Annalea Lohila; Nils Moosdorf; Sylvestre Njakou Djomo; Juliane Otto; Dario Papale; Wouter Peters; P. Peylin; Peter A. Raymond; Christian Rödenbeck; Sanna Saarnio; Ernst‐Detlef Schulze; Sophie Szopa; Rona L. Thompson; Pieter Johannes Verkerk; Nicolas Vuichard; R. Wang; M. Wattenbach; Sönke Zaehle;Abstract. Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic emissions over the period 20007–2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balance of Europe following a dual constraint approach in which (1) a land-based balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are confronted with (3) the atmospheric-based balance derived from inversion informed by measurements of atmospheric GHG concentrations. Good agreement between the GHG balances based on fluxes (1249 ± 545 Tg C in CO2-eq y−1), inventories (1299 ± 200 Tg C in CO2-eq y−1) and inversions (1210 ± 405 Tg C in CO2-eq y−1) increases our confidence that current European GHG balances are accurate. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land-atmosphere balances are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The dual-constraint approach confirmed that the European land surface, including inland waters and urban areas, is a net source for CO2, CO, CH4 and N2O. However, for all ecosystems except croplands, C uptake exceeds C release and us such 210 ± 70 Tg C y−1 from fossil fuel burning is removed from the atmosphere and sequestered in both terrestrial and inland aquatic ecosystems. If the C cost for ecosystem management is taken into account, the net uptake of ecosystems was estimated to decrease by 45% but still indicates substantial C-sequestration. Also, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is compensated for by emissions of GHGs. As such the European ecosystems are unlikely to contribute to mitigating the effects of climate change.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefhttp://hdl.handle.net/10067/98...Article . 2012Data sources: Institutional Repository Universiteit Antwerpenhttp://dx.doi.org/10.5194/bgd-...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-2005-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-9-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: Crossrefhttp://hdl.handle.net/10067/98...Article . 2012Data sources: Institutional Repository Universiteit Antwerpenhttp://dx.doi.org/10.5194/bgd-...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-9-2005-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2020Publisher:OpenAlex Ana Maria Roxana Petrescu; Chunjing Qiu; Philippe Ciais; Rona L. Thompson; Philippe Peylin; Matthew J. McGrath; Efisio Solazzo; Greet Janssens‐Maenhout; Francesco N. Tubiello; P. Bergamaschi; Dominik Brunner; Glen P. Peters; L. Höglund-Isaksson; Pierre Regnier; Ronny Lauerwald; David Bastviken; Aki Tsuruta; Wilfried Winiwarter; Prabir K. Patra; Matthias Kuhnert; Gabriel Oreggioni; Monica Crippa; Marielle Saunois; Lucia Perugini; Tiina Markkanen; Tuula Aalto; Christine Groot Zwaaftink; Yuanzhi Yao; Chris Wilson; Giulia Conchedda; Dirk Günther; Adrian Leip; Pete Smith; Jean‐Matthieu Haussaire; Antti Leppänen; Alistair J. Manning; Joe McNorton; Patrick Brockmann; Han Dolman;Cet ensemble de données contient toutes les données (au format csv) liées aux chiffres du document soumis par l'ESSD : « The consolidated European synthesis of CH4 and N2O emissions for EU27 and UK : 1990-2017 » Petrescu, A. M. R., Qiu, C., Ciais, P., Thompson, R.L., Peylin, P., McGrath, M. J., Solazzo, E., Janssens-Maenhout, G, Tubiello, F. N., Bergamaschi, P., Brunner, D., Peters, G. P., Höglund-Isaksson, L., Regnier, P., Lauerwald, R., Bastviken, D., Tsuruta, A., Winiwarter, W., Patra, P.K., Kuhnert, M., Orregioni, G. D., Crippa, M., Saunois, M., Perugini, L., Markkanen, T., Aalto, T., Groot Zwaaftink, C.D., Yao, Y., Wilson, C., Conchedda, G., Günther, D., Leip, A., Smith, P., Haussaire, J.-M., Leppänen, A., Manning, A. J., McNorton, J., Brockmann, P., et Dolman, A. J. : La synthèse européenne consolidée des émissions de CH4 et de N2O pour l'UE27 et le Royaume-Uni : 1990-2017, Earth Syst. Sci. Data Discuss., essd-2020-367, in review, 2020. Este conjunto de datos contiene todos los datos (en formato csv) vinculados a las cifras del documento presentado por la ESSD: "The consolidated European synthesis of CH4 and N2O emissions for EU27 and UK: 1990-2017" Petrescu, A. M. R., Qiu, C., Ciais, P., Thompson, R.L., Peylin, P., McGrath, M. J., Solazzo, E., Janssens-Maenhout, G, Tubiello, F. N., Bergamaschi, P., Brunner, D., Peters, G. P., Höglund-Isaksson, L., Regnier, P., Lauerwald, R., Bastviken, D., Tsuruta, A., Winiwarter, W., Patra, P. K., Kuhnert, M., Orregioni, G. D., Crippa, M., Saunois, M., Perugini, L., Markkanen, T., Aalto, T., Groot Zwaaftink, C. D., Yao, Y., Wilson, C., Conchedda, G., Günther, D., Leip, A., Smith, P., Haussaire, J.-M., Leppänen, A., Manning, A. J., McNorton, J., Brockmann, P., y Dolman, A. J.: The consolidated European synthesis of CH4 and N2O emissions for EU27 and UK: 1990-2017, Earth Syst. Sci. Data Discuss., essd-2020-367, en revisión, 2020. تحتوي مجموعة البيانات هذه على جميع البيانات (بتنسيق CSV) المرتبطة بالأرقام الواردة في ورقة ESSD المقدمة: "التوليف الأوروبي الموحد لانبعاثات CH4 و N2O للاتحاد الأوروبي 27 والمملكة المتحدة: 1990-2017" بتريسكو، أ. م. ر.، تشيو، ج.، Ciais, ص. طومسون، ر .ل، بيلين، ص. ماكغراث، MJ, سولازو، هـ.، Janssens - Maenhout، ز، Tubiello, F. N., Bergamaschi, ص. برونر، د.، بيترز، جي بي، Höglund - Isaksson، ل.، رينييه، ص. لويرفالد، R., باستفيكن، د.، تسوروتا، أ.، Winiwarter، دبليو، باترا، بي كيه، Kuhnert, م.، Orregioni, جي دي، كريبا، م.، ساونوا، م.، بيروجيني، ل.، Markkanen, T., آلتو، T., جروت زوافتينك، سي. دي.، ياو، Y., ويلسون، ج.، كونشيددا، G., غونتر، د.، ليب، أ.، سميث، ص. هاوسير، ج. م.، Leppänen, أ.، مانينغ، ايه جيه، ماكنورتون، J., بروكمان، ص. ودولمان، إيه جيه: التوليف الأوروبي الموحد لانبعاثات الميثان وأكسيد النيتروز للاتحاد الأوروبي 27 والمملكة المتحدة: 1990-2017، نظام الأرض. Sci. مناقشة البيانات، essd -2020-367، قيد المراجعة، 2020. This dataset contains all data (in csv format) linked to the figures from the ESSD submitted paper: "The consolidated European synthesis of CH4 and N2O emissions for EU27 and UK: 1990-2017" Petrescu, A. M. R., Qiu, C., Ciais, P., Thompson, R.L., Peylin, P., McGrath, M. J., Solazzo, E., Janssens-Maenhout, G, Tubiello, F. N., Bergamaschi, P., Brunner, D., Peters, G. P., Höglund-Isaksson, L., Regnier, P., Lauerwald, R., Bastviken, D., Tsuruta, A., Winiwarter, W., Patra, P. K., Kuhnert, M., Orregioni, G. D., Crippa, M., Saunois, M., Perugini, L., Markkanen, T., Aalto, T., Groot Zwaaftink, C. D., Yao, Y., Wilson, C., Conchedda, G., Günther, D., Leip, A., Smith, P., Haussaire, J.-M., Leppänen, A., Manning, A. J., McNorton, J., Brockmann, P., and Dolman, A. J.: The consolidated European synthesis of CH4 and N2O emissions for EU27 and UK: 1990-2017, Earth Syst. Sci. Data Discuss., essd-2020-367, in review, 2020.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/zn17g-5g641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/zn17g-5g641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Data Paper 2023 Germany, United States, Austria, Norway, Switzerland, United States, Norway, Netherlands, Netherlands, Italy, United Kingdom, Norway, Netherlands, FrancePublisher:Copernicus GmbH Funded by:NSF | Track 4: Advanced CI Coo..., NSF | NRT: Addressing resilienc..., EC | GREEN GODS +13 projectsNSF| Track 4: Advanced CI Coordination Ecosystem: Monitoring and Measurement Services ,NSF| NRT: Addressing resiliency to climate-related hazards and disasters through data-informed decision making ,EC| GREEN GODS ,EC| ESM2025 ,NSF| ACO: An Open CI Ecosystem to Advance Scientific Discovery (OpenCI) ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System 2021-2025 (bgcCEP20) ,NSF| CAREER: Multiple Scales of Nitrogen Cycle in Oxygen Minimum Zones ,DFG ,NSF| Track 3: COre National Ecosystem for CyberinfrasTructure (CONECT) ,EC| EYE-CLIMA ,NSF| Track 2: Customized Multi-tier Assistance, Training, and Computational Help (MATCH) for End User ACCESS to CI ,ANR| CLAND ,UKRI| The UK Earth system modelling project ,NSF| INFEWS: U.S.-China: Integrated systems modeling for sustainable FEW nexus under multi-factor global changes: Innovative comparison between Yellow River and Mississippi River Basins ,NSF| Track 1: ACCESS Resource Allocations Marketplace and Platform Services (RAMPS) ,UKRI| NCEO LTS-SH. Tian; H. Tian; N. Pan; R. L. Thompson; J. G. Canadell; P. Suntharalingam; P. Regnier; E. A. Davidson; M. Prather; P. Ciais; M. Muntean; S. Pan; S. Pan; W. Winiwarter; W. Winiwarter; S. Zaehle; F. Zhou; R. B. Jackson; R. B. Jackson; H. W. Bange; S. Berthet; Z. Bian; D. Bianchi; A. F. Bouwman; E. T. Buitenhuis; G. Dutton; G. Dutton; M. Hu; A. Ito; A. Ito; A. K. Jain; A. Jeltsch-Thömmes; A. Jeltsch-Thömmes; F. Joos; F. Joos; S. Kou-Giesbrecht; S. Kou-Giesbrecht; P. B. Krummel; X. Lan; X. Lan; A. Landolfi; A. Landolfi; R. Lauerwald; Y. Li; C. Lu; T. Maavara; M. Manizza; D. B. Millet; J. Mühle; P. K. Patra; P. K. Patra; P. K. Patra; G. P. Peters; X. Qin; P. Raymond; L. Resplandy; J. A. Rosentreter; J. A. Rosentreter; H. Shi; Q. Sun; Q. Sun; D. Tonina; F. N. Tubiello; G. R. van der Werf; N. Vuichard; J. Wang; K. C. Wells; L. M. Western; L. M. Western; C. Wilson; C. Wilson; J. Yang; Y. Yao; Y. You; Q. Zhu;Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023).
IRIS Cnr arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Digital Repository @ Iowa State UniversityArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-2543-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Digital Repository @ Iowa State UniversityArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2024License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsEarth System Science Data (ESSD)Article . 2024 . Peer-reviewedData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-2543-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Authors: Thompson, Rona; Patra, Prabir; Wilson, Christopher;Nitrous oxide emissions are presented from three independent atmospheric inversion frameworks. The frameworks are: 1) INVICAT: an inversion using the atmospheric transport model, TOMCAT and a 4D-Var optimisation method; 2) JAMSTEC: an inversion using the MIROC4-ACTM atmospheric transport model and a Bayesian analytical optimisation method; and 3) PYVAR: an inversion using the LMDZ5 atmospheric transport model and a 4D-var optimisation method. The emissions were optimised monthly and have been re-gridded from the model native resolution to 1.0 by 1.0 degrees. The files for TOMCAT and LMDZ5 (i.e. the inversion frameworks INVICAT and PYVAR, respectively) contain two flux variables: 1) the prior fluxes as estimated a priori, and 2) the posterior fluxes as estimated by the inversion. The file for the JAMSTEC inversion, contains five flux variables: 1) flux_apri_land: the prior fluxes over land, 2) flux_apri_ocean: the prior fluxes over ocean, 3) flux_apri_fossil: the prior estimate of emissions from combustion, 4) flux_apos_land: posterior fluxes over land estimated by the inversion, and 5) flux_apos_ocean: the posterior fluxes over ocean estimated by the inversion. Note that flux_apri_fossil was not optimised in the inversion but for the total posterior N2O emission, needs to be added to the flux_apos_ocean and flux_apos_land variables. {"references": ["Thompson, R. L. et al. Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion, Atmos. Chem. Phys. 14, 1801-1817 (2014)", "Wilson, C. et al. Development of a variational flux inversion system (INVICAT v1.0) using the TOMCAT chemical transport model. Geosci Model Dev 7(5), 2485\u20132500 (2014)", "Patra, P. K. et al. Improved Chemical Tracer Simulation by MIROC4.0-based Atmospheric Chemistry-Transport Model (MIROC4-ACTM). SOLA 14, 91\u201396 (2018)."]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3384590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 19visibility views 19 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3384590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 NorwayPublisher:Copernicus GmbH Yoko Yokouchi; Francesco Graziosi; Andreas Stohl; Xuekun Fang; Xuekun Fang; Shanlan Li; Rona Thompson; Sunyoung Park; Kyung-Ryul Kim; Jooil Kim; Jooil Kim; Takuya Saito;Abstract. Sulfur hexafluoride (SF6) has a global warming potential of around 22 800 over a 100 yr time horizon and is one of the greenhouse gases regulated under the Kyoto Protocol. Around circa 2000 there was a reversal in the global SF6 emission trend, from a decreasing to an increasing trend, which was likely caused by increasing emissions in countries that are not obligated to report their annual emissions to the United Nations Framework Convention on Climate Change. In this study, SF6 emissions during the period 2006–2012 for all East Asian countries, including Mongolia, China, the Taiwan region, North Korea, South Korea and Japan, were determined by using inverse modeling and in-situ atmospheric measurements. We found that the most important sources of uncertainty associated with these inversions are related to the choice of a priori emissions and their assumed uncertainty, the station network as well as the meteorological input data. Much lower uncertainties are due to seasonal variability in the emissions, inversion geometry and resolution, and the measurement calibration scale. Based on the results of these sensitivity tests, we estimate that the total SF6 emission in East Asia increased rapidly from 2437 ± 329 Mg yr−1 in 2006 to 3787 ± 512 Mg yr−1 in 2009 and stabilized thereafter. China contributed 58–72 % to the total East Asian emission for the different years, followed by South Korea (9–19%), Japan (5–16%) and the Taiwan region (4–7%), while the contributions from North Korea and Mongolia together were less than 3% of the total. The per-capita SF6 emissions are highest in South Korea and the Taiwan region, while the per-capita emissions for China, North Korea and Japan are close to global average. During the period 2006–2012, emissions from China increased rapidly and emissions from South Korea increased slightly, while emissions from the Taiwan region and Japan decreased overall.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/acpd-1...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2014 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acpd-13-21003-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/acpd-1...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2014 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acpd-13-21003-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2012 FrancePublisher:HAL CCSD Gabrielle, Benoit; Bousquet, Philippe; Gagnaire, Nathalie; Goglio, Pietro; Grossel, Agnès; Lehuger, Simon; Lopez, M.; Massad, Raia Silvia; Nicoullaud, Bernard; Pison, Isabelle; Prieur, Vincent; Python, Yves; Schmidt, M.; Schulz, M; Thompson, R.;Controversy is brewing about the potential greenhouse gas (GHG) savings resulting from the displacement of fossil energy sources by bioenergy, which mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions from arable soils occuring during feedstock production. The life-cycle GHG budget of bioenergy pathways are indeed strongly conditioned by these emissions, which are related to fertilizer nitrogen input rates but also largely controlled by soil and climate factors. The IMAGINE project, funded by by the ENERBIO/Tuck Foundation from January 2010 to December 2011 aimed at improving the estimation of N2O emissions from local to regional scales using ecosystem models and measurements and modeling of atmospheric N2O in the greater Paris basin, by using ecosystem models and measurements and modeling of atmospheric N2O. Ground fluxes were measured in two locations to assess the effect of soil type and management, crop type (including lignocellulosics such as triticale, switchgrass and miscanthus), and climate on N2O emission rates and dynamics. High-resolution maps of N2O emissions were generated over the Ile-de-France region (around Paris) with a generic ecosystem model, O-CN, and an agro-ecosystem model, CERES-EGC, using geographical databases on soils, weather data, land-use and crop management. The models were tested against ground flux measurements, and the emission maps were fed into the atmospheric chemistry-transport model CHIMERE. The maps were tested by comparing the CHIMERE simulations with time series of N2O concentrations measured at various heights in the planetary boundary layer in two locations in 2007. The emissions of N2O, as integrated at the regional scale, were used in a life-cycle assessment of representative biofuel pathways : bioethanol from wheat and sugar-beet (1st generation), and miscanthus (2nd generation process) ; biodiesel from oilseed rape. Compared to the standard methodology currently used in LCA, based on fixed emissions for N2O, the use of model-derived estimates leads to a 10 to 40 % reduction in the overall GHG emissions of biofuels. This emphasizes the importance of regional factors in the relationship between agricultural inputs and emissions (altogether with biomass yields) in the outcome of LCAs. When excluding indirect land-use change effects (iLUC), 1st generation pathways enabled GHG savings ranging from 50 to 73 % compared to fossile-derived equivalents, while this figure reached 88 % for 2nd generation bioethanol from miscanthus.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverConference object . 2012Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationConference object . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5c8fde3be26fc16d70d081cc8a52c474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverConference object . 2012Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationConference object . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::5c8fde3be26fc16d70d081cc8a52c474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Norway, FrancePublisher:American Geophysical Union (AGU) Funded by:UKRI | NCEO LTS-S, ANR | CLANDUKRI| NCEO LTS-S ,ANR| CLANDXuhui Wang; Yahui Gao; Sujong Jeong; Akihiko Ito; Ana Bastos; Benjamin Poulter; Yilong Wang; Philippe Ciais; Hanqin Tian; Wenping Yuan; Naveen Chandra; Frédéric Chevallier; Lei Fan; Songbai Hong; Ronny Lauerwald; Wei Li; Zhengyang Lin; Naiqing Pan; Prabir K. Patra; Shushi Peng; Lishan Ran; Yuxing Sang; Stephen Sitch; T. Mäki; Rona L. Thompson; Chenzhi Wang; Kai Wang; Tao Wang; Yi Xi; Li Xu; Yanzi Yan; Jeongmin Yun; Yao Zhang; Yuzhong Zhang; Zhen Zhang; Bo Zheng; Feng Zhou; Shu Tao; Josep G. Canadell; Shilong Piao;AbstractEast Asia (China, Japan, Koreas, and Mongolia) has been the world's economic engine over at least the past two decades, exhibiting a rapid increase in fossil fuel emissions of greenhouse gases (GHGs) and has expressed the recent ambition to achieve climate neutrality by mid‐century. However, the GHG balance of its terrestrial ecosystems remains poorly constrained. Here, we present a synthesis of the three most important long‐lived greenhouse gases (CO2, CH4, and N2O) budgets over East Asia during the decades of 2000s and 2010s, following a dual constraint approach. We estimate that terrestrial ecosystems in East Asia is close to neutrality of GHGs, with a magnitude of between −46.3 ± 505.9 Tg CO2eq yr−1(the top‐down approach) and −36.1 ± 207.1 Tg CO2eq yr−1(the bottom‐up approach) during 2000–2019. This net GHG sink includes a large land CO2sink (−1229.3 ± 430.9 Tg CO2 yr−1based on the top‐down approach and −1353.8 ± 158.5 Tg CO2 yr−1based on the bottom‐up approach) being offset by biogenic CH4and N2O emissions, predominantly coming from the agricultural sectors. Emerging data sources and modeling capacities have helped achieve agreement between the top‐down and bottom‐up approaches, but sizable uncertainties remain in several flux terms. For example, the reported CO2flux from land use and land cover change varies from a net source of more than 300 Tg CO2 yr−1to a net sink of ∼−700 Tg CO2 yr−1. Although terrestrial ecosystems over East Asia is close to GHG neutral currently, curbing agricultural GHG emissions and additional afforestation and forest managements have the potential to transform the terrestrial ecosystems into a net GHG sink, which would help in realizing East Asian countries' ambitions to achieve climate neutrality.
NILU Brage arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert NILU Brage arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu