- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Springer Science and Business Media LLC Authors: Carla M. Sgrò; Ary A. Hoffmann;doi: 10.1038/nature09670
pmid: 21350480
Evolutionary adaptation can be rapid and potentially help species counter stressful conditions or realize ecological opportunities arising from climate change. The challenges are to understand when evolution will occur and to identify potential evolutionary winners as well as losers, such as species lacking adaptive capacity living near physiological limits. Evolutionary processes also need to be incorporated into management programmes designed to minimize biodiversity loss under rapid climate change. These challenges can be met through realistic models of evolutionary change linked to experimental data across a range of taxa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature09670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3K citations 2,518 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature09670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, AustraliaPublisher:Wiley Alex Bush; Vanessa Kellermann; Renee A. Catullo; Renee A. Catullo; Renee A. Catullo; Shane F. McEvey; Carla M. Sgrò; Ary A. Hoffmann; Karel Mokany; Simon Ferrier;AbstractBased on the sensitivity of species to ongoing climate change, and numerous challenges they face tracking suitable conditions, there is growing interest in species' capacity to adapt to climatic stress. Here, we develop and apply a new generic modelling approach (AdaptR) that incorporates adaptive capacity through physiological limits, phenotypic plasticity, evolutionary adaptation and dispersal into a species distribution modelling framework. Using AdaptR to predict change in the distribution of 17 species of Australian fruit flies (Drosophilidae), we show that accounting for adaptive capacity reduces projected range losses by up to 33% by 2105. We identify where local adaptation is likely to occur and apply sensitivity analyses to identify the critical factors of interest when parameters are uncertain. Our study suggests some species could be less vulnerable than previously thought, and indicates that spatiotemporal adaptive models could help improve management interventions that support increased species' resilience to climate change.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 217 citations 217 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 AustraliaPublisher:Wiley Peter A. Vesk; Keith L. McDougall; Kate D. L. Umbers; Anca M. Hanea; Sonya R. Geange; Ary A. Hoffmann; Susanna Venn; James S. Camac; James S. Camac; John W. Morgan; Adrienne B. Nicotra; Rachel A. Slatyer;AbstractConservation managers are under increasing pressure to make decisions about the allocation of finite resources to protect biodiversity under a changing climate. However, the impacts of climate and global change drivers on species are outpacing our capacity to collect the empirical data necessary to inform these decisions. This is particularly the case in the Australian Alps which have already undergone recent changes in climate and experienced more frequent large‐scale bushfires. In lieu of empirical data, we use a structured expert elicitation method (the IDEA protocol) to estimate the change in abundance and distribution of nine vegetation groups and 89 Australian alpine and subalpine species by the year 2050. Experts predicted that most alpine vegetation communities would decline in extent by 2050; only woodlands and heathlands are predicted to increase in extent. Predicted species‐level responses for alpine plants and animals were highly variable and uncertain. In general, alpine plants spanned the range of possible responses, with some expected to increase, decrease or not change in cover. By contrast, almost all animal species are predicted to decline or not change in abundance or elevation range; more species with water‐centric life‐cycles are expected to decline in abundance than other species. While long‐term ecological data will always be the gold standard for informing the future of biodiversity, the method and outcomes outlined here provide a pragmatic and coherent basis upon which to start informing conservation policy and management in the face of rapid change and a paucity of data.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/11343/281005Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/61...Other literature type . 2021License: CC BY NCData sources: Datacitehttps://dx.doi.org/10.26181/16...Other literature type . 2024License: CC BY NCData sources: DataciteUniversity of Western Sydney (UWS): Research DirectArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/11343/281005Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/61...Other literature type . 2021License: CC BY NCData sources: Datacitehttps://dx.doi.org/10.26181/16...Other literature type . 2024License: CC BY NCData sources: DataciteUniversity of Western Sydney (UWS): Research DirectArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, AustraliaPublisher:Wiley Authors: Ary A. Hoffmann; Jon Bridle;doi: 10.1111/oik.08715
handle: 11343/308614
Plasticity in traits in response to environmental conditions can increase fitness, expanding the range of environments within which a genotype can generate viable and productive phenotypes, and therefore when and where populations can persist and diversify in ecological space. Adaptive forms of plasticity in invertebrates are diverse, ranging from polyphenism and diapause to behavioural thermoregulation and optimal foraging. Local patterns of environmental variation and developmental constraints will dictate which of these forms evolves. Here we review the core idea that the use of narrow developmental windows by invertebrates to attain specific types of phenotypic changes reduces their reversibility, while increasing their magnitude. These tradeoffs dictate the costs and effectiveness of plasticity in buffering environmental variation. In particular, plastic responses to narrow developmental or environmental windows increase fitness costs when predicted environmental challenges do not materialise, or when the environment changes in unpredictable ways. We then explore the converse idea that increasing trait reversibility depends on extending the period for which genotypes are sensitive to the environment, but also narrows the range of plastic phenotypes that can be generated. Considering these findings together, we would expect that the costs, benefits and constraints of reversible versus irreversible plasticity affect the rate and magnitude of adaptive responses to rapidly changing and novel environments. However, such predictions have rarely been tested or included in theoretical models. Identifying this knowledge gap leads us to propose new research directions to provide a deeper understanding of the evolution of plasticity in invertebrates and other organisms. We illustrate these possible directions through examples ofDrosophilaadapting to thermal stress.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/308614Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/oik.08715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/308614Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/oik.08715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:The Royal Society Funded by:EC | FluctEvolEC| FluctEvolAuthors: Luis-Miguel Chevin; Ary A. Hoffmann;Phenotypic plasticity, if adaptive, may allow species to counter the detrimental effects of extreme conditions, but the infrequent occurrence of extreme environments and/or their restriction to low-quality habitats within a species range means that they exert little direct selection on reaction norms. Plasticity could, therefore, be maladaptive under extreme environments, unless genetic correlations are strong between extreme and non-extreme environmental states, and the optimum phenotype changes smoothly with the environment. Empirical evidence suggests that populations and species from more variable environments show higher levels of plasticity that might preadapt them to extremes, but genetic variance for plastic responses can also be low, and genetic variation may not be expressed for some classes of traits under extreme conditions. Much of the empirical literature on plastic responses to extremes has not yet been linked to ecologically relevant conditions, such as asymmetrical fluctuations in the case of temperature extremes. Nevertheless, evolved plastic responses are likely to be important for natural and agricultural species increasingly exposed to climate extremes, and there is an urgent need to collect empirical information and link this to model predictions.This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events'.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2016.0138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 298 citations 298 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2016.0138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2010 AustraliaPublisher:Wiley Authors: Sgro, C.; Lowe, A.; Hoffmann, A.;AbstractEvolution occurs rapidly and is an ongoing process in our environments. Evolutionary principles need to be built into conservation efforts, particularly given the stressful conditions organisms are increasingly likely to experience because of climate change and ongoing habitat fragmentation. The concept of evolutionary resilience is a way of emphasizing evolutionary processes in conservation and landscape planning. From an evolutionary perspective, landscapes need to allow in situ selection and capture high levels of genetic variation essential for responding to the direct and indirect effects of climate change. We summarize ideas that need to be considered in planning for evolutionary resilience and suggest how they might be incorporated into policy and management to ensure that resilience is maintained in the face of environmental degradation.
Evolutionary Applica... arrow_drop_down Evolutionary ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1752-4571.2010.00157.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 640 citations 640 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Evolutionary Applica... arrow_drop_down Evolutionary ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1752-4571.2010.00157.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:The Company of Biologists Authors: Hoffmann, A.A.;doi: 10.1242/jeb.037630
pmid: 20190112
SUMMARYPhysiological limits determine susceptibility to environmental changes, and can be assessed at the individual, population or species/lineage levels. Here I discuss these levels in Drosophila, and consider implications for determining species susceptibility to climate change. Limits at the individual level in Drosophila depend on experimental technique and on the context in which traits are evaluated. At the population level, evidence from selection experiments particularly involving Drosophila melanogaster indicate high levels of heritable variation and evolvability for coping with thermal stresses and aridity. An exception is resistance to high temperatures, which reaches a plateau in selection experiments and has a low heritability/evolvability when temperatures are ramped up to a stressful level. In tropical Drosophila species, populations are limited in their ability to evolve increased desiccation and cold resistance. Population limits can arise from trait and gene interactions but results from different laboratory studies are inconsistent and likely to underestimate the strength of interactions under field conditions. Species and lineage comparisons suggest phylogenetic conservatism for resistance to thermal extremes and other stresses. Plastic responses set individual limits but appear to evolve slowly in Drosophila. There is more species-level variation in lower thermal limits and desiccation resistance compared with upper limits, which might reflect different selection pressures and/or low evolvability. When extremes are considered, tropical Drosophila species do not appear more threatened than temperate species by higher temperatures associated with global warming, contrary to recent conjectures. However, species from the humid tropics may be threatened if they cannot adapt genetically to drier conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.037630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 310 citations 310 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.037630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 China (People's Republic of), Australia, Australia, Italy, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Wendy Foden; Michela Pacifici; Tara G. Martin; John M. Pandolfi; Carlo Rondinini; Stuart H. M. Butchart; Stuart H. M. Butchart; Camilo Mora; Tom C. L. Bridge; Tom C. L. Bridge; Ary A. Hoffmann; James E. M. Watson; James E. M. Watson; Brett R. Scheffers; David Dudgeon; Luc De Meester; Richard T. Corlett; David Bickford; Kit M. Kovacs; Paul Pearce-Kelly;Accumulating impacts Anthropogenic climate change is now in full swing, our global average temperature already having increased by 1°C from preindustrial levels. Many studies have documented individual impacts of the changing climate that are particular to species or regions, but individual impacts are accumulating and being amplified more broadly. Scheffers et al. review the set of impacts that have been observed across genes, species, and ecosystems to reveal a world already undergoing substantial change. Understanding the causes, consequences, and potential mitigation of these changes will be essential as we move forward into a warming world. Science , this issue p. 10.1126/science.aaf7671
Archivio della ricer... arrow_drop_down University of Hong Kong: HKU Scholars HubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaf7671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu992 citations 992 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down University of Hong Kong: HKU Scholars HubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaf7671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Wiley Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP130100435Susanna Venn; Susanna Venn; Matt White; Stephen Harris; Michael A. Nash; Michael A. Nash; Ary A. Hoffmann; Ary A. Hoffmann; Emma Burns; Emma Burns; K.A.J. Stott; Richard J. Williams; Richard J. Williams; W. A. Papst; James S. Camac; John W. Morgan; Carl-Henrik Wahren; Carl-Henrik Wahren;doi: 10.1111/aec.12266
handle: 1885/98993
AbstractAlpine ecosystems are globally at risk from climate change. We use the International Union for the Conservation of Nature (IUCN) Red List Criteria for ecosystems to assess the risk of ecosystem collapse in Australian alpine snow patch herbfields. These ecosystems occur on both mainland Australia and Tasmania. They are restricted to steep, south‐easterly slopes where snow pack persists well into the summer growing season. Consequently, they are rare, and have high conservation significance. We evaluated the risk of snow patch herbfield ‘ecosystem collapse’ against criteria that accounted for the ecosystem's restricted distribution, projected decline in the snowpack and increased rates of invasion by taller growing native species of shrub and grass. Our analyses revealed considerable uncertainty in estimates of risk based on some criteria, particularly those related to thresholds of ecosystem collapse caused by biotic change. On the basis of the IUCN Red List criteria, we conclude that the ecosystem is ‘endangered’. This is because of the restricted geographical distribution of the ecosystem, a substantial and highly likely decline in the abundance of snow (the principal abiotic driver of the ecosystem), and the prospect of invasion of much of the ecosystem by taller growing native shrubs and grasses. Our case study demonstrates the utility of the Red List methodology for assessing risks to biodiversity in rare ecosystems where changes to both abiotic factors and the relative dominance of native species constitute major threats. Our findings indicate the importance of snow patch herbfields as refugia for dwarf alpine plant species in the face of climate change, the need for continued monitoring, the removal of feral animals from the Australian Alps and scenario planning.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/98993Data sources: Bielefeld Academic Search Engine (BASE)Austral EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/98993Data sources: Bielefeld Academic Search Engine (BASE)Austral EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Johannes Overgaard; Johannes Overgaard; Michael R. Kearney; Ary A. Hoffmann;doi: 10.1111/gcb.12521
pmid: 24549716
Climatic factors influence the distribution of ectotherms, raising the possibility that distributions of many species will shift rapidly under climate change and/or that species will become locally extinct. Recent studies have compared performance curves of species from different climate zones and suggested that tropical species may be more susceptible to climate change than those from temperate environments. However, in other comparisons involving responses to thermal extremes it has been suggested that mid-latitude populations are more susceptible. Using a group of 10 closely related Drosophila species with known tropical or widespread distribution, we undertake a detailed investigation of their growth performance curves and their tolerance to thermal extremes. Thermal sensitivity of life history traits (fecundity, developmental success, and developmental time) and adult heat resistance were similar in tropical and widespread species groups, while widespread species had higher adult cold tolerance under all acclimation regimes. Laboratory measurements of either population growth capacity or acute tolerance to heat and cold extremes were compared to daily air temperature under current (2002-2007) and future (2100) conditions to investigate if these traits could explain current distributions and, therefore, also forecast future effects of climate change. Life history traits examining the thermal sensitivity of population growth proved to be a poor predictor of current species distributions. In contrast, we validate that adult tolerance to thermal extremes provides a good correlate of current distributions. Thus, in their current distribution range, most of the examined species experience heat exposure close to, but rarely above, the functional heat resistance limit. Similarly, adult functional cold resistance proved a good predictor of species distribution in cooler climates. When using the species' functional tolerance limits under a global warming scenario, we find that both tropical and widespread Drosophila species will face a similar proportional reduction in distribution range under future warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu188 citations 188 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Springer Science and Business Media LLC Authors: Carla M. Sgrò; Ary A. Hoffmann;doi: 10.1038/nature09670
pmid: 21350480
Evolutionary adaptation can be rapid and potentially help species counter stressful conditions or realize ecological opportunities arising from climate change. The challenges are to understand when evolution will occur and to identify potential evolutionary winners as well as losers, such as species lacking adaptive capacity living near physiological limits. Evolutionary processes also need to be incorporated into management programmes designed to minimize biodiversity loss under rapid climate change. These challenges can be met through realistic models of evolutionary change linked to experimental data across a range of taxa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature09670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3K citations 2,518 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature09670&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, AustraliaPublisher:Wiley Alex Bush; Vanessa Kellermann; Renee A. Catullo; Renee A. Catullo; Renee A. Catullo; Shane F. McEvey; Carla M. Sgrò; Ary A. Hoffmann; Karel Mokany; Simon Ferrier;AbstractBased on the sensitivity of species to ongoing climate change, and numerous challenges they face tracking suitable conditions, there is growing interest in species' capacity to adapt to climatic stress. Here, we develop and apply a new generic modelling approach (AdaptR) that incorporates adaptive capacity through physiological limits, phenotypic plasticity, evolutionary adaptation and dispersal into a species distribution modelling framework. Using AdaptR to predict change in the distribution of 17 species of Australian fruit flies (Drosophilidae), we show that accounting for adaptive capacity reduces projected range losses by up to 33% by 2105. We identify where local adaptation is likely to occur and apply sensitivity analyses to identify the critical factors of interest when parameters are uncertain. Our study suggests some species could be less vulnerable than previously thought, and indicates that spatiotemporal adaptive models could help improve management interventions that support increased species' resilience to climate change.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 217 citations 217 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 AustraliaPublisher:Wiley Peter A. Vesk; Keith L. McDougall; Kate D. L. Umbers; Anca M. Hanea; Sonya R. Geange; Ary A. Hoffmann; Susanna Venn; James S. Camac; James S. Camac; John W. Morgan; Adrienne B. Nicotra; Rachel A. Slatyer;AbstractConservation managers are under increasing pressure to make decisions about the allocation of finite resources to protect biodiversity under a changing climate. However, the impacts of climate and global change drivers on species are outpacing our capacity to collect the empirical data necessary to inform these decisions. This is particularly the case in the Australian Alps which have already undergone recent changes in climate and experienced more frequent large‐scale bushfires. In lieu of empirical data, we use a structured expert elicitation method (the IDEA protocol) to estimate the change in abundance and distribution of nine vegetation groups and 89 Australian alpine and subalpine species by the year 2050. Experts predicted that most alpine vegetation communities would decline in extent by 2050; only woodlands and heathlands are predicted to increase in extent. Predicted species‐level responses for alpine plants and animals were highly variable and uncertain. In general, alpine plants spanned the range of possible responses, with some expected to increase, decrease or not change in cover. By contrast, almost all animal species are predicted to decline or not change in abundance or elevation range; more species with water‐centric life‐cycles are expected to decline in abundance than other species. While long‐term ecological data will always be the gold standard for informing the future of biodiversity, the method and outcomes outlined here provide a pragmatic and coherent basis upon which to start informing conservation policy and management in the face of rapid change and a paucity of data.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/11343/281005Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/61...Other literature type . 2021License: CC BY NCData sources: Datacitehttps://dx.doi.org/10.26181/16...Other literature type . 2024License: CC BY NCData sources: DataciteUniversity of Western Sydney (UWS): Research DirectArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/11343/281005Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.26181/61...Other literature type . 2021License: CC BY NCData sources: Datacitehttps://dx.doi.org/10.26181/16...Other literature type . 2024License: CC BY NCData sources: DataciteUniversity of Western Sydney (UWS): Research DirectArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, AustraliaPublisher:Wiley Authors: Ary A. Hoffmann; Jon Bridle;doi: 10.1111/oik.08715
handle: 11343/308614
Plasticity in traits in response to environmental conditions can increase fitness, expanding the range of environments within which a genotype can generate viable and productive phenotypes, and therefore when and where populations can persist and diversify in ecological space. Adaptive forms of plasticity in invertebrates are diverse, ranging from polyphenism and diapause to behavioural thermoregulation and optimal foraging. Local patterns of environmental variation and developmental constraints will dictate which of these forms evolves. Here we review the core idea that the use of narrow developmental windows by invertebrates to attain specific types of phenotypic changes reduces their reversibility, while increasing their magnitude. These tradeoffs dictate the costs and effectiveness of plasticity in buffering environmental variation. In particular, plastic responses to narrow developmental or environmental windows increase fitness costs when predicted environmental challenges do not materialise, or when the environment changes in unpredictable ways. We then explore the converse idea that increasing trait reversibility depends on extending the period for which genotypes are sensitive to the environment, but also narrows the range of plastic phenotypes that can be generated. Considering these findings together, we would expect that the costs, benefits and constraints of reversible versus irreversible plasticity affect the rate and magnitude of adaptive responses to rapidly changing and novel environments. However, such predictions have rarely been tested or included in theoretical models. Identifying this knowledge gap leads us to propose new research directions to provide a deeper understanding of the evolution of plasticity in invertebrates and other organisms. We illustrate these possible directions through examples ofDrosophilaadapting to thermal stress.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/308614Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/oik.08715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/308614Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/oik.08715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:The Royal Society Funded by:EC | FluctEvolEC| FluctEvolAuthors: Luis-Miguel Chevin; Ary A. Hoffmann;Phenotypic plasticity, if adaptive, may allow species to counter the detrimental effects of extreme conditions, but the infrequent occurrence of extreme environments and/or their restriction to low-quality habitats within a species range means that they exert little direct selection on reaction norms. Plasticity could, therefore, be maladaptive under extreme environments, unless genetic correlations are strong between extreme and non-extreme environmental states, and the optimum phenotype changes smoothly with the environment. Empirical evidence suggests that populations and species from more variable environments show higher levels of plasticity that might preadapt them to extremes, but genetic variance for plastic responses can also be low, and genetic variation may not be expressed for some classes of traits under extreme conditions. Much of the empirical literature on plastic responses to extremes has not yet been linked to ecologically relevant conditions, such as asymmetrical fluctuations in the case of temperature extremes. Nevertheless, evolved plastic responses are likely to be important for natural and agricultural species increasingly exposed to climate extremes, and there is an urgent need to collect empirical information and link this to model predictions.This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events'.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2016.0138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 298 citations 298 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2016.0138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2010 AustraliaPublisher:Wiley Authors: Sgro, C.; Lowe, A.; Hoffmann, A.;AbstractEvolution occurs rapidly and is an ongoing process in our environments. Evolutionary principles need to be built into conservation efforts, particularly given the stressful conditions organisms are increasingly likely to experience because of climate change and ongoing habitat fragmentation. The concept of evolutionary resilience is a way of emphasizing evolutionary processes in conservation and landscape planning. From an evolutionary perspective, landscapes need to allow in situ selection and capture high levels of genetic variation essential for responding to the direct and indirect effects of climate change. We summarize ideas that need to be considered in planning for evolutionary resilience and suggest how they might be incorporated into policy and management to ensure that resilience is maintained in the face of environmental degradation.
Evolutionary Applica... arrow_drop_down Evolutionary ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1752-4571.2010.00157.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 640 citations 640 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Evolutionary Applica... arrow_drop_down Evolutionary ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1752-4571.2010.00157.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:The Company of Biologists Authors: Hoffmann, A.A.;doi: 10.1242/jeb.037630
pmid: 20190112
SUMMARYPhysiological limits determine susceptibility to environmental changes, and can be assessed at the individual, population or species/lineage levels. Here I discuss these levels in Drosophila, and consider implications for determining species susceptibility to climate change. Limits at the individual level in Drosophila depend on experimental technique and on the context in which traits are evaluated. At the population level, evidence from selection experiments particularly involving Drosophila melanogaster indicate high levels of heritable variation and evolvability for coping with thermal stresses and aridity. An exception is resistance to high temperatures, which reaches a plateau in selection experiments and has a low heritability/evolvability when temperatures are ramped up to a stressful level. In tropical Drosophila species, populations are limited in their ability to evolve increased desiccation and cold resistance. Population limits can arise from trait and gene interactions but results from different laboratory studies are inconsistent and likely to underestimate the strength of interactions under field conditions. Species and lineage comparisons suggest phylogenetic conservatism for resistance to thermal extremes and other stresses. Plastic responses set individual limits but appear to evolve slowly in Drosophila. There is more species-level variation in lower thermal limits and desiccation resistance compared with upper limits, which might reflect different selection pressures and/or low evolvability. When extremes are considered, tropical Drosophila species do not appear more threatened than temperate species by higher temperatures associated with global warming, contrary to recent conjectures. However, species from the humid tropics may be threatened if they cannot adapt genetically to drier conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.037630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 310 citations 310 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.037630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 China (People's Republic of), Australia, Australia, Italy, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Wendy Foden; Michela Pacifici; Tara G. Martin; John M. Pandolfi; Carlo Rondinini; Stuart H. M. Butchart; Stuart H. M. Butchart; Camilo Mora; Tom C. L. Bridge; Tom C. L. Bridge; Ary A. Hoffmann; James E. M. Watson; James E. M. Watson; Brett R. Scheffers; David Dudgeon; Luc De Meester; Richard T. Corlett; David Bickford; Kit M. Kovacs; Paul Pearce-Kelly;Accumulating impacts Anthropogenic climate change is now in full swing, our global average temperature already having increased by 1°C from preindustrial levels. Many studies have documented individual impacts of the changing climate that are particular to species or regions, but individual impacts are accumulating and being amplified more broadly. Scheffers et al. review the set of impacts that have been observed across genes, species, and ecosystems to reveal a world already undergoing substantial change. Understanding the causes, consequences, and potential mitigation of these changes will be essential as we move forward into a warming world. Science , this issue p. 10.1126/science.aaf7671
Archivio della ricer... arrow_drop_down University of Hong Kong: HKU Scholars HubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaf7671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu992 citations 992 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down University of Hong Kong: HKU Scholars HubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaf7671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Wiley Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP130100435Susanna Venn; Susanna Venn; Matt White; Stephen Harris; Michael A. Nash; Michael A. Nash; Ary A. Hoffmann; Ary A. Hoffmann; Emma Burns; Emma Burns; K.A.J. Stott; Richard J. Williams; Richard J. Williams; W. A. Papst; James S. Camac; John W. Morgan; Carl-Henrik Wahren; Carl-Henrik Wahren;doi: 10.1111/aec.12266
handle: 1885/98993
AbstractAlpine ecosystems are globally at risk from climate change. We use the International Union for the Conservation of Nature (IUCN) Red List Criteria for ecosystems to assess the risk of ecosystem collapse in Australian alpine snow patch herbfields. These ecosystems occur on both mainland Australia and Tasmania. They are restricted to steep, south‐easterly slopes where snow pack persists well into the summer growing season. Consequently, they are rare, and have high conservation significance. We evaluated the risk of snow patch herbfield ‘ecosystem collapse’ against criteria that accounted for the ecosystem's restricted distribution, projected decline in the snowpack and increased rates of invasion by taller growing native species of shrub and grass. Our analyses revealed considerable uncertainty in estimates of risk based on some criteria, particularly those related to thresholds of ecosystem collapse caused by biotic change. On the basis of the IUCN Red List criteria, we conclude that the ecosystem is ‘endangered’. This is because of the restricted geographical distribution of the ecosystem, a substantial and highly likely decline in the abundance of snow (the principal abiotic driver of the ecosystem), and the prospect of invasion of much of the ecosystem by taller growing native shrubs and grasses. Our case study demonstrates the utility of the Red List methodology for assessing risks to biodiversity in rare ecosystems where changes to both abiotic factors and the relative dominance of native species constitute major threats. Our findings indicate the importance of snow patch herbfields as refugia for dwarf alpine plant species in the face of climate change, the need for continued monitoring, the removal of feral animals from the Australian Alps and scenario planning.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/98993Data sources: Bielefeld Academic Search Engine (BASE)Austral EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/98993Data sources: Bielefeld Academic Search Engine (BASE)Austral EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/aec.12266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Johannes Overgaard; Johannes Overgaard; Michael R. Kearney; Ary A. Hoffmann;doi: 10.1111/gcb.12521
pmid: 24549716
Climatic factors influence the distribution of ectotherms, raising the possibility that distributions of many species will shift rapidly under climate change and/or that species will become locally extinct. Recent studies have compared performance curves of species from different climate zones and suggested that tropical species may be more susceptible to climate change than those from temperate environments. However, in other comparisons involving responses to thermal extremes it has been suggested that mid-latitude populations are more susceptible. Using a group of 10 closely related Drosophila species with known tropical or widespread distribution, we undertake a detailed investigation of their growth performance curves and their tolerance to thermal extremes. Thermal sensitivity of life history traits (fecundity, developmental success, and developmental time) and adult heat resistance were similar in tropical and widespread species groups, while widespread species had higher adult cold tolerance under all acclimation regimes. Laboratory measurements of either population growth capacity or acute tolerance to heat and cold extremes were compared to daily air temperature under current (2002-2007) and future (2100) conditions to investigate if these traits could explain current distributions and, therefore, also forecast future effects of climate change. Life history traits examining the thermal sensitivity of population growth proved to be a poor predictor of current species distributions. In contrast, we validate that adult tolerance to thermal extremes provides a good correlate of current distributions. Thus, in their current distribution range, most of the examined species experience heat exposure close to, but rarely above, the functional heat resistance limit. Similarly, adult functional cold resistance proved a good predictor of species distribution in cooler climates. When using the species' functional tolerance limits under a global warming scenario, we find that both tropical and widespread Drosophila species will face a similar proportional reduction in distribution range under future warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu188 citations 188 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu